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1. Introduction 

Recently the class of finite, globally supersymmetric theories has been enlarged 

by coupling the N = 2 supersymmetric gauge multiplet corresponding to the adjoint 

representation of a gauge group G to a certain number of N = 2 “matter” hypermul- 

tiplets so as to obtain a vanishing one loop /&function. 1 Finiteness is then insured to 

all orders by the N = 2 nonrenormalization theorems,:! which rely on the N = 2 un- 

constrained superfield formulation of gauge3 and matter4 supermultiplets interactions. 

In this paper we will analyze certain features related to the possibility of embedding 

realistic theories in such finite models. 

For such a task one must first break the N = 2 supersymmetry softly, i.e., so that 

finiteness is preserved.5 Subsequently, one must spontaneously break the gauge group 

I “Iideally in such a way that only one massless vector boson remains). In the process one 

must be able to lift the degeneracy of the particles mass spectra. Again, in a realistic 

theory, we must demand that the free parameters and symmetry breaking mechanism 

should allow us to give large masses to the unwanted particles so as to decouple them 

from the low energy sectors. In this way, the heavy mass particles become the natural 

physical cutoff of the present day low energy physics. This is a strong motivation for 

having a finite field theory. 

Given the gauge group and the representation content corresponding to a finite 

model, the hard part of the Lagrangian is uniquely fixed. This is due to the absence 

of the N = 2 invariant couplings between the matter hypermultiplets.6 They interact 

only with the gauge supermultiplet. One then has to turn to the soft part of the 

Lagrangian to find the free parameters which allow an explicit breaking of N = 2 

supersymmetry and a spontaneous breaking of the gauge group. 

In this paper we will restrict ourselves to a simple model invariant under N = 2 
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supersymmetry with an SU(2) gauge group. 

We will work out in this model the most general soft breakings of N = 2 super- 

symmetry by looking at the finiteness condition of the effective potential computed at 

the one loop level. 

This is a component computation which is not manifestly supersymmetric. How- 

ever, it has the advantage of preserving at all stages the covariance under the global 

SU( 2) group associated with the N = 2 supersymmetry algebra. By working in this 

nonsupersymmetric gauge we will encounter only a wave function renormalization, the 

finiteness condition being the equality of bare and renormalized physical parameters. 

a- Subsequently we will analyze the breaking of the gauge group for this particular 

model of the interaction of N = 2 supersymmetric gauge multiplet with four matter 

hypermultiplets (flavors). 

As we shall see the straightforward procedure of breaking the gauge group does not 

seem to work. Adding negative mass terms in certain scalar fields which conventionally 

forces the spontaneous symmetry breaking may lead to a potential which is unbounded 

fom below, because the hard part of the Higgs potential has null directions in the field 

space. Along these directions the negative mass terms make the potential decrease 

indefinitely. 

In Section 2 we present the most general renormalizable N = 2 supersymmetric 

Lagrangian. In Section 3 we analyze the soft breakings of supersymmetry. In Section 

4 we discuss the gauge breaking pattern and the particle spectra. The last section is 

devoted to conclusions. 
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2. N-2 Supersymmetric Lagrangian 

The N = 2 supersymemtry algebra 

(24 

has the following representations of interest with spin 5 1: 

(a) hypermultiplets-with the spin content 2(1/2), 4(O) which can be massive if 

Z-the central chargeis nontrivially realized; 

(b) N = 2 gauge multiplet which contains massless particles with the spin content 

l(l), W/2), WV. 

a- If one enlarges the algebra, Eq. (2.1) with generators which rotate spinor charges, 

and form an SU(2) algebra, then one can have the following SU(2) assignments for case 

(a)(1/2)i7 tab Co) or 2(1/2), 2(O); (th e isospinor index i = 1,2) and for case (b) l(l), 

” (1/2)i, 2-(o)* 

It turns out that if the N = 1 superfield Lagrangian corresponding to the multi- 

plets (a) and (b) and invariant under N = 2 supersymmetry algebra is expressed in 

component fields, it acquires an additional global SU(2) invariance corresponding to 

the above assignment of fields in SU(2) representations.’ 

One can describe the N = 2 multiplets in terms of N=l superfields. For describing 

the matter hypermultiplets one must consider two chiral superfields which transform 

in an opposite way with respect to the gauge group 

(2.2) 

where A is a Lie algebra valued chiral superfield. 
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The N = 2 gauge multiplet can be expressed in terms of a scalar superfield 

V(z, 6, e) and a chiral superfield ~(2, 8)in the adjoint representation of G, with trans- 

formation laws: 

e2gv ~ ,ZigA+ ,2gV ,-2igA 

and 

Xde 2igh x ,-2igA . 

(24 

(2.4) 

” In terms of N=l superfields, the most general renormalizable, N=2 invariant La- 

grangian which describes the interaction of the N=2 gauge supermultiplet with an 

arbitrary number of flavors q5r, 42 * is (m-flavor index which also denotes representa- 

tions under the gauge group): 

L =t+$;‘* e2gv q$y + $r eB2gv &-* + i n R ,&IV xe--2gV 

[ 
1 (2.5) 

+ 4k(2g)2 
n W&W,- mm&j’4~+igd4Fx4T+h-c. , 1 

where Tr ta tb = kS,b, V = ta Va, x = ta Xa, W, = - $ D D eS2gv Da e2gv. This 

5 . --;a, 



Lagrangian can be expressed in component fields 

L=! 
2D 

2-f v;“PPv -i Xa /B Xa 

+ Flm+ FF + r;i” FF+ + FzFa 

+A~DDA~+A!j’DD~++M~DDMa 

-i~;“p,~l”-i~2p~~-ix2a~xg 

- (m [AT Fp + FF Ar - $$$JT] + h.c.) 

-ig&i[i2 i M- M+XX2] 

Ay+taAy-AFtaAy+ 1 +gDaM+taM 

+ ig\/;Z(AT I;;MA;n + Ff” MAT +Ay MFT) 
[ 

Here (V apv, Xa, Da) and (Ma, Xza, Fa) d escribe the gauge multiplet (V, x) while (Al, 

$1, Fl)* and (AQ, $2, F2)* describe the m-th hypermultiplet (4?, @?). 

The global SU(2) symmetry appears after use is made in the above Lagrangian 

of the equations of motion for the auxiliary fields and after we make the following 

identifications: 

Ai =-i X2 
( > x 

4” = ?+hr, t,b” = $r; A+*; = (AT)+; &. = (A’)+ . 

(2.7) 
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To raise and lower the SU(2) ’ d m ices, one uses the antisymmetric tensor g’j (with 

g12 = -912 = 1) The N=2 supersymmetric Lagrangian written in SU(2) covariant 

form is 

L=-f Tr &,V”+f Tr 4D; 

+&DDAi, -g#hl mm 

a- 

* 9 - R Xi [Xi, M] + 
--( 2fi 

h-c. 

+ (i g h & M+ &,, + h.c.) 

- - qrn Xi Ai - c&h’ A?] - % T’r [M+, Ml2 

(2.8) 

+ fi gA$FiAj, - g2 A${ My M+} Ai,,, 

+ im, (AZ Fi,,, - FG’ Ai,) 

+ig~m,A~(M-M+)Aim+m,~,~,+m, $m &, . 

This Lagrangian is invariant under the following supersymmetry transformations8: 

bM=ifitqX& 

SDij + 5 Z(i 3 Xj) + igy;[Xj), M+] + ig Z(i [Xj) 7 M] 
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for the gauge multiplet and 

for the hypermultiplets. 

The supersymmetric N=2 potential can be written in the form 

1 
V&2 = 5 d;j dj”’ ‘+$ T’r [M+,M]2+FLi~li +F.&iFzi m m 

where a- 

a.i 
di = --$ g(AT t”Ai +ALjtaAi) 

m m 

Fli =ZAi +iM+Ai m d2 m m 

(2.10) 

(2.11) 

(2.12) 

F2i _=?A;-iMA; . 

The number of scalar auxiliary fields which make the potential positive definite is 

consistent with that for the N=2 gauge multiplet while for hypermultiplets this is the 

minimal set which is also SU(2) covariant. 

The usual form of the potential for a supersymmetric theory 

1 
V=F,+FA+~D~ (2.13) 

apparently cannot be made covariant under the SU(2), with the corresponding number 

of degrees of freedom, A is a set of indices. 
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Before proceeding to the study of soft breaking, we will review the computations 

of the divergences in the one loop effective potential, using however (instead of usual 

form for the mass matrix) the SU(2) covariant version. 

As is well known, the renormalized effective potential in the Landau gauge has the 

form 

v= Vc.+uStr1+hSttM2 -kStrM4+StrM41gM2 (2.14) 

where 

d4k d4k 
u- 

/ 
d4k, h- lc2, km/ lc4 

/ 
(2.15) 

a- 

and M2 is the quadratic mass matrix for particles of spin 0, l/2 and 1 defined as 

where ?,!)A are the scalars in the theory 

1 (2.16) 

(2.17) 

where f#JAa are the two component spinors. One gets (see also Ref. 9) 

,‘j’ “j) M2 = 0 , S Tr M4 = -2n[( Kf ICf+)2 - iTI2 Kf+2] 

-3m&AziAi +7iJ;ZmmAzi(M-M+)Ai -yfi$f+AziAi -3dfd’f m m m 
(2.18) 

where n is the number of hypermultiplets. 

9 ‘--.-l-Q 



Correspondingly, we obtain for the renormalized quantities 

ij = g[l + 2kg2(4 - n)] 

ii-$ = (1 - 4kg2 + 2nkg2) M 
(2.19) 

tia=m . 

Thus, if we have n=4 hypermultiplets, the gauge coupling constant does not get 

renormalized and the model is finite. 

This approach will be applied in the next section to the study of the soft breakings 

of the finite N=2 super-symmetric model. . 

a-- 3. N-2 Soft Breakings 

To analyze the soft breakings of the finite N=2 supersymmetric and finite model 

considered above, we will add to the Lagrangian [Eqs. (2),(8)] the most general soft 

breaking terms, i.e., bilinears or trilinear terms with coefficients of dimensionality 

of (mass)l or (mass)2, which are compatible with gauge invariance. In view of the 

pseudoreal nature of the spinor representation of SU(2) this includes terms of the 

form ALUAi where U,B is the antisymmetric matrix cap acting on the gauge indices. 

We shall distinguish between two types of soft breakings: those which originate in a 

(N=l) superfield soft breaking for which one knows that they preserve the finiteness 

of the model and those which explicitly break the supersymmetry. For the flavor type 

particles any soft breaking can be rearranged in the following way: any fermionic mass 

term is completed to a superfield by adding the necessary bosonic terms so that one 

gets explicit soft supersymmetry breakings only in the bosonic sector. The mass terms 

for the fermions of the N=2 gauge multiplet cannot always be written in terms of 
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superfields because a superfield which provides a mass for the gaugino does not exist. 

For the purpose of maintaining global SU(2) covariance, such terms will be left as free 

parameters in the Lagrangian. 

The most general soft breaking is then of the form 

where 

-6~~~ =m{j A$A~ + m’$ A$,UAi + m’?,?AtUAf 
mn mn mn m n 

[’ 

. 

+ ~Pij ~MAj,- ~ Pfj A~UMA~+~P~j AkUM+Ai (3.2) 
mn mn mn 

(1 
where m‘$ , ml?. p ‘3 ’ ii , Pz are parametrized in terms of the superfield mass terms: 

mn mn mn mn 

and N=2 supersymmetric mass term mm $$ #y in the following way: 

rn;, = -(mom O+ + mlml+)nm 
mn 

rn2,, =(m o+mo + mIIImII~+)nm 
mn 

m’?2 = f [-( mz*mo)nm + (mzl’mo+),,] = _ mC21 
mn nm 

Pl2 = 29 & mbnrn , P21 = - 2g di (m;t)nm 
mn mn 

Pf2 =P,‘, =g&ml,fl,, P& =Pf2 =g&im&, 
mn nm mn nm 

0 
mmn 

II =mmb7trt+m,,, m0 = (mb)+ . 
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The explicit breaking will be of the form: 

+ ~6PijA:,‘MAj,-~6PbA~UM~ 
[’ mn mn 

. 

+ i 6Pyj AL U M+ Ai + h-c. 
mn 1 

(3.5) 

+ Sm2M Ma Mz + (rns Ma2 -a mijXiXi+h.c.) . 

Because the wave function renormalizations are already fixed by the N=2 super- 

symmetric counter-terms, the finiteness condition for Eq. (3.5) is given by imposing 

the requirement that S Tr M4 must be renormalized only by the wave functions of the 

fields Ai and M. 
m 

a- Looking at the finiteness conditions for the trilinear coupling we get 

6Pij =- 2 & mij 6rnn 
mn 

6Ptj = Spe, = 0 . 
mn mn 

(3.6) 

Analyzing the bilinear terms, one gets that arbitrary masses 6 rn’t and m’& are 
mn 

allowed while the other mass must fulfill the conditions 

Sm2, = mij fhij+i (6m2)c e 
mm 

(bm2);@ e = a (bm2)dm e Spfl . 
(3.7) 

We remark that in the computation of S Tr M4 profuse cancellations occur. Once 

the condition (3.6) is fulfilled, all possible interference terms between ~LSF and ~LEB 

cancel, a feature which is actually easy to understand at the diagrammatic level. We 

note that the conditions (3.6) and (3.7) are also sufficient to insure the finiteness of the 

fermionic terms. 
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In the next section these soft breakings will be shown to be sufficient for breaking 

the gauge group. 

4. Spontaneous Symmetry Breaking 

The classical effective potential we want to study is 

(In SL’s, the fermion terms have been deleted.) One observes that there are certain 

directions along which the potential does not have any four boson interaction. These 

can be shown to correspond to the following cases 

a-- 
(4 AirI = 0 and & 11 fi+ (4.2) 

(b) Ma=0 and d:j=O (4.3) 

Note that in either case, the trilinear interactions vanish as well. The situation ob- 

viously becomes dangerous if the bilinear terms have negative masses along these 

directions, because then the potential will be unbounded from below. 

A systematic approach to avoid this catastrophe is to parameterize the fields to 

satisfy Eqs. (4.2) or (4.3), substitute them into Eq. (4.1) and then impose positive 

semi-definiteness conditions on the parameters of the bilinear terms. 

For case (a), the solution of the constraint is as given. Here, it is possible to tune the 

breaking parameters in such a way that spontaneous symmetry breaking may occur, 

i.e., (Ma) # 0. However, this solution is degenerate with the symmetry preserving 

solution (Ma) = 0 and we discard it as being uninteresting. 

For case (b), the general parameterization of 4 to satisfy dyj = 0 is quite tedious 

to work out. 
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As it is our present intent to demonstrate that there exists some choice of param- 

eters which lead to a potential that is bounded from below and which give a stable 

symmetry breaking solution, we shall just exhibit one example which does not rely on 

the procedure above. 

For this purpose we make use of the fact that when both Ma and some of the Aim 

are non-vanishing, the quartic terms of Eq. (4.1) do not possess any zero (flat) direction. 

The trilinear couplings can then be used safely to shape a non-trivial minimum in field 

space. Since we are only concerned here with the existence of such a minimum, and 

since V vanishes at the origin, all we have to do is to exhibit some region in field space 

where V is negative. 

Consider the choice 

and 

h?j = 2/12 
0 0 

( 1 
6 mn (4.5) mn 1 0 

in which mg is real and p2 > 0. The other parameters are set at zero values. 

It follows from Eq. (3.7) that 

6m~=m~-2p2~0 (4.6) 

in which the non-negative requirement has been imposed to ensure that the potential 

stays bounded from below. 

The effective potential in this example is 

V,, =VN=~ + (rni - 2p2) M,’ Ma 

+ bm? . &Aj ‘1 n mn (4.7) 
. 

‘GPijA+‘MAj+hc 
2 m n . . mn > 
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with (according to (3.6)) 

6Pij = -2 &ii mijbmn P-8) mn 

To show that the gauge symmetry is broken at the minimum of this potential, all 

we need to show is that there is a region in the field space in which Vet < 0. For this 

purpose, we propose to look into the region where 

i dTj = -a mijMa (4-g) 

where a is a complex coefficient to be adjusted later. Because of our choice of mij, we 

must require that df, = di2 = 0. A simple way to satisfy this is to assume 

a- A2m = 0 (4.10) 

and 

(4.11) 

Let us now define 

x F C lbm12 
m 

(4.12) 

and 

P2 
y---p 0 2 Y L l/2 (4.13) 

mO 

We can write the potential in Eq. (4.7) as 

m&r2 
v,, = iE$p { 

I-2Rea+$-2y+$z} . (4.14) 
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Clearly, there exist various choices of a and 0 5 y 5 l/2 in which the potential is 

negative for some x > 0. This verifies our assertion that a stable symmetry breaking 

solution exists. 

A few remarks are in order 

1. In this model, the non-degenerate symmetry breaking solution reduces SU(2) 

gauge symmetry to no symmetry at all, because some fields in the fundamental 

representation acquire vacuum expectation values. 

2. Because of our choice of 6 m$ , some scalars are massless. They ca.n be made 
mn 

massive by modifying Eq. (4.5) by small quantities without changing the con- 

clusions. 

a- 5. Concluding Remarks 

We have used a simple SU(2) model to illustrate systematically the procedure 

to obtain finiteness conditions in the soft breaking parameters and to bring out the 

inherent peculiarity of the effective potential, whose parameters must be chosen to 

avoid unboundedness from below. We have also shown that spontaneously broken 

symmetry can be accommodated in such theories. 

It is quite clear that the methodology developed and some general features exposed 

here either are common or can be extended to cover other groups. A search for a 

realistic model along those lines is currently under way. 

We have also looked into the alternative possibility of using radiative corrections to 

bend over classical potentials which are unbounded from below,l’ when other choices 

of parameters are made. The results have so far been negative. Radiative corrections 

either are unable to turn over in all directions negative bilinear terms, or they tend to 

drive the stable vacuum to the symmetric solution < M >=< A >= 0. 
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