First Results from MARK III at SPEAR*

The MARK III Collaboration Presented by K. F. Einsweiler

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

1. INTRODUCTION

The MARK III detector, operating at SPEAR, has collected $\sim 2.7 \times 10^6 \psi$ decays and 4500 nb^{-1} of ψ'' decays. Preliminary results from the full ψ sample are presented.

The detector is a general purpose magnetic spectrometer optimized for the SPEAR energy region. Several features of the detector relevant to the reported results are: charged particle tracking over .85 of $4\pi^{-1}$, 175

psec TOF resolution,² and a finely segmented gas proportional tube/lead shower counter.³ A 4-C kinematic fit is done, using all the particles in the final state, to improve the overall resolution. The resulting mass resolution is $\sigma_m = 5-20$ MeV for final states containing up to 4 or 5 photons. Typical efficiencies are 20%-50% for detection, reconstruction and fitting of such final states.

2. RESULTS ON HADRONIC DECAYS

The decay $\psi \to \pi^+ \pi^- \pi^0$ has been measured to proceed predominantly through the two body intermediate state $\rho\pi$. The Dalitz plot (Fig. 1) indicates the ability of the MARK III to reconstruct this final state over the full kinematic range. The rate has been measured to be: BR($\psi \to \pi^+ \pi^- \pi^0$) = (1.49 ± .22)× 10⁻², where the quoted error is entirely systematic. This result is consistent with previous measurements.

3. DECAYS OF THE η_c

The decay $\eta_c \rightarrow p \bar{p}$ has been observed. The measured rate is: BR($\psi \rightarrow \gamma \eta_c$) × BR($\eta_c \rightarrow p \bar{p}$) = (2.2 ± .6 ± .5) × 10⁻⁵ and the measured parameters are: m = 2.980 ± .005 GeV , σ = .020 ± .010 GeV. The measured width is consistent with the current understanding of the detector resolution. Using the Crystal Ball measurement for the inclusive rate: BR($\psi \rightarrow \gamma \eta_c$) = (1.27 ± .36) × 10⁻², one gets: BR($\eta_c \rightarrow p \bar{p}$) = (.18± .09) × 10⁻² which is similar to the analogous measurement: BR($\psi \rightarrow p \bar{p}$) = (.22 ± .02) × 10⁻².

*Work supported by the Department of Energy, contract DE-AC03-76SF00515.

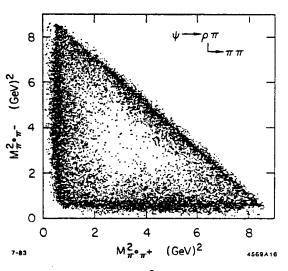


Fig. 1. $\psi \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot showing $\rho \pi$ dominance.

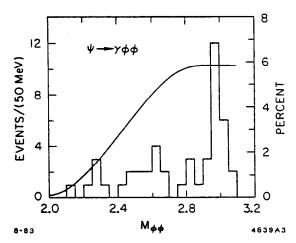


Fig. 2. $\psi \rightarrow \gamma \phi \phi$ mass plot with the detection efficiency overplotted.

Presented at the International Europhysics Conference on High Energy Physics, Brighton, United Kingdom, July 20-27, 1983

The decay $\eta_c \rightarrow \phi \phi$ has been observed for the first time (Fig. 2). The measured rate is: BR($\psi \rightarrow$ $\gamma \eta_c$ \times BR($\eta_c \rightarrow \phi \phi$) = (1.2 ± .3) \times 10⁻⁴ and the measured parameters are: $m=2.978 \pm$.006 GeV , $\sigma = .028 \pm .006$ GeV. Again, the measured width is consistent with the detector resolution. Using the Crystal Ball measurement for the inclusive rate, one gets: BR($\eta_c \rightarrow \phi \phi$) = $(1.0 \pm .4) \times 10^{-2}$. Further analysis of $\eta_c \rightarrow$ $\phi\phi$ was done to extract the quantum numbers of the η_c . Following the analysis of Trueman ⁴, the angle χ is defined as the azimuthal angle between the $\phi \to K^+ K^-$ decay planes. The expected distribution is $1+\beta \cos 2\chi$, where β is sensitive to the parity as well as the spin. A non-zero value for β implies the spin is even, in which case the sign of β gives the parity of the parent particle. A maximum likelihood fit to the data gives: $\beta =$ $-1.0^{+0.09}_{-0.0}$, in excellent agreement with the expected value of $\beta = -1.0$ for $J^P = 0^-$ (Fig. 3).

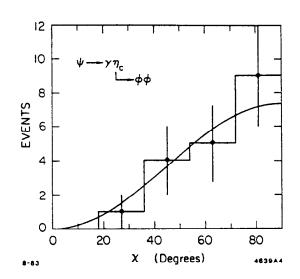


Fig. 3. $\psi \to \gamma \eta_c$, $\eta_c \to \phi \phi$ distribution in the χ angle with the $J^P = 0^-$ curve overplotted.

4. RESULTS ON RADIATIVE DECAYS

The decay $\psi \to \gamma \pi^+ \pi^-$ has been measured and the dominant process is $\psi \to \gamma f(1270)$. The rate has been measured to be: BR($\psi \to \gamma f(1270)$) × BR($f(1270) \to \pi \pi$) = (1.41 ± .07 ± .20) × 10⁻³ and the results of a Breit-Wigner fit are: m = 1.278 ± .005 GeV , $\Gamma = .155 \pm .015$ GeV. In addition, an angular correlation analysis of the polarization of the f(1270) yields: x = $A_1/A_0 = .77 \pm .05$ and y = $A_2/A_0 = .01 \pm .06$, where A_0, A_1, A_2 are the amplitudes for helicity 0,1,2 respectively. These results are in agreement with previous measurements made at SPEAR and DORIS.

The decay $\psi \to \gamma \eta'$ has been observed in two modes: $\eta' \to \gamma \rho^0$ and $\eta' \to \eta \pi^+ \pi^-$. The results for the two modes are in agreement and indicate the mass resolution attainable with kinematic fitting in 2 and 3 photon final states. For $\eta' \to \gamma \rho^0$ the results are: BR($\psi \to \gamma \eta'$) = (4.7 ± .3 ± .9) × 10⁻³, m = .957 ± .0005 GeV , $\sigma = .009 \pm .0004$ GeV. For $\eta' \to \eta \pi^+ \pi^-$ the fit results are: BR($\psi \to \gamma \eta'$) = (4.6 ± .4 ± .65) × 10⁻³, m = .958 ± .0003 GeV , $\sigma = .0057 \pm .0005$ GeV.

The decay $\psi \to \gamma \iota(1440)$ has been seen by the MARK III in three different $K\bar{K}\pi$ modes: $\iota \to K^+ K^- \pi^0$, $\iota \to K^0_S K^\pm \pi^\mp$, and $\iota \to K^0_S K^0_S \pi^0$. The $K^0_S K^0_S \pi^0$ mode has been observed for the first time. The results from an analysis of the $K^+ K^- \pi^0$ final state $BR(\psi \to \gamma \iota) \times BR(\iota \to K\bar{K}\pi) = (5.3 \pm 0.6 \pm 1.9) \times 10^{-3}$ and a Breit-Wigner fit gives: $m = 1.46 \pm .01 \text{ GeV}$, $\Gamma = .097 \pm .025 \text{ GeV}$.

The decay $\psi \to \gamma K \bar{K}$ has been seen in two modes $K^+ K^-$ (Fig. 4) and $K^0_S K^0_S$. There are two mass regions of interest. In the 1-2 GeV mass region, the f'(1515) and the $\theta(1700)$ are clearly separated. The results from a fit using incoherent Breit-Wigners are: BR $(\psi \to \gamma f'(1515)) \times BR(f'(1515) \to K^+ K^-) = (1.6 \pm .3 \pm .35) \times 10^{-4}$ and BR $(\psi \to \gamma \theta(1700)) \times BR(\theta(1700) \to K^+ K^-) = (4.8 \pm .7 \pm .9) \times 10^{-4}$, where the f'(1515) parameters are fixed to be: m = 1.515 GeV , $\Gamma = .075$ GeV; and the $\theta(1700)$ parameters are measured to be: m = 1.719 $\pm .006$ GeV , $\Gamma = .117 \pm .023$ GeV.

The higher mass region contains a suprising new state seen at ~ 2.2 GeV. The statistical significance of this state is $\sim 7 \sigma$ in the $K^+ K^-$ channel. It has also been seen in the $K^0_S K^0_S$ channel. The combination of statistical significance and observation in two independent channels have encouraged the tentative christening of the state as the $\xi(2220)$. The results from the fit shown in Fig. 4 are: BR($\psi \rightarrow \gamma \xi(2220)$) \times BR($\xi(2220) \rightarrow K^+ K^-$) = (8.0 ± 2.0 ± 1.6) $\times 10^{-5}$ and the resonance parameters are: m = 2.220 ± .015 ± .020 GeV , $\Gamma = .030 \pm .015 \pm .020$ GeV. The measured width is consistent with the current understanding of the detector resolution and is perhaps the most interesting feature of this new object.

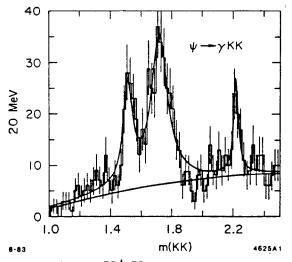


Fig. 4. $\psi \rightarrow \gamma K^+ K^-$ mass distribution with results of fit to three Breit-Wigners.

REFERENCES

- 1. J. Roehrig et. al., SLAC preprint SLAC-PUB-3199, (1983).
- 2. D. Wisinski et. al., SLAC preprint SLAC-PUB-3180, (1983).
- 3. W. Toki et. al., SLAC preprint SLAC-PUB-3140, (1983).
- 4. T. L. Trueman, Phys. Rev. D18, 3423, (1978).