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1. Introduction 

Present day gauge theory represents a successful domain in the study of e.m., 

weak, strong and even gravitational interactions. With many fundamental problems 

solved or in the process of being solved we are very often faced with second generation 

problems, i.e., technical difficulties which prevent us from producing numbers out of 

the theory. To name only one of these problems we can say that the present generation 

of accelerators is very near to test weak effects in e+e- annihilation. Therefore radia- 

tive corrections must be available and among them hard bremsstrahlung corrections, 

which have been a difficult task for many years. In this respect a major achievement 

is represented by the techniques developed by the CALKUL collaboration. l) In brief 

they have been able to produce an explicit representation for the photon wave func- 

“tion which allows to comput,e directly and with incredible simplicity the amplitude 

for processes like e+e- -+ XT. At the same time different efforts,2) already present in 

the literature, for computing transition amplitudes between Dirac spinors have been 

itemized and developed in ref. 3. 

All these methods use covariant polarization bases and we feel that these fea- 

tures should be extended to include massive particles with spin 1, 3/2 as well as the 

graviton. 4, Indeed a look at the relevant literature 5, shows that for explicit calcu- 

lations involving vector bosons, the wave functions are still written component by 

component. * 

The main result of our paper can be summarized as follows. A spin s massive 

particle is described by a totally symmetric 2s - spinor satisfying the correspon- 

dent Bargmann-Wigner equations. By a suitable generalization of the so called fusion 

method we can prove that a massive particle with spin s = 1, 3/2 and four momen- 

* A notable exception is found in ref. 6. Reference 5 is by no means complete or 
exhaustive. Eventual omissions are purely casual. 
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turn p is equivalent to 2s Dirac particles, each in a state of four momentum pi with 

p? = -m? pi I 1’ = (mi/m)p and Cmi = na. The total spin is the vector sum of the 

spins of the Dirac particles. 

The Proca and the Rarita-Schwinger fields are then expressed in terms of the sec- 

ond and third rank spinors. As a result of the fusion method the corresponding wave 

functions can be entirely expressed in terms of Dirac spinors with arbitary polariza- 

tion vectors. * Thus transition amplitudes between states with spin 5 3/2 can be 

evaluated with the same methods of ref. 3 and in the final answer we have only exter- 

nal momenta, polarization vectors of the Dirac particles and longitudinal polarization 

vectors for the spin 1 particles. The feasibility of the method is illustrated in sev- 

eral examples of processes with external vector bosons. The outline of the paper is 

,-as follows. In sec. 2 we discuss the spinor equations for spin 1. The corresponding 

wave function is analyzed in detail in sec. 3. Section 4 contains explicit calculations 

for Z” + j+ j-, e+e- --) Z”&), e+e- + 2’7 and e+e- ---) W+W-. Finally, in the 

- appendix technical details are examined. 

2. Spinor equations for a massive spin 1 particle 

The spinor equations equivalent to the Proca equation for a massive vector particle 

were found a long time ago.‘) Originally these equations and their solution when no 

e.m. field is present were obtained in the two component spinor formalism. A simple 

interpretation follows. A free particle of mass m and spin 1 is equivalent to a pair of 

Dirac particles of masses ml and m2. If p, p1 and p2 are the four momenta describing 

the states of these particles then 

pi=m;p , ml+mz=m 
m 

*The usual helicity amplitudes are obtained when we choose the polarization of the 
merging fermions to be longitudinal. 
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and the spin of the vector boson is the sum of the spins of the two Dirac particles. 

The same result can be expressed in the four component formalism where a massive 

spin 1 particle is described by a symmetric second rank spinor \I’,,g. This can easily 

be derived by using the Bargmann-Wigner8) approach as described by Lurik.g) 

The symmetric spinor *,B satisfies the equations 

AA %a + m\I’cg = 0 
aja %A + m%q9 = 0 

A symmetric 4 X 4 matrix can always be decomposed as 

(2.1) 

(2.2) 

where c = -cl = --c-l is the charge conjugation matrix. The vector particle wave 
a- 

function is 

Moreover any symmetric second rank spinor can be written as 

Equations (2.1) written in momentum space become * 

(i $+ m)*(p) = *(p)(i fl + m) = 0 

and they are satisfied by the ansatz 

VP) = ww(PlMP2) + fb(P2MPl)l 

i Hj @(Pj) = -mj$(Pj) 

if and only if pi = (mi/m)p and ml + m2 = m. 

(2.4 

P-5) 

VW * Our convention is gcLV = gp” = 6; = (+, +, +, +) (the Pauli metric). 
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In order to deal with polarized particles we consider the spinors u(p, n, A), X = 

fl. They are defined3) as the eigenstates of the operator f’+(p, n, A) corresponding 

to eigenvalue 1. 

P+(p, n, A) = A+(P) f (1+ iXY5 AA+(P) 

A+(P) = $-J-i d+ f74y4 
(2.6) 

n is the polarization vector and pm n = 0, n2 = 1. 

The wave function for an incoming spin 1 particle of four momentum p is thus 

reconstructed by the fusion method from eq. (2.3) using eq. (2.5) and the properties 

of the spinor u(p, n, X). 

a-~ 3. Polarization Bases for Vector Particles 

Having discussed the preliminaries we proceed in the construction of a polarization 

basis for a massive vector boson. We first introduce 

X?PY 4 = & trC7’C4Piy n, hb(Pj, *, h) (3.1) 

where X =1/2(X1 + X2), pi = (mi/m)p and th e sum denotes symmetrization with 

respect to pl ++ p2 and X1 * X2. 

Taking into account the properties of c we find 

XcI(PY 9 = & CtrGj, n, xk)c7’u(Pi, n, h) 

(3.2) 

= &C 8 (Pjy nt ~k)7cL~(pi~ n, Xl) 

v(p, n, X) can be introduced as follows. 3)Let u(p, n, A) be an eigenstate of P-(p, n, X) 

satisfying the Dirac equation for po = -(p2 + m 2 lj2. P- is given by an expression ) 

similar to the one in eq. (2.6) with 

A-(P) = -&r4(+i j+ m) 

5 



Thus v(p, n, X) = cu(p*, n*, A) where p* = (-3, PO), n* = (2, -no). xp, as given in 

eq. (3.2) describes after a suitable normalization the vector boson wave function. 

All the relevant formulas are explicitly proven in the appendix. Under the condi- 

tions required by the fusion method we get 

(3.3) 

with E = po and 

p* = 2 ‘(1 f XX’) 

,The symbol N in eq. (3.3) indicates that an arbitrary phase has been neg1ected.l) 

Introducing 

ITij(X, A’) = 4Pi, nv A) o (Pj, no x’) 

we can multiply and divide by the appropriate term in eq. (3.3) to have 

(34 

l?ij(X, X) N gUi(X) $‘Vj(X) 

ITij(h,-X) N EUi(X) $Vj(-X) 

with 

Vi(X) = U(piy n, A) FL (pi, tly A).= -&c-i Ji+ m)(l + ixy5 $) 

(3.6) 
Vi(X) = V(piy n, A) 8 (pi7 f2, A) = &(-i $- m)(l + iA75 $) 

From these results we compute x@. 

xp(P, A) = &-~~7p~h2h~ x2) + h2(~2y xl) + r21h x2) + r21@2, h)1 (3.7) 



Dropping an overall phase we get 

xqp, 0) = -$ 

(3.8) 
xp(p, &l) = +I’~ T N”) , Np = ba’%‘,n,pa 

m 
We easily derive 

Xjr(P, 0) = x/A Xu,+(P? fl) = X/.h(P, Tl) 

cP(p, n, A), the spin 1 incoming wave function which satisfies 

P * dP> n, v = 0 c+(P, % VdP, % 0 = &A’ 

is given by * 

qJ(P, n, v = -;3MP, 72, h)7/.4P, n, X2) 

(3.9) 

(3.10) 

+ 8 (P, % ~2)7&P, ‘% h)] 

X = :(X1 + X2) and co = 1, ckl = -$. An object of interest is the tensor GWEN. 

From the properties of the Levi-Civita tensor we get 

N,Nv = -+P~P” m 
- 6,” + nlcnv + n’ n’ P v 

thus 

@)fv(O) = *p*v 

@+,(A) = f[l&, + -$pPpv - nPnv + X(&n: - ALn~)] (X = fl) 

= ; - nPnY + iX(Sa~)PvNan’B 
I 

VW * Compare with the vector boson polarizations in e+e- + W+W- of ref. 10. 
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where S is the spin operator, (S,B)~~ = -i(S,,6,gV - &&P~) = -icp7~pcrV. For a 

longitudinal n the last term becomes -2X(3 * $/I 3 I)ij and 

from the relation 

it follows 

/tp,nd) = -$ 4 +75 1.4 

cp is given in terms of the particle four momentum and of a four vector n which 

,has a clear physical meaning. It is the polarization vector relative to the pair of Dirac 

particles which merge into the vector boson. 

The vector n’ describes the degree of arbitrariness of the solution. Indeed we may 

:go to the p rest frame and select n to be along the third direction with n’ in the l-2 

plane. Thus 

6; = (0, 0, l,o) l y 1, &i, 0,O) 

which for 4 = 0 is the conventional result for spin up, down and zero along the third 

axis. 

It is also seen that for a longitudinal n(p) the vectors Z(p, n, A) are eigenstates of 

3jyjil.’ For instance, if j3 is along the third direction and a///$ we may choose 

n’ such that 

-w * Provided 3’) i? and ii are chosen to form a right-handed basis. 
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any other choice for n’ consistent with n’ * n’ = 1, n’ . p = n’ - n = 0 gives the same 

result up to phases. 

In many calculations we need /and it turns out that a particularly elegant ex- 

pression can be derived within the present formalism. Consider 7. x with x defined in 

eq. (3.2). 

7 * X(P, A) = -& ~7ptr7CLdPiy n, al) @ (Pj, % ok) (3.11) 

Inside the trace only the part of u ZI which contains an odd number of r-matrices gives 

a non zero contribution. From eqs. (3.5)(3.6) we derive 

[rijh A’)] odd 21 F[v(Pi, n, -A) a (Pi, *, -A’)] odd even even 
(3.12) 

Also reversing the order of the r-matrices in the string (U I~‘)~dd leads to a-~ 

Pijtx, X’)l?dd N [rij(x’9 x)lodd (3.13) 

- Where again the symbol N gives equality up to a phase. We may now use the 

identity’l) 

rc’trrcls = 2(s + sR) 

and get 

1 
7 * X(P7 A) = 4m C[(u %dd + (u qz,1 

In fixing the normalization of ~~(p, n,O) we have made the choice that fi(pi, n, +I) 

v(Pj, n, -1) and Q (pi, n, -1) V(pj, n, +I) have the same phase. Therefore 7. x can be 

cast in the form 

7 - XtP, 1/2(X f 4) = ~btp, *, A) fj (24 n, 424 + u(p, *, G) ZI (p, *, A) 
(3.14) 

- ei$*(‘)[v(p, n, -1) 0 tn *, TV + 4p, *, SfV 0 (p, *, -A)]> 

‘-..s+ 
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and 

AP, n, 9 = 4=x7. X(PA 

Next we discuss the application of these results to the calculation of processes involving 

external vector bosons. The usual helicity basis for vector particles corresponds to 

longitudinal polarization for the merging Dirac particles or 

Helicity amplitudes can now be evaluated following two alternative paths. Whenever a 

vector boson is emitted by a fermion line is more convenient to start from eq. (3.10) and 

therefore to transform the amplitude into a trace of r-matrices. Indeed in this case the 

4 V$ $ vertex is transformed into a four fermion vertex allowing us to use computational 

techniques already developed for spinor amplitudes.3) For longitudinal polarization 

(A = 0) however a technical problem arises, due to the presence of undetermined 

‘phases. ‘To overcome this point we always use 6: = np as prescribed by eq. (3.9) 

while for E: we prefer the above mentioned procedure which avoid the introduction of 

an extra parameter through the vector n:. 

In this way any helicity amplitude is converted into an expression which only 

contains momenta, the polarization vector n,, and polarization vectors for the fermions. 

When two or more vector bosons are present we find it more convenient to express n 

and n’ in terms of the external momenta which specify the process. This approach is 

somehow similar in spirit to the one of refs. l(and 6). In the next section we illustrate 

the two procedure by means of several examples. 
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4. Decay and Production of Vector Bosons 

4.1 zO--+ j+j- 

First we analyze the Z” decay into a pair of massless fermions, Z”(q) + j+(k,) + 

j-(k,). The amplitude for the process reads 

A(*, 1Pl,1/2~2) = a P2, X2) /(q, n, *)(w + a07~b(h, h) (4.1) 

Introducing 

we find a- 

A(a, 1/2X1,1/212) = f&c,,Bry’(uo + aor5)v(kl, xl) a(h x2) 

X tr7pu(Piy *, al) fj (Pjy *, ok) 

(4.2) 

The matters of this example being simple, we discuss it in some details. A first pro- 

cedure consists in starting from eq. (4.2) and in eliminating the repeated r-matrices 

with a technique developed in ref. 3. Let I’ be defined as 

picm’Q (ml+m:!=Mo) 
MO 

2a = a1 + *2 

It can be written3) as a product of two (three) y-matrices for Xl = X2(X1 = -X2), but 

only the odd part will survive inside the trace in eq. (4.2). Hence X1 = -X2 = X as 

espected for massless fermions. 

Reversing the order of the q-matrices we get 

rR - -754 k2, -A) a (ICI) X)75 - 
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thus 

tr(Vo + U075)V(k~,X;pj,*,ak)trli(pi,n,b~;lC2,-X) 

- e’+ try5V(k2, -A; Pj, n, ck)tr(ufJ + Q75)U(pij n, Ul; kl, X) 

(4.3) 

where we have denoted by $J the overall undetermined phase and U,V are explicity 

computed in the appendix. 

u(Pi, *, aj; kl, A) = u(Pi, *, cj) 0 (4, A) 

vtkl, x; Pi, *, uj) = v(kl, 1) 6 (Pi, *, gj) 

Moreover U and V can only be determined up to a another phase and the two terms 

in eq. (4.3) interfere with an unknown coefficient. However for this particular example 

we proceed assuming that all the phases can be fixed to 1. Thus a- 

A@, 1/2X, -1/2X) = - A( 8 ~~~~~~~~~~~~~~~~~~~~~~ + Xao)nabPa(X7 al)P*(X, O2) 

(4.4) 

MOn,b = (aMokl. n - ICI . q)1/2(-bMgk2. n - k2. q)li2 
P-5) 

+ (6Mokl . n - kl s q)‘/2(-uMok2. n - kg. q)‘j2 

In the 2’ rest frame nab reduces to 

nab = Mo( 1 + UCOSB)~/~( I+ bc0s6)~~~ 

with j+ produced along the positive third axis and 8 being the polar angle of the spin 

direction. The projection operators P select the desired amplitude, and the result is 

A(f1, f l/2, T- l/2) = -+-(vo f ao)(l+ cd) 

A(f1, T l/2, f l/2) = -+vo “f uo)(l -me) (4.6) 

A(0, f l/2, F l/2) = -(vo f ug)sid 
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Another way of computing the amplitude is the following 

A@, 1/2X1,1/2X2) = 1 E 4 ~G7~tr7’(~0 i- a07~)V(kl, xl; Pi, n, ‘Jl)7pu(Pj, % flk; h x2) 

V-7) 

At this level there is no ambiguity due to arbitrary phases, and clearly this remains 

true for u = fl. For TV = 0 however the symmetrization in al, a2 introduces such an 

ambiguity, as it will be clear from the following example. 

4.2 e+e- + Z”Ho 

As a first generalization of the previous example we consider e+(kl) + e-(kg) + 

Z”(q) + Ho(Q) h w ere Ho is the neutral Higgs particle of the standard model. 

The amplitude is 

a- A(X1, X2, 4 = sg2 4 (4.8) 

with s = -(kl + k2)2 and 6~ is the weak mixing angle. Also 

A(hl,X2,a) = 2r(kl,Xl)rP(vg+aor5)u(k2,X2)~~(q,*,a) (4.9) 

Using r+(a) = ~(-a) and following the path of t,he least number of undetermined 

phases we have 

W is defined and computed in the appendix. 

From the discussion of sec. 4.1 we know that W can be evaluated only up to a 

phase. For d = fl(al = a2 = &l) there i s actually only an overall phase in A which 

we may neglect. For c = 0 we have to symmetrize, i.e. to sum the results with al = 

+l, a2 = -1 and 01 = -1, t7q = +I, which produces an intrinsically undetermined 

interference. For this reason we choose to compute 

Ah, X2,0) = tr #@JO + aor5)u(h, X2) EJ h h) (4.11) 

‘--Ta, 
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and 

A(Xl, x2, fl) = 
1 E 

-- tr(vo - uo75WTkzy X2; Pi, n, Fl)7’W(Pj, *, Tl; h, 11) 
2&Mo 

(4.12) 

The advantage of a formulation based on eq. (4.12) and not on an expression similar 

to the one in eq. (4.11), with f replaced by fl f pV, is the possibility of expressing 

the result in terms of kl, k2, q and n directly. 

After some algebra we find that only A(& -A, fl) survives 

A(&-x,&l) = --A- l 
4 ,/iii M;(E1E2)‘12 

tvo + Xuo)Ca,b=fn2a*lbf~~P~(~, WP*(h Tl) 

(4.13) 

nla = Mi/2(-uMokl . n - kl . q)-‘j2 nza = Mi’2(uMok2. n - k2 * q)-‘12 (4.14) 

. *- jib = (1 - ub)M;kl . k2 - 2(1+ ub)kl * qk2 * q + 4ubMikl . nk2 . n 

+ (3~ + b)Mokl . qk2. n - (a + 3b)Mokl. nk2. q + X(u - b)Mocpva~qPn”k~k~ 
(4.15) 

-From eq. (4.13) follows that a = 6 is selected in the sum. Also 

f$+ = -4M&w+ w +) -2 ji- = -4M&nl-n2-)-2 (4.16) 

the result becomes particularly simple 

A(& --A, &l) =-L l 
,/2 Mo(E1E2)‘12 (” + “‘) (4.17) 

(k, . q =F XMokl . n)1/2(k2. q f XMok2. n)li2 

to compute A(A ,-X ,O) we use3) 

u(k2, -A) B (ICI, X) = 
1 

4k2 - A) Iwl, v 
4h, -9 

L(E1E2)-‘/2(2k1 . nk2. n - kl. k2)-L/2 
(4.18) 

=4Jz 
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It follows 

~(~,-W fi = +ElE2)-‘/2 (w. + Xao)(2kl . nk2 . n - kl e k2)lj2 (4.19) 

To check the correctness of the result we evaluate 

which is independent from n, as it should be. 

For helicity amplitudes we use 

In terms of invariants 

s = -(kl + k2)2, t = -(kr - q)2, u = -(k2 - q)2 

we obtain (mu = Higgs mass) 

1 
kl . n = ~ 

MiS 

‘WMo 
t-M;+2 

a+Mt-ma) 

(4.20) 

(4.21) 

1 
k2 . n = ___ 

M&3 

V3Mo 
4Gi+2s+M2 

0 -m& 

Consider now an arbitrary diagram where a vector boson is attached to a fermion line. 

The corresponding amplitude will be for instance 

A&, X2, a, .-.) = 
1 

2kl . q + ,2 ’ (‘1, ‘1) /by n,a)(v+ar5)(F1 - AWk27~2) (4.22) 

‘-G;s, 
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where S is the remainder of the amplitude. Helicity amplitudes are extracted by means 

of the following two equations 

A(X1, X2, 0, . ..) = 
1 

2kl . q + m2 w - ar5) fv$ - Aw(k27~2) @h Xl) 

1E 
Ah ‘2, O, -) = -+& . :+ ,2 + - u75)7P($l - A) 

(4.23) 

The W are defined and evaluated in the appendix. 

4.3 e+e- --) Z”7 

In this example we work out the general formulas given in the last subsection. The 

process is e+( ICI) + e-( k2) -+ Z’(q) + 7(Q). Two diagrams contribute to the amplitude 

. a- 

Ah X2, ~7 P) = @@I, h)[& /+ (!A n, +‘o + u075)(p2 - $8 A(&, P) 

(4.24) 

- & A(&, P)(& - k?) /’ (!A n, d(vo + ao75+tk2, x2) 
1’ 

where 47 is the photon polarization and overall factors have been neglected. For rf we 

use the expression of ref. 1 

A(&, P) = 2~~[P1jCZa(1-p75)-a/r,/c,cl+p75)1 (4.25) 

Where N is a computable normalization factor. It follows 

A(& -A, P, 4 = P75) /’ ($2 - &?I $1 UP27 -4 @h v 

+ (~0 + PUO)W - ~7~) $2 (,& - A?) /’ u&2, -4 a h, 91 
(4.26) 

where as expected A(X,X,p,a) = 0. Since the main purpose of these examples is to 

show the feasibility of the method, we concentrate on Z” longitudinally polarized. 

- --L;am 
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Thus 6’ = n and we evaluate 212 81 in the usual way, i.e. we multiply and divide by 

the bilinear form 02 f vl. 

It follows 

4% -A, P, 0) = &W2) -‘i2(2kl . nk2. n - kl . k2)-li2 

x (I- XP)(VO - wo)tr(l - XY5) A/c2 - A?) A $2 f $1 (4.27) 

+ (1+ W(vo + Po)W - XY5) $2 (A- A?) tt F2 tllcl} 
Notice that the two terms in the previous expression never interfere. The traces are 

easily computed and give 

A(X, -X, p,O) = --&(ElE$!/2(2k, . nk2. n - kl . k2)-lj2 

. .i-- 
x (I - Q)(~o - pao)[(kl e k2 - h - \$j)(h - nks - n - h . k2) { 

+ (h - nJ2(k2 - Q - kl- 4) - Xkl- d&l, h h 41 
(4.28) 

u + (I+ Xp)(vo + pao)[(kl - k2 - k:! - Q)(kl - nk:! - n - kl - k2) 

+ W:! - n12(h . Q - kl - h) - Xk2 - d&, h, kit, 41} 
where c(Q, kl, k2, n) = crvapQ~k[k+~. 

Things further simplify where we allow for arbitrary phases. Any expression a + 66 

where 6 is a saturated Levi-Civita symbol is equal, modulo a phase, to (a2 - b2c2)‘12. 

After some algebraic manipulations over a product of two E tensors we find 

A@, 4, p, 0) = &(ElE2)-1/2(kl . k2)lj2 

x { (I- W(VO - POMP - n)2(k1 - Q + k2 . Q) 

+ kl . Q(2kl . k2 - kl . Q)]li2 

+ Cl+ W(vo + wo)Mk2 - n)2(h - Q + k2 - Q) 

+ k2 . Q(2k1. k2 - kit - Q)1”2} 

(4.29) 
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This cancellation does not come unexpected since the final result cannot depend on 

the procedure used to evaluate ~2 81 and the square root in the denominator of eq. 

(4.28) is the remainder of this arbitrariness. 

The extension to transverse polarization for the Z” is straightforward since every- 

thing is reduced to a trace of r-matrices. 

This process could also be analyzed with the polarization basis of ref. 6 which 

however apply only to a specific class of processes, while there is no restriction for our 

formulas. 

4.4 e+e- -+ W+W- 

Whenever two or more vector bosons appear as external particles in a given process, 

the number of terms generated by the use of eq. (3.10) makes the procedure non- 

. “competitive. 

Instead we may express n,, and t$ in terms of the external momenta and use 

directly eq. (3.9). 

We study the process e+(pl) + e-(pz) + W+(ql) + W-(q2). The corresponding 

amplitude is given by 

A = 8 rCL(A, + Atvo + A,a07~) 

x 4242 * ClC2p - Ql .62Elp + (Ql - 42)pEl * 621 (4.30) 

+ Av @  7?1+ r5)(ti1 - &7g”%‘2/9 

where &,A, refer to a 7, Z” exchange in the s-channel and A, to the t-channel 

diagram with an internal neutrino line. In the standard model vu = 4sin2dW - 1 and 

a0 = -1. 

The polarization vectors are defined by 

(4.31) 
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with NP = l/M~Pv,,#naq~. A convenient choice for nP(qi), which satisfies both 

qi.n=Oandn2=1,is* 

nph) = - & (a - q2qlp + M2qz,J 

(4.32) 

n&72) = - & (Ql - Q2Q2p + M2q1,) 
0 

where the normalization gives n i = (q1.q2)2-M4. In th e e+e- c.m.s. fi (qi) is directed 

along iji, the direction of motion. 

Introducing the usual invariants 

s = +I1 + 42J2, t = -(P1 - q1j2, u = -(p2 - ql)2 (4.33) 

we get 4ni = (s - 4M2)s. A solution for n: which fulfill the prescribed requirements 
. *- 

can also be found 

or 

4h12 = (t - M2)(u - M2)s - M2s2 

From nP and n: we construct NP 

NP(!Zi) = & (Nir~l, + 4.2~2~ + Niqi,) 

N22 = -Nll = (2M2 - s)(u - M2) + 2M2(t - M2) 

N12 = -N2r = (2M2 - s)(t - M2) + 2M2(u - M2) 

Nl = -N2 = (t - M2)2 - (u - M2)2 

(4.34) 

(4.35) 

-- * Compare with eq. (6.10) of ref. 6. 
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In the e+e- c.m.s. 3 (qi) lies in the scattering plane and 2’ (qi) is orthogonal to it (with 

NO = nb = 0). The polarization vectors ck(q;) are expressed in terms of pl,p2 and 

ql,q2. As a next step we eliminate Dirac spinors and r-matrices from the amplitude. 

To keep things as general as possible the calculation will be carried on allowing for an 

arbitrary degree of transverse polarization in both the e+ and e- beams. As usual we 

derive31 

“2 01 = 4P2, a2, X2) 8 (Ply al, Xl) 

= ~(E1E2)-1/2c,=,K,1’2S(x1, X2)Pa(A1, 12) 

WhereEi = pie, uf = 1, pi. a; = 0. Moveover 

” Ku = -(pl . p2 + m2)(1 + aal . q) + up1 . U2p2 - ai 

. *- S(X1, A,) = (-i A2 + m)(l + iA275 N&(1+ ihr5 k#--~ IfI- m) 

m being the electron mass. In general a; will be the sum of two terms. 

ui 
COSllri L = -Uj + SiTl@iUT 

Pm 

However in this example we assume $1 = $2 and 

UC = (ji, P2E) 42=fGhO) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

with uf = 1, $i*ZI = 0. Any generalization is straightforward. Neglecting the electron 

mass whenever possible we obtain 

K+ = -~cos~T+!J~~.~ K- = -2sin2$pl . p2 (4.40) 

and 

(4.41) 
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Therefore collecting the various results we have 

= - f(2ElE~pl . p&1/2 ,#f2 [cos $ - h75 + i sin $ /CT] for X1 = X2 = X 

(4.42) 

The amplitude A can now be given in terms of the quantities L,, Li, L,, and Liv 

L, = tryPufL 01 Li = tr7P75q 61 

Lpy = tr7p( $I - A1)7’u2 81 Liy = tr71”75(,#fl - dl)7’U2 01 

(4.43) 

,a5 a result 

A =[(A, + wwc” + wbL5”1[2q2 - ClC2/.4 - %I1 * C261p + (Ql - 42)/A * f21 
. a- (4.44) 

+ A,(LpV + L59qPc2v 

Where the polarization vectors ci(i = 1,2) are known functions of the momenta 

-and the leptonic tensors L are simply given in terms of traces of r-matrices. If $1 # 

$2; as in any realistic case, eqs. (4.42) get modified but still remain simple in the limit 

of massless electrons. This example is only indicative of the procedure to be used for 

arbitrary e+e-. polarizations and small mass approximation. 

The final expression of the amplitude for e+e- ---, W+W- becomes rather com- 

plicated when we take into account an arbitrary transverse component of the beam 

polarization.’ Therefore in the following we discuss effects for massless and longitu- 

dinal polarized e+ and e-. We start by rewriting the amplitude 

A = tr[(A, + A,go - A,u07~)7~W~ 

+Avra(l+r5)(lC1 - Al7 B Wa/91~(k27--~)~(kl~~ 

(4.45) 

*However we mention that this amplitude is in a form which can be easily handled 
by Schoonschip. 

- -mL;* 
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with 

W a = 2!l2. cle2a - Ql ’ 62cla + (!I1 - Q2)acl * 62 

Wa@ = clac2fl 
(4.46) 

We now multiply and divide u ZI by some bilinear invariant.’ Since the result is indepen- 

dent from the explicit form of this invariant a convenient choice will be the following. 

Let t be t, = (t,O) with 1 normal to the scattering plane. Thus 

u(k2, 4) u (kl, X) 2~ +JElE2kl- rcZ)-“2 $2 !‘A (1 -X75) (4.47) 

Thanks to the properties of the vector t, the leptonic parts of the amplitude can be 

expressed as a combination of terms where t appears only with a free index or saturated 

with an c-symbol. These expressions are lengthy and insignificant at this level, and 

will not be presented here. 
. *- 

Next we use polarization vectors c as given in eqs. (4.32) (4.34) (4.35). When 

the leptonic parts of the amplitude are saturated with Wa and Was the following 

happens. Whenever there is an co only the terms with a Levi-Civita symbol survive 

since t + n(qj) = 0. On the other end for an c* there will be terms with an c- symbol 

and an N[eq. (4.35)] or terms proportional to t . n’(q;) which in turn contains again a 

Levi-Civita tensor. 

To see in practice how this works we consider longitudinal polarized W’s. In this 

case we have 

A = +(EIE2kl . k2)-1/2+,aa{-h(A7 + Azvo + XA,uo)W~k[k$ 

+ (1 + X)A,[kl . k&(kl - ql)vn$ + nl. n$gkrqP 

+ ICI. nlkikrnfj - k2. n2kgkrnr] 
1 

t@ 

Using the polarization basis given in eq. (4.32) we get after some algebra 

A = $(E1E2k,. k2)-‘/2AtrYagq~k,Vkzat8 

(4.48) 

(4.49) 

- * Lisia, 
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A = & {-4X(A7 + Azvo + XA,ao)M2 + (I+ +bf(s ,’ t)} (4.50) 

Before giving f we notice one nice feature in the last equation: the sum of a large 

number of terms is now contained in a single saturated c tensor. Moreover 

~p,apk~k~k~t8 II (kl . k2)‘12(2kl . qlkp . q1 + M2kl . k2)‘/2 (4.51) 

which gives 

A = ;(E1E2) -‘/2A[(t _ M2)(u _ M2) i M2s]‘/2 (4.52) 

with 

(4.53) 

For transverse polarized W ’s the procedure works in the same way. The whole am- 

plitude is proportional to a single c-symbol which can be eliminated by allowing for 
. a- 

an overall arbitrary phase. Notice also that the vector t drops from the final answer, 

as it should be since it has no physical meaning. However the choice we made for 

-it at the beginning turns out to be very convenient in combining together the 3 dia- 

grams for e+e- -+ W+W-. Finally we mention that a covariant polarization basis for 

w+(Pl) + WP2) + w+(!zl) + W -%2) can be derived along the same lines. 

5. Wave Function for a Massive Spin 3/2 Particle 

The formalism developed in the previous sections for vector particles can easily be 

extended to include the Rarita-Schwinger field. Following the notations of Luribg)we 

describe a spin 3/2 particle by means of a completely symmetric third rank spinor 

\T’,,gx. The Bargmann-Wigner equations for spin 3/2 are 

Yap\kp/lX +m\lra/3h =O 

l _ i -.sl, 
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We look for a solution of the form 

*a/3X(P) = f %rm+a(Pi)+p(Pj)?h(P~) (5.2) 

where the sum is over the permutations of the indices ijl, and each $ satisfies a Dirac 

equation 

ti k/i + mjMPj) = O @iPi = PI 

This ansatz satisfies the Bargmann-Wigner equations (5.1) provided that 

Pi mi =- 
m P Cjmj = m (5.3) 

. &deed with this choice i #l $(pj) = -ml$(pj) and from the first equation in (5.1) 

{ Ckii Idk $(Pi)la + m~a(Pi)}@/3(Pj)h(P~) 

=o 

with identical results from the remaining two equations. The spin 3/2 wavefunction 

can be expressed by 

with the constraint 7,& = 0. C is the charge conjugation matrix. Using eq. (5.2) 

inside eq. (5.4) and the properties of the spinor u(p, n, X) we arrive at the expression 

for the wavefunction of an incoming spin 3/2 particle of four momentum p. This 

synthetizes the fusion method for spin 3/2. 

$I{ is directly related to 

(5.5) 



where xp has been defined in sec. 2 and the coefficient C has to be fixed. 

Xp[P, :@I + X2)1 = i C 8 (Pi, n, M7VPj, n, Xk) 

P = Pl + P2 

Due to the constraints (5.3) we have 

(p - pj)2 = -(m - mj)2 

Thus 

mj (P-Pi) ppj = m - mi 

xg(p, X1) A,) = - I!! c(xl, xi4 3 E c(xl) C c’“(P - Pi, f& XlMPi7 % x2) (5.6) 
i-l,3 

. .+- 

where C(0) y 1, C(f1) = l/ fi an d cc1 denotes the wavefunction for a spin 1 particle 

of four momentum p - pj. 

$a P will be the appropriate linear combination of the xz and all we have to do is 

fixing the coefficients. . 

Again we have been able to reduce a polarization basis for s > l/2 to ordinary 

Dirac spinors. * 

Define 

2+!#* 4, = J&(&l, fl) $J:(* f, = xc”,(o, fl) + X%17 -) (5.7) 

We require $+(8)$(j) = 6ij. Using 

u+(Pi, n, x)“(Pj, n, A’) = &A~ 

c+(P - Pi9 n, AMP - Pj, n, A’) = &xl 

-- *For a formal theory of arbitrary spin matrices see ref. 12. 
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which hold for pi = (m;/m)p, we obtain 

IC(ff, f1)12 = ;(;)2 IC(0, f1)12 + 2jC(fl, r1)12 = & m (5.8) 

The second set is fixed by the condition 7. $J = 0. It is not possible to solve for the 

constraint without an explicit reference to spinor components. The best we can do 

(with the use of bilinear forms) is to derive C(i, j), i # j up to undertermined phases. 

The relevant formulas are 

/(p -pi, n, O)U(pjy n, A) = hei4uP-(X, O)V(p - pj, n, -0) ((7 = *l) 

AP - Pi7 n, O)U(Pi, n, A) = ei~.G=dTl, X)v(P - Pj, n, -a) 

Thus 

. a- 74) 

+ @C(O, fl)]V(p - pjj n, 71) 

and 7 - $(&l/2) = 0 together with eq. (5.8) gives 

C(*1, W) = += C(0, *l) = 
J 

ie”* z 

In the p rest frame with n along the third axis and using hermitean r-matrices we 

recover the usual result’) C(o, fl) = F \/2/3E/m. 
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APPENDIX A 

In this appendix we explicity evaluate the traces which appear within our formal- 

ism. 

Let U and V be defined by 

VP, n, 0; k 9 = U(P, n, 4 0 (k, 1) 

Thus 

V(k,X;p,n,a)=v(k,X)@(p,n,a) p2=-m2,k2=0 

U(P, n, 0; k A) = [a (P, n, +(k, VI-‘~(p, n, a)u(k, A) ’ 

with 

. *- 
U(p, n, 6) = & (4 j+ m)( 1 + iay5 f) 

UK 9 = &-i /r)(1+ Xr5) 

We drop arbitrary phases in front of terms with different projection operators. 

U(p, n, a; k, A) = - ~(mpoko)-1/2 

Ca=*na(p, k)(-i ,gf+ m)(l + ia $)p(l + X7$Pa(X, 0) 

-2 = mna amken-p-k , P”(A, a) = fc 1+ UXU) 

A similar result holds for V 

V(k, X; p, n, 0) = $(mpoko)-1/2 

C,=*n,(p, k)(l + Xr5) j!(l - ia $)(i $+ m)P’(X, a) 

The traces are now easily computed 

trU(p, n, a; k, A) = ~m(mpoko)-1/2C,=*n,1~u(~, 6) 

trq5U(p, n, a; k, X) = XtrU 
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trV(k A; P, n, 4 = -~m(mpoko)-1/2C,=*n,1~u(~, a) 

try5V( k, X; p, n, a) = X trV 

Similarly we define 

W(P, n, 0; k A) = U(P, n, 0) g (k, A) 

Wk A; P, n, 4 = u(k, A) a (P, n,g) 

Thus 

. *- 
W(P, n, a; k A) = [a (P, n, 4v(k, ~I-‘U(P, n, a)V(k A) 

= - $ (mp&,)-1/2 

c a=*na(-p, 4)(-i #+ m)(l - iu $) $(I - X75)Pa(h, 6) 

and 

W(k, A; p, n, a) = $(mpoko)-‘/2 

c a=g+p,--k)(l - Xr5)p(1 + ia,j)(i#+ m)P(X,a) 

The traces are 

trW(p, n, a; k, X) = -trW( k, X; p, n, a) 

= 5 m(mpoko)- 1/2Cahn~1(-p, -k)Pa(X, a) 

trr5W = -XtrW 
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Other useful formulas are 

7QJ(P, n, 0; k, X)rcL = 4 m o ‘( p ko)-1/2C a=fba(P, k) Am + = tr A 

- 2imn,‘(p, k)]( 1 - X75)P”(X, a) 
. 

7pV(k,X;p,n,o)7p =-f m ( mh)-‘/2~~=~(l - b5h(p, k)(m + a df) F 

+ 2imn,‘(p, k)]P’(X, a) 
. 

7QQ4 n, 0; k, X)rp = + f(mpoko)-1’2~~=*[n,(p, k) F(m + a ti A 

- 2imn,‘(p, k)](l + Xr5)P-‘(X, 0) 

7pW(k,X;p,n,a)yp =-i h&d-‘/2~~=41 + X75)bd~, k)(m + a df) J 

,. a- + Simn,‘(p, k)]P-‘(A, 0) 

Finally we notice that for pi = (m;/m)p 

U(pjy n, A) = U(p, n, A) etc.. . 

If n’ satisfies n’ . n’ = 1, nr . p = n’ . n = 0 we have 

tr7’lu(Pi, n, 1) fl v(Pj, T A) = -a$ try’l(rn - iJ4fl(l+ix75jc) 

If732 =-- (4 ( 4E 
dC 

x -- 
m 

EpuaBn~tZapB 
> 

tr7’lU(Pi, 71, A) ti v(Pjt 71, -A) = -i$tr7”( m - i d) j(l- iX75) 

= -i(E)2nP 
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