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Abstract 

I’ndulators appear to be nearly ideal radiation sources for use in storage rings because of their high brightness 
and small perturbat.ion on stored beam characteristics. We consider the effects of higher-order magnetic field errors 
and show how they increase beam size and may lead to unstable growth of betatron oscillations. We have observed 
such effects in SPEAR at betatron tunes satisfying the equations 

3v, + yy = 21 and V, +3v,, = 21. 

The widths of these resonances were measured to be I’ = 0.008 f 0.004. They are clearly visible on the synchrotron 
light monitors with a very dramatic and characteristic beam blow-up pattern (reminiscent of a Miller beer label). A 
model is developed which predicts the locations of the resonances, their widths and the projected shapes observed 
on the light monitors. By inducing such high-order coupling resonances one could study such things as the beam 
dist,ribution in electron rings or possibly turbulent, motion in proton rings. 

I. B0roduction The undulator (6) has 30 periods with X cv 6 

. a- The effects of wigglers on stored particle beams 
have been considered in a number of review articles and 
conferences (e.g. see 1,2,3). Such things as energy broaden- 
ing or transverse tune changes are seen to be rather modest 
and easily compensated for the insertions now going into 
exist;lng rings. In fact, t.hese effects can prove useful in un- 

-folding the natural widt,hs of particle resonances in high 
. energy physics experiments (4) or determining the beta 

function at the wiggler (5). Here we consider the effects of 
possible higher order magnetic field errors associated with 
these devices. Because these errors tend to increase the 
beam cross section and can easily cause beam loss at, the 
resonant tunes associated with the nonlinearity, it is im- 
portant to know where such resonances occur a.nd the 
relationship bet,ween the magnitude of the lield errors and 
the widths of the resonances. Once again, such effects 
could prove serendipit,ous if one knows the error fields 
sufhciently well. 

cm. Each period has 4 rows of SmCos blocks magnetized 
in directions changing by 90“ from one row to the next. 
The blocks are 1.5 cm x 1.5 cm in cross-section and 2.5 
cm long with a remanent field B, = 8.1 kG. Three blocks 
make up a row which is 7.5 cm long and perpendicular to 
the beam direction. The magnet gap is remotely adjus- 
table from a minimum of about 3 cm to 6 cm, correspond- 
ing to a field varying from 2.4 kG to 0.5 kG and a 1; value 
varying from 1.37 to 0.28. Rotatable assemblies of mag- 
net blocks are located at each end of the magnet to null 
the field integral so as to produce no net deflect,ion of the 
electron beam on passing through the device. 

II. Discussion 

Our interest, in this subject was stimulated by 
an effect observed in SPEAR when the first permanent 
magnetic undulator was installed. There was an occas- 
sional beam blow-up associated with the undulator which 
was subsequently shown to be associated with a 3u, + us, 
resonance which was quite close to the normal SPEAR 
operating point (vz = 5.273, yY = 5.162). This resonance 
was narrow (FWBM < 0.010) and easily observable on 
the light monitors (LM) whenever the peak field in the un- 
dulator was 1 kG or so. If such a resonance resulted from 
a rotated octupole field, then one also expects a 311, + u, 

-- resonance which was also observed and which had a com- 
parable blow-up pattern on the light monitor. 

Because the undulator is located in a symmetry 
straight section of SPEAR, the betatron wavelengths (pz = 
13.4 and p’v = 4.8 m) are both sufficiently long and con- 
stant oler the length of the undulator to allow us to 
consider any field perturbation (A) as localized at its 
center. The tune dependence of the resonances clearly in- 

Fig. 1. Schematic of SPEAR and coordinate layout. 
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dicate the existence of a field with o&pole symmetry. 
One may then ask whether it is possible to predict the 
important characteristics observed in terms of a linear 
ring model with nonlinear perturbations? The situation is 
shown schematically in Fig. 1 which shows the locations of 
the interaction region, light monitor and undulator. 

The equations for the betatron motion in this 
storage ring, ignoring damping, can then be written as 

where we have used 6’ = s/R as the independent coor- 
dinate. Kz and KY represent the quadrupole focusing, R 
is the average ring radius, Bp the magnetic rigidity of the 
electron and X isthe integral field strength (kc-m/ma). 
These equations are derivable from the Hamiltonian: 

Ho = 

(2) 
We mske the usual transformation (see Appendix) to action 
angle variables where 

2= J y+os[& + / (R/p= - u=)dB] (3) 

with a similar expression used for y. We will ignore all 
terms in the new Hamiltonian that oscillate rapidly. When 
(3& + uy - m) % 0 the quantity Q = (3& + $~v - 
me) is slowly varying and must be retained. The new 
Hamiltonian may then be written as 

where can substitute the corresponding y-apert.ure limit. can substitute the corresponding y-apert.ure limit. 

A 
A@#2 

= 4rR(Bp) (5) 

with & and &, evaluated at the perturbation. 
Using the equations of motion, which may be 

derived from the Hamiltonian in Eq. 4, we obtain the 
following two constants of the motion 

K1 = Jz - 3J, (6) 

and 

with 
K2 = cJy + AJ;12 J;~2cos@ (7) 

.- c = (3v, + uy - m). (8) 

We will consider the case where the initial value 
of the y motion is zero (J, = Jvo = 0) and J, = J,,#O. 
Equations 6 and 7 may be rewritten as 

J, = ;(Jz - Jzo) (9) 

and 

(10) 

Since we must have both Jz and J,, positive, the sign 
of co& must be opposite to the sign of 6. Equation 10 
represents a family of curves in the Jr, J, plane for various 
values of co&. The boundaries of this family are given 
by co@ = 0, i.e. J, = 0, and by co& = -sgn(e), i.e. 

(11) 

Eq. 11 is plotted in Fig. 2 for various values of IA/cl. 

The motion of Jz and Jy occurs along the 3J, = 
(Jz- Jr, I line (dotted in Fig. 2) between the point (J, = 
Jm J, = 0) and the intersection wit.h the curve of Eq. 11. 
For large enough values of IA/cl tbere is no intersection 
and both J, and J, may increase without limit,. The 
maximum value of A/C for stable motion is J,, = 2c/9,4. 

If we substitute for Jz and A from equations 3 
and 5 above, we find the condition for stability to be 

For SPEAR operation at 3 GeV, with the undulator, this 
implies a iimit on the effective pole tip field at, 1 cm radius 
of B,DT M 1.5 G for 6 = 0.004 and < z2 >= (10~~)~. 
For the complimentary 311~ + v, - m = 0 resonance one 
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Fig. 2. Action variables showing stability regions. I 
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HI. Computer Simulations 
To test the simple analytic theory, we have per- 

formed computer simulations of the particle motion in 
Various approximations. We use 8 monochromatic, r8n- 
domly generated distribution at the interaction region, 
based on a Cdimensional, upright ellipse, defined by 

(-g+($+($>'+(++. (13) 

At 3 GeV and optimnm coupling, the beam envelope at 
the IR is (II,, u,,) = (0.0760,0.0057 cm) for 8 typical 
configuration with (@I, a;) = (140,lO cm). Fig. 3 shows 
a beam of 300 particles at both the IFt and LM after only a 
few turns. Using an equivalent pole-tip fleld of 1 G at 1 cm 
for the octupole fleld we then propagate this distribution 
with the results shown in Fig. 3. The butterfly shape 
has the general form observed. Varying the tune by 0.004 
shows virtually no change in the original, unperturbed 
envelope which then decreases when we include damping. 

The time development of the beam profIle is quite 
interesting and depends on both the rotation of the fleld, 
the field strength and the basic beam distribution used. A 
more quantitative way to study the beam profile using 8 
weighted sample of elliptical shells and a color TV monitor 
is now”);eing done. 
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Fig. 3. Time development of resonance at LM in Fig. 1. 

Appendix 
We will demonstrate 8 method due to Symon, 

which eliminates the depehdence of the Hamiltonian 

on the independent variable B with the condition that 
K,(B+Pn)= K,(0). The equation of motion that follows 
from this Hamiltonian is 

2’ + ic,(e)z = 0 w4 

and has two independent solutions u,(0) and t&(0) which 
- +we write in terms of the Floquet functions 4,(B) and q,(e) 

Ul = exp(iv&$,(fI) u2 = exp(--iu,8)&(8) 

4 = iexp(iu&,(fI) uk = -iexp(--iv,B)$(0) 

We pick the Wronskian (UIU~ - u\t&) equal to (-4i) 
which gives 

elf&Z +tl.&=4. (A4) 
Now we transform the Hamiltonian from coordinate (z, pz) 
to (&, H,) by the following generating function 

h exp ilL, + 4, exp - i?cz 
1 vz exp i& - 712: exp - ih _ 

(A5) 

where 

b46) 

The results from Eq’s. 6 and 7 give 

WJz,1Lz,f’)= v,Jz. (A7) 

We can, of course, do the same type of transformation for 
the vertical coordinates (y,py) to (qv, Jy). From Courant 
and Snyder we have the solution in terms of the betatron 
functions 

‘i*(6) exp i J 
’ Rd8’ 

Ul = a& 
Bz(V 

(-48) 

with 

1 
J 

2a Rdf?’ 
u=G i%(W 

When thi, is compared to our solutions u, we find that’ 

Q u)dO’ (A9) 
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