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ABSTRACT 

A triplet code model of leptons and quarks is proposed. Assuming the internal 

A-spin, B-spin and C-spin of particles, from fundamental symmetry SO(4) the color 

SU(3), horizontal SU(3), electroweak SU(2) X U(1) and other higher composite sym- 

metries are derived. Using composite symmetry operators, the mass gap between third 

generation and the first two can be derived. The modification to the standard elec- 

trowea.k gauge theory is also discussed in some detail. 
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1. A Model of Leptons and Quarks 

Recently a series of composite models have been proposed in which leptons and 

quarks are regarded as composites of a smaller set of particles called preons or others(‘). 

The existence of generations of particles, the universality of weak interactions for 

leptons and quarks, etc. seem in favour of the compositeness-of elementary fermions. 

One also expects that the many difficult problems left in the present form of particle 

theories may be solved or partly solved at the level of sub-particles. But in connection 

with the extreme smallness of radius (f) of leptons and quarks there are a lot of 

unsolved problems and difficulties common to these models. Such as: What are the 

properties of binding forces between preons ? Why the lepton or quark possesses a 

mass much smaller that A? Especially it seems difficult to design a convincing and 

economical model in which only few unobserved exotic particles are predicted. (For 

example, how the spin $ particles could be excluded?) It is reasonable to doubt of 

the Nature is so tautologized that the situation of hadrons composed of quarks will 
-.; 

recur once again. In 1981 we have proposed a new alternative subconstituent model of ’ 

leptons and quarks.(21 We suppose that particles (leptons and quarks) are structureless 

_ in space-time but are composite in internal degrees of freedom (called A, B, and C) 

each is described by group SO(4). One can decipher the “triplet code” of particles in 

terms of G = SOA(4) x SOB(4) x SOc(4). Set the A-spin wave functions denoted 

as b42 4 -Al ?12) which belongs to the representations (2,2) of SOA(4). (A2 Al) 

and (- Jil ;i,) are two spinor representations of SU(2) in SOA(4) and (A2 - A,) and 

(Al &) are that of SU(2)’ in SOA(4). The charge is assumed to be (z, k, -8, -i) for 

(A2 Al -Al ;i) respectively the same is for B-spin and C-spin. The wave functions 

(“triplet code”) of particles are listed in Table 1. 

For the purpose of discussing gauge interactions it is necessary to divide the particle 

into chiral states. We suppose that the representation of SU(2) part in SO(4) is of 
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Vector-type, i.e., the left-handed and the right-handed states of one particle obey the 

same representation but the representation of SU(2)’ part is chiral, namely, the left 

and right-handed states transform according to the different representations SU(2); 

and. SU(2)k. Denote the generators of G as 7, and ?L (CL. = A, B, C). Set 13 = 

$ (7A3 + 7B3 + 7c3) and 13 = 5 (43 + 43 + 71c3) then 
_ - m, 

- 
Q=&+& 

(1) 
213 = 3(B - L) 

(B, L denote baryon and lepton number respectively). Particles may be classified ac- 

cording to the quantum numbers (13,113). F rom Table I one finds 13 = f !J for quarks 

(color triplet), I3 = f $ for leptons (color singlet), I$ = f i for known fermions (gen- 

eration triplet) and 1; = f $ for exotic particles (generation singlet). An important 

feature is that the generations have been incorporated in the scheme. But no spin i 

- particle is necessary. 

2. Composite Symmetries 

The wave functions of particles listed in Table 1. are classified according to 

SOA(4) X SOB(4) X SOc(4) symmetry. However, the physical states are defined 

in terms of color, generation etc. in addition to charge, baryon and lepton number. 

How to distinguish the different states in a color triplet or a generation triplet? To 

answer the question, one should investigate these symmetries in the model. 

We define the composite symmetry of particles as follows: 

(a) begin Which is a group generated by the direct products of 7, and ?L such 

as rAi TBj TCk, 7ki “sj 7’ck etc; and 

-(b) Which classifies the leptons and quarks and defines the physical states of 

them. 



(Though it is not a subgroup of G in general.) 

By calculating the commutation relations one can prove that the following 15 

operators 

7A3 *A+TB-?C3 ?A+ 7B3 TC- -1A3?B- ?C- 

?A--?B+ TC3 TB3 ‘.A3?B+ TC- -?A-?B3?C- 
m 

TA-783 TC+ TA3?B- TC+ 7c3 - L ?A- ?B- 7C3 
- 

-TA3TB+TC+ -rA+TB3rC+ -TA+TB+?C3 7A3 + 7B3 + 7C3 1 (2) 
generate the SU(4) algebra. U(d) quarks of three colors and v(e) lepton belong to the 

representation 4 of the composite symmetry group SU(4). Further one can prove that 

the first 3 X 3 elements of eq.(2) generate color SU(3) algebra, namely 

T+ = ?-A3TB+?C- T- = ?A3TB_TC+ 2T3 = [T+, T-1 = i(~B3 - 7C3) 

v+ = ?A+?&763 v- = ?&?B+?C3 2v3 = [v+, v-1 = i(rA3 - 7B3) (3) 

u+ = *A-*B3*C+ u- = *A+*B3TC- 2u3 = [u-, u-1 = ;(7C3 - 7A3) 

( T3 + v, + U3 = 0) 

Instead of ? with d in eq. (2) we obtain SU(4)’ algebra and ve uP vr &2); uff c& ta E, ($) 

. . . belong to the representations 4 and e-p-r-E( 1); dasabaE&) . . . belong to the 4* 

resp.ectively. Likewise, the horizontal SU(3)’ algebra can be deduced and the genera- 

tors are those in eq. (3) by replacing 7 with 7’. The 48 known fermions are generation 

triplets and the exotic particles are generation singlets. The weak SU(2&, symmetry 

is a kind of composite symmetries, too. One can show that 

$7 = 5’A+$+fc- + r’A+*&+ + f&j+*&+ 

&i = 7f&?;&- + T&Tk+T& + T!4+Th-T;- (4 - 

%v3 = [I$, Ii1 = 4 A3 '(f +’ ?B3 + ?b3 - 343jB3473) 



generate the sU(2)‘W algebra. This interaction exists only for generation triplets. 

Another weak SU(8& symmetry described by 

I,- = *!&&‘c- (5) 

exists for generation singlets. Equation (1) can be rewritten in the form 

Q=fI3 + 1~3 + 31x3 (6) 

Therefore the various internal symmetries occured in the particle level can all be 

deduced as the composite symmetries. Of course, these symmetries are broken in 

general. The breaking mechanism is a difficult problem which we shall not discuss 

in this article. However, because the wave functions of particles and the composite 

symmetry operators in terms of internal coordinates have been found one may have 

some discussions about the mass spectrum of particles. In fact, the various states 

of particles can be defined in terms of (I& f3) and the color and generation quantum 

numbers. If we assume color a rigorous gauge symmetry which is not broken by the 

interaction of particles then the mass of leptons and quarks for given (Il,f3) can be 

expressed as 

M = M(l”,, V:, U;, T$, V;, U;) (7) 

Under the assumption of 5’3 symmetry between three degrees of freedom A, B, and C, 

the mass matrix of particles of three generations may be parametrized as 

c a a 
- (8) 
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The matrix is diagonalized by an unitary transformation 

S-‘MS = (9) 

We see that there exists a mass gap of 3a between third generation and the other 

two. Furthermore, if the S3 symmetry .is only an approximate one, then the degeneracy 
- 

between the first two generations can be removed. For example, set 

M = MO + 24 r; + T;) + 26(U$ + U!J + 2c( VI + Vl) 

+ (b+ c)43 + (~+a)&3 + (a + 6)*;3 
Under the unitary transformation one obtains 

6+c-2a &c-6) 0 

M’ = S-‘MS &(c-6 2a-6-c 0 

0 0 2(a + 6 + c) 

(10) 

(11) 

If MO = 2a - 6 - c is taken, then it is the mass matrix derived in(3) and the 

Cabbibo angle can be obtained. Of course, to obtain the coupling between third and 

first two generations and find the complete K - A1 matrix, one should modify eq. (10) 

further and replace it by a more accurate one. 

3. Gauge Symmetries 

In order to investigate the interactions between particles, we shall discuss the gauge 

symmetries in this section. For simplicity, we consider SO(4) = SU(2) X SU(2)i only. 

That is, the SU(2)’ part in SO(4) is assumed to be left-handed. However the following 

discussion can easily be extended to the L-R symmetric theory.(4) Denote the SU(2) x 

SU(2); generators as TAG, TBi and Tci (i = 1...6). For example, 

TAI, TAZ, TAG = ?A 
- 

TA4, TA5r TA6 ?= 2 A ‘??’ W+75) 
(12) 
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Corresponding to a composite gauge transformation 

$J + exp -iOijkTAiTBjTCk $J 

one may introduce a gauge field (Aijk)p through the covariant derivative 

(13) 

3, + ~S~AiTBjTCI(Aijk)p _ _ - (14 
- 

For (i, j, k) 5 3, the corresponding gauge field is of vector-type. For the remaining 

case, the field is left-handed. 

The color SU(3) as a composite gauge interaction can be introduced as usual. 

However the SU(2) X U(1) electroweak interaction should be generalized to include a 

new component. In fact, eq. (6) can be rewritten in the form 

&=Iw3 + 31x3 + ;Y (15) 

_ Set the covariant derivative 

. 
D/J = a, - (16) 

here WP XP and BP describing SU(2)ty, SU(2)k and U(1) gauge fields respectively. 

As in usual approach introduce Higgs scalar(5) 

, Iz = 0, Y = 1) 

(17) 

a= (Iz=i, w=0,Y=3) 5 

Their vacuum expectations are < 4° >= u, < do >= ZL. Then one deduces the 

masses of charged gauge particles 

m&= 122 
ipo” 

- 

12 2 
(18) 

& E p&J 



i 

v29; --v290g1 0 
1 

M&=5 --029091 (v2 + 9u2)gf -3g1g+? 

0 -%171g2u2 u2!7; 

-The photon corresponding to the eigenvalue zero of Mk is 

(19) 

(20) 

Under the approximation u2 > > u2 the masses of other two neutral gauge particles 

(denoting as 2 and Y) tire 

ma = a v”(gi + gf) + i v’[(gi$ + gf)gg + 9g9tB - S?)lk$ + %73-1 
(21) 

rni = f u2(& + 9gf) + i v2[(gi + gS,g$ + gg:(gi - !&KS22 + %7$’ 

The field ZP is expressed by 

Zp = z (-go(g-2 + 9g;2)W&, + gllBp + 3g;‘X3/J 
0 

(22) 

One can show that the weak current coupled to ZP takes the same form of T3-sin2s’,Q 

as in the standard theory. But sin2Hw is defined by 

Si?Z2s;, = (1+ cot2ew + 9cot2ep (23) 

Here 

tadw = E tane =g x 
90 

On the other hand, from 

!& l 
- d2 3 

(24 

(25) 
es2 = 47i2 it gT2 + !@ 
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and eq. (18) one obtains 

From (21) and (18) one obtains 

and 

rni/rn$ = 1+9 
tan2ew 

tan2t9x 

(26) 

(27) 

(28) 

Equations (26) and (27) are just the same as in the standard theory. Therefore to the 

v2/u2 we have reproduced all of the Weinberg-Salam’s results. 

For more accurate calculation, eq. (22) should be replaced by a rigorous expression 

; + g; _ &-2 
392 w3p + iBp + g; _ 2m;u-2X3P (29) 

The weak current coupled to Zcl still takes a form of T3 - sine”& and 

1 1 - 
aq-z&&Y 

+ 9c0t2e,(l - $.j$’ (30) 

Thus, by comparing (3) with (23) one may find the modification of the order m&/m% 

to the standard W - S theory. Another modification occurs in the mass of neutral 

gauge particle ZP, namely eq. (27) should be replaced by 

or 

- 
1 -= m$cos2dylr 
i- m?v 

= 1 & RM(9Tsz” + s&f + 9g$7l”) -~ 
m$- i&s,” + 99fJ3 (32) 
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Using UA2 data, if p = 1.02 is taken, then rnx - 2mw from eq. (32) for go - g1 - 

Y-- - 
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Table I 

ve=(AlBl c2) 

e+=(-A2B2 (!?I) 

e-=(A2 82 Cl) - 

Pe=(Al Bl C2) 

qL=@1 J32 Cl I 

P+=(& Bl C2) 

p-=(A2 B1 i?:,) 

D~=(& B2 &) 

T+=(- & B,C,) 

?-=(A1 & c2) 

E (2)=(& 82 cl,) 

E(l)=(-A&c~) 

W)=w32C1) 

EP)=bWWY 

ua=(4& c2) 

&=(-AL, Bl cl) 

da=@&1 Cl) 

iicr=(A2 B2 C2) 

~a=(-42 &Cl) 

&=(A1 B2 C2) 

Q=(- Al B2 c2) 

F~=(- A2 B1 cl) 

ta=(- Al B2Cl) 

6,=(A2 BlC2) 

b&=(-A2 81 C2) 

t&=(-A1 B2 &) 

E* ($)=(A1 Bl C2) 

E, ($)=( - A2 B2 Cl) 

&=(AdWl) 

&(~)=(A,B,C,) 

us=(-A1B2 cl) 

i$=(A2Br c,) 

dp =( - ii&&) 

a&9=(4 B2 C,) 

cg=t-4 & C2) 

9 =(A2 B2 C2) 

sB=(-A2 B2 (3 

zB=(-Al B1 c2) 

ta=(- & B2C2) 

6,=(-A, BICl) 

6,=(A1 I?1 (71) 

$=(A2 B2 c,) 

E, ($=(A2 & Cl) 

E, ($)=(-A1 B2 c’,) 

q9@=b41B2C2) 

~,&=(AdWl) 

q=(-A2B1 cl) 

;1,=(A1B2 cl,) 

d,=(-&&C2) - 

fi.y=( - A2 Bl Cl) 

c7=@2 82 C2) 

s7=(-A1 & Cl) 

s,=(& B1 &) 

z,=(A2 B2 c2) 

tr=(- Al B1C2) 

6,=(A2 B,C,) 

b,=( -A2 82 Cl) 

tr =( -Al & c2) 

E, ($=(A, I?2 C:,) 

E, ($)=(- A2 81 C’2) 

Ey(9=@2&C2) 

E,(;)=kW2Cr) 
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