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We review the status of the hypothesis that all “long distance” 
contributions to the Drell-Yan cross section can be absorbed into 
parton distribution functions. 

--- 
1. Introduction 

The Drell-Yan process,ll i.e. the production of massive lepton pairs in had- 
ronic collisions, has proved to be an extremely valuable one in the development 

” of high energy physics over the past decade. Apart from being a useful testing 
ground of parton model ideas and more recently of QCD,21 it is in this process of 
massive lepton pair production that the W and 2 bosons have been discovered31 
as well as new quark flavours. 4l In addition, if one assumes that the mechanism 
responsible for massive lepton pair production is quark-antiquark annihilation 
(with Quantum Chromodynamics (QCD) corrections), then this process provides 
us with information about the structure functions of hadrons which cannot be 
used as targets in deep inelastic lepton hadron scattering, such as 7r or K mesons 
and antiprotons. The results obtained for these structure functions are very 
reasonable.5] 

Can one make reliable predictions for the Drell-Yan process, using perturba- 
tion theory in &CD? The main problem here is that when we calculate higher 
order terms in perturbation theory we find that we obtain important contri- 
butions from regions of phase space in which the quark and gluon momenta 
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are small. The evaluation of these “long distance” contributions is clearly outside 
the scope of perturbation theory, however it is conjectured that they can be 
absorbed into the quark and gluon distribution functions (as measured in deep 
inelastic scattering experiments e.g.). This “Factorization” conjecture was based 
on the observation that up to one loop order the relation between the Drell- 
Yan cross section and deep inelastic structure functions involved only calculable 
“short distance” contributions. These one loop studies were partially generalised 
to all orders of perturbation theory, however explicit two loop calculations have 
recently demonstrated the existence of new features, ones which had not been 
considered in the earlier all order “proofs”. In this talk we will review these 
extra long distance contributions, in particular the Glauber multiple scattering 
contribution first discussed in this context by Bodwin, Brodsky and Lepage.‘! 

We start by considering a simple one loop Feynman diagrams in order to 
demonstrate some of the singular low momentum regions. We will distinguish 
between three different regions, a distinction which we hope will be useful in 
the subsequent sections. The three regions however merge into each other and 
in general the contributions from the regions of momentum space where they 

-J uverlap are the most difficult to evaluate. The diagram which we consider is that 
of Fig. 1, whose calculation requires the evaluation of the integral. 

Fig. 1. Feynman Diagram (for the process quark-antiquark + lepton pair) 
used to illustrate the different types of mass singularity. 

I= ,G4 [k2+;~][(pl--k)2:il[(p2+k)2+i~] ' / (1) 

where p: = pi = 0 and we have neglected all masses. The three singular regions 
we wish to demonstrate are: 

(i) The region ki’ + 0 (all components of k vanish uniformly). From this 
region the contribution to I is 
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sY1’ 
(2n)4 [k2 + if] [-2~1 . k + ic] (2p2 + k + ic] ’ 

P 

(2) 

which is clearly singular. We call such singularities “infrared divergences”. 

(ii) The region k”, k3 - k2 / fi - 0, where we work in the centre of mass I 
frame of p1 and ~2, whose components are in the 0 and 3 direction. In 
this region each of the three propagators vanishes like ky and the ko and 
k-3 phase space are each of magnitude - kl so that the contribution to 
I from this region is 

a- 
which is also singular. We will call this region the Glauber Scattering 
region. The reason for this is that if we consider two body elastic scat- 
tering at large energy but fixed t, then we find that ko and k3 are indeed 
O(ki/ ,/Z), (see Fig. 2). Thus we can envisage this region as corresponding 
to a correction due to an elastic, small angle, almost on-shell scattering of 
the initial fermions. 
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Fig. 2. Contribution to the amplitude for two body 
elastic quark quark scattering. 

(iii) The region where k is parallel to p1 or ~2. To demonstrate that the 
contribution to I is singular we start by introducing Sudakov Variables. 
These are defined by 

k = aPl+ PP2 + kl (4 
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and in terms of these variables 

and 

k2 =a@-ki 

(5) 

(6) 

da d/3 dkt 

@d4 (4s - “I+ t-c] I-; - a)/3s - “I+ ic] 
(7) 

1 
[a(1 + P)s - “f + ic] 

By inspection we see that the region Q - O(l), /3s - kf - 0 is singular 
(as is the region ,8 - O(l), QS - kl - 0), We call such singularities, 
collinear singularities. 

As has been mentioned above, it is conjectured that the Drell-Yan cross 

a- section is related to Deep Inelastic Structure Functions in a calculable way, the 
relation depending only on short distance contributions. This clearly requires a 
cancellation of the various low momentum singularities. Such a cancellation is 
relatively straightforward to demonstrate for the collinear singularities, however 
the tre,bment of the infrared divergences and Glauber singularities is much more 
complicated, and we shall discuss these in some detail in the following sections. 

If the factorisation hypothesis is correct, then the QCD prediction for the 
Drell-Yan cross section is that asymptotically (see Fig. 3) 

-&g = $$C Qf i dxidxzxlx2 S(xlx2 - T) 
i 0 (8) 

[q(‘)(z1, M2) P@) (q?, A47 + p(l) (Xl, M2)fp)(z2, A44 

where q(q) is the quark (antiquark) distribution function as measured in deep 
inelastic scattering at lq21 - 0(M2). There are logarithmic corrections to (8), 
specifically 

I dxldx2b(x1x2 - T) - 
J 

dxrdx2dr S(xlxp - 7) 6(z - 1) + -y2) f(z) + * , .] 

+ gluon-quark (antiquark) contributions. 
(9) 
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Fig. 3. The Drell-Yan model for massive lepton pairs production. 

f(z) is calculated from Feynman graphs involving only quarks and gluons and 
comes entirely from short distance regions of phase space. ‘1 The higher order 
corrections are large, their dominant effect is to modify the right hand side of 
Eq. (8) by a factor of 2-3 (the so-called K-factor). It is reassuring that experi- 
mental measurements seem to require such a factor. We will not discuss here the 
uncertainties in the calculation of the K-factor. 

The plan for the rest of the lecture is as follows. In Section 2 we review 
the status of infrared divergences and their cancellations in Non-Abelian Gauge 

I ,-Theories. In Section 3 we present an introduction to Glauber Singularities and 
demonstrate how they can potentially spoil the factorisation conjecture. Sec- 
tion 4 contains the results of a full two loop calculation. Section 5 contains 
our conclusions. 

- 2. Infrared Divergences 

The Block-Nordsieck Theorem in Quantum Electrodynamics states that in- 
frared divergences cancel for “physical” processes, i.e. for processes in which we 
allow for an arbitrary number of undetectable soft photons. There is no analo- 
gous theorem for Non-Abelian Gauge Theories, although with the demonstration 
that infrared divergences cancel for processes with none81 or one 91 coloured par- 
ton in the initial state it was nevertheless hoped that a similar result would be 
true for all processes. It has since been shown, by means of an explicit example, 
that such a cancellation does not occur for processes with two coloured partons 
in the initial state.lOj For example, the process qq ---) @t-X (see Fig. 4), where 
we average over the colours of the initial quarks, is infrared divergent in &CD, 
even though it is an inclusive quantity. These divergences first arise at the two 
loop order and are of the form 

411-p 1 
( 

l-0 
-aogT- -- /3 2plog1--p l > (10) 

5 



, 

--w 
1-x’ 

7- 83 461 1 A4 

Fig. 4. Amplitude for the process qq - efe-X. 

where we use dimensional regularisation to regulate the infrared divergences and 
z 4 - the number of dimensions, a0 is the lowest order cross section and 

f = 1 fi I/El in the rest frame of ~2. 
Of course in the physical Drell-Yan process the initial states are colour sin-. 

glet hadrons and not coloured quarks and hence we do not expect any infrared 
divergences for this process. However, we do expect a residual “large logarithm”, 
i.e. we expect the infrared divergence to be regulated as log “m2” where “m2” 
is a mass-scale characteristic of the hadronic wave function. This expectation 
is borne out by model calculations. “1 The reason that this infrared divergence 

. ,is not direct evidence for the breakdown of factorisation is that it is accompa- 
nied by a factor 1 - /3 - m4/S2, and hence is suppressed by two powers of s, 
(the authors of Ref. 12 obtain a different coefficient of I/E, one which is not 
suppressed by powers of s). A question which immediately arises is whether 

-such a suppression occurs for all infrared divergences. The answer is Uyesn for 
the leading infrared divergences in any order of perturbation theory,131 i.e. the 
coefficient of g2n (l/en-’ ) always contains a factor of 1 - ,0. Recently Frenkel, 
Gatheral and Taylor 141 have presented an argument that all infrared divergences 
are suppressed by at least one power of s, although these authors caution that 
their work does not constitute a rigourous proof. This argument is based on an 
detailed study of Feynman graphs using in particular their unitarity and analyt- 
icity properties. Although it is somewhat disappointing that the arguments are 
so complicated, it is nevertheless reassuring that it now seems very likely that 
there is no breakdown of factorisation due to infrared divergences. 
3. An Introduction to Glauber Multiple Scattering Singularities or Initial State 
Interactions* 

We have already seen that the problem of verifying the factorisation conjec- 
ture in perturbation theory is a complicated one. A potential source of the 

*This was the name given by Bodwin et 01.~1 to this problem. We are reluctant 
to use it here since we shall not use light-cone time ordered perturbation theory, 
but only Feynman diagrams. 
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violation of this conjecture was pointed out by Bodwin, Brodsky and Lepage.6j 
Consider Fig. 5 which includes some higher order corrections to the Drell-Yan 
model (Fig. 3), in which the partons, both “active” and “spectator”, can scatter 
elastically off each other, staying close to their mass shells and exchanging only 
a small amount of transverse momentum. Below we will define more precisely 
what we mean by this. In QED we would find that the effect of these scatterings 
would be to modify the lowest order amplitude Mu by a unitary Eikonal phase, 
so that (in impact parameter space) 

- 
7 - 83 461 1 A5 a- 

Fig. 5. Multiple scattering correction to the Drell-Yan model. 

Mo-+MoU=M (11) 

- and since lM12 = I~n12, the integrated cross section is unaltered and the effect of 
all these Glauber Scatterings cancels. In a non-Abel& gauge theory there is no 
reason to expect such a cancellation since, because of the non-commuting nature 
of the interactions we have to distinguish between “initial-state interactions” and 
“final state interactions” so that now 

MO’vM(-jUrM 02) 

where U and V are unitary phases. Now lM12 # lMn12 and hence there is no 
reason to expect factorisation to hold, and indeed Bodwin et aZ.6] claimed that 
in two loop order there is a breakdown of the factorisation conjecture. 

To get some idea of the nature of the problem we start with a simple 
example. 15j For simplicity we consider quark-hadron scattering (we return to 
the hadron-hadron scattering case later), for which, up to the two loop order 
in which we shall be interested, we can take the q(‘)(xl, hf2) of (8) to be a 6- 
function, 

&‘)(Xl, M2) = 6(x1 - 1) , (13) 
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so that if the factorisation conjecture is correct, equations (8) and (9) tells us 
that 

where F2 is the deep inelastic structure function. The fact that we do not have 
to consider higher order corrections on the right hand side of Eq. (13) follows 
from known crossing properties of the relevant low order graphs contributing to 
do/dM2 and F2. 

In published calculations of the f(z) of Eqs. (9)‘l one relates the cross section 
for qp - e+e-X to the deep inelastic structure function of a quark. Neither the 
contribution of Fig. 6(a) to the Drell-Yan process not that from the graph of Fig. 
6(b) to Deep Inelastic Scattering are considered. This is correct providing these 
two graphs are related by Eq. (14) and we now check whether this is so. For our 
purposes it can be shown that the magnetic moment interactions can be neglected 
and therefore we can consider scalar quarks. For simplicity we will consider the 
hadronic wave function to be given by a triple scalar coupling A($$+$) (where 

-$ represents the hadron and 11, the quark field). Our results will depend only 
on the soft nature of this wavefunction, and on general analyticity and unitarity 
properties, in particular on the fact that there are no cuts below threshold. 

We now compare the graph of Fig. 6(a) with that of 6(b). In terms of Sudakov 
” variables we write 

P = (O,l,O) (15) 

and 

Pl = w,o) w-9 

Q = t-x, ho) (17) 
where we have neglected all masses. Using the mass-shell conditions we find that 
for the Drell-Yan process 

p2= l-r, ( pi 
(1 - 7)s ’ LQ- 1 

and for Deep Inelastic Scattering 

p2= l-x, ( PH 
(1 - 5)s ’ fl > 

(184 

W) 
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Fig. 6. One Ioop corrections to (a) the Drell-Yan Model 
and (b) Deep Inelastic Structure Function. 

where pi is the transverse momentum of p2 and in the deep inelastic case s = 
_ 2~. q. gince we are interested in checking Eq. (14) we set x = r in Eq. (18b) and 

notice that p2 is now the same in both processes. Moreover by inspection three 
of the four propagators are now seen to be identical. Writing k = (a,p,kl), we 
notice by simple power counting that the softness of the wavefunction implies that 
only the region where p 21 O(ky/s) contributes to the leading twist behaviour for 
kl << s. Restricting ourselves to this region we calculate the fourth propagator, 
the one which is different in the two cases, and find 

(pl + p - k - pz)2 + ic 1 [ -’ N (7 - Q)S + is]-’ (19) 
in the Drell-Yan case and 

- (q + k)2 + it 
I 1 [ -’ N (T - cy)s - ir]-l (20) 

where we have observed the terms depending on the transverse momenta into a 
new cy, which is a shift of integration variables which has a negligible effect on the 
other propagators since p is small. The minus sign on the left hand side of (20) 
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comes from the Feynman rules and the definition of the structure function. Thus, 
in the Feynman gauge, apart from the overall multiplication factor required from 
Eq. (14) the only difference between the contribution to the amplitude for the 
Drell-Yan process from the diagram of Fig. 6(a) and that form the diagram of 
Fig. 6(b) to deep inelastic scattering is the sign of the ir on the right hand side 
of Eqs. (19) and (20). Taking the difference of that two integrals we find we 
can do the (Y integration trivially (since (l/(7 - a)s + ic) - (l/(7 - cr)s - ie) = 
-(27r;/s)s(o - 7)) and the ,8 in t egration by using Cauchy’s Theorem to find that 
is equal to 

Thus the contributions to the amplitude for the two processes coming from finite 
(i.e. not too small) transverse momenta, differ only by an imaginary quantity. 
Hence to one loop order there is no violation of the factorisation conjecture (since 
to this order we convolute this amplitude with a real tree level diagram and add 

,-the complex conjugate). 

The integral in Eq. (21) is divergent and although we know that these diver- 
gences will cancel, it is still possible that there is a non-factorising finite contri- 
bution, from the small transverse momentum region. To determine this, one has 

- first to regulate these infrared divergences, and it has been verified to one loop 
order,16] that there is no such non-factorising contribution. This calculation is 
interesting since individual Feynman diagrams give contributions which depend 
on the method of regulating the divergences, however they always sum to zero. 
For example, if one consider the graph of Fig. 1, and regulates the infrared di- 
vergence by dimensional regularisation or by giving the gluon a mass, then this 
divergence cancels against the corresponding diagrams with a real gluon leaving 
a finite contribution which contains a term 

Qs 4 *2 -- . 
27r 3 (22) 

This comes entirely from the short distance region of phase space and is perhaps 
the most important contribution to the K-factor. If, on the other hand, one 
regulates the infrared divergence by taking the initial quarks to be slightly off- 
shell then the corresponding contribution is 

Q8 4 .2 -- *2. 
27r 3 (23) 
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Half of this contribution comes form the short distance region and the other half 
from the low momentum region. There are similar low momentum contributions 
from graphs involving interactions of spectator quarks, such as that of Fig. 6 and 
these contributions precisely cancel half of (23) leaving us with the short distance 
contribution (22). Thus there is no breakdown of the factorisation conjecture to 
one loop order. 

Before going on to present the results of the analogous two loop calculations, 
we wish to mention that in a light like axial gauge* n -A = 0, where n = ~1, the 
contribution to the Drell-Yan and Deep Inelastic amplitudes from the diagrams 
of Fig. 6(a) and 6(b) are each separately purely imaginary. 1’1 

4. Results of the Two Loop Calculation 

The calculations of the effect of Glauber Multiple Scattering singularities have 
been extended to two loops. 171j181 Indeed from the arguments at the beginning 
of Section 3 and noting that the only difference to one loop order between the 
Abelian and non-Abelian theories is a factor of CF = 4/3, we would expect 
any problems with factorisation to start in this order. We start by presenting 

,the results for diagrams with virtual gluons, evaluated in the Feynman gauge. 
For each diagram we subtract the contribution to the deep inelastic structure 
function (weighted by the factor required from Eq. (19)) from the Drell-Yan 
cross section. For most diagrams we obtain zero, but there are four exceptions 

I each being proportional to B where 

2 
B= Qa X%(1-T) 

d2klld2kL2d2pI 

05 P~k;lk~*(PI + klJ2 . 
(24 

The four non-vanishing contributions come from the diagrams of Fig. 7 and are: 

cFcA B Fig.7a : - 
4 

Fig.7b : - CFCA B 
4 

(254 

Fig.7c : -C$B (25c) 

Fig.7d : CFCA C;-,>B (254 

*Bodwin et aZ.61 work predominantly in this gauge. 
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(a) (b) 
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Fig. 7. Two loop corrections which individually give non factorising contribu- 
tions in the Feynman Gauge. Figures (a), (b) and (d) are to be convoluted with 

“the lowest order diagram, whereas figure (c) is to be understood as the convolu- 
tion of the one loop graphs shown. 

c, = 4/3 and CA = 3 are the eigenvalues of the quadratic Casimir operator in 
- the fundamental and adjoint representations. The four contributions sum up to 

zero, so that these contributions also do not violate factorisation. 

This result is in disagreement with Bodwin et al. who found a non-zero 
total and hence a counterexample of the factorisation conjecture. These authors, 
however, now agree with our result. “1 We point out that not all the contributions 
come from the Glauber region as defined by the gluons’ Sudakov variables Q and 
,B being O(k1/9). For example integrals such as 

’ dad@ 
/ -1 (4 + 61, 

= r2 sign(S) (26) 

appear frequently for 6 = O(k1/9) and p stands for principle value. This integral 
has its main contribution from the region where cr/3 = O(ki/s) and not O(kq/s2). 
Moreover we were unable to define the Glauber Region satisfactorily, since, in the 
Feynman Gauge, the contribution from this region depends on the end points of 
the region. We prefer to integrate over all Q’S and p’s and the results in Eq. (25) 
come from doing this. 
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The cancellation only occurs after integrating over the transverse momentum 
of the lepton pair, i.e. even though we express our results in terms of the quantity 
B of Eq. (24), pl corresponds to the transverse momentum of the lepton pair in 
(253;c) whereas in (25d) the transverse momentum of the lepton pair is a linear 
combination of the integration variables. Hence we would expect “initial state 
interactions” to be relevant for the transverse momentum distribution at low 
transverse momentum (this is outside the scope of perturbation theory anyway). 
This effect is true in Abelian theories, indeed it is only the terms proportional to 
CF which need such a shift of integration variables in order to cancel. 

We confirmed and extended our results in the light cone axial gauge. One 
nice feature of this gauge is that, up to two loop order, the Glauber region is 
now well defined, by this we man that we can define this region as being that 
where the Sudakov Variables Q and /3 of the gluons are O(kt/s) and the relevant 
integrals do not depend on the precise choice of end points. The reason for this 
is that the l/n . k terms, which are present in the gluon propagators in this 
gauge, enhance the small o region so that there is sufficient convergence for the 
integrals not to depend on the end point. The relative contributions from the 

,-four non-vanishing diagrams (see Fig. 8) in which the incoming quark scatters 
twice of the spectator quark are as follows: 

Fig.(8a) - / 
cF(cF - (cAl”))[k;l + 2k11 *k211 2 
k&kiL(kl + k&(p + kl + k&p: d k1Ld2k21d2pL (274 

c&Q + 2kll * k211 
Fig*(8b) - / kflk;l(kl + k2)2Jp + kl + k2)tpt d2k!ld2k21d2pl (27b) 

[c; + cF(cF - (cA/2))lkll ’ k21 
Fig-(8c) / k&k;Jkl + k2)i(p + kl + k2)ypt d 

2 

k1Ld2k2’d2P’ 
(27~) 

c; Fid8d) - / k;lk;l(p + k#Jp + k2)l d2k11d2k2,1d2pJ- - (274 

Thus one sees that the terms proportional to C’s cancel, which is a manifestation 
of the exponentiation of the Glauber singularities known to occur in an Abelian 
Theory. The terms proportional to CFCA do not cancel in agreement with the 
expectations of Bodwin et aL61 of a structure of the form Vi&U of Eq. (12). The 
contribution from Eq. (27) is cancelled by those of Fig. 9 in which the incoming 
quark scatters once off the spectator quark and once off the active antiquark. 
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Fig. 8. Four diagrams which give non-vanishing contributions from the Glauber 
region in the light cone axial gauge. Figures (a)-(c) are to be convoluted with the 
lowest order graph. 

These contribution are 

c&k;, +  2kll. k211 c- Fig.( 9a) / 
“$$l(p + kd~(h + k215-p: 

d2kl ld2kzld2pL (284 

I d2k, ld2k21d2pL W ) 

(++cF(cF-+))k,l-k2J- F ig-(gc) - j- “&“;l(p  + kl)t(kl + k2)ip t d2k1Ld2k21d2PJ- (284 

Fig.(Od) - / CF 
k;lk;JP + k2)?PT 

d2klld2kzld2pI . (284 

Although this cancellation is interesting it is not very significant since it is 
straightforward to show that the Glauber region contribution of each of the 
diagrams of Fig. 8  and 9 are related to those of the corresponding diagrams in 
deep inelastic scattering by Eq. (14). This is also true for the diagrams in which 
the incoming quark scatters twice off the active anti-quark. 

The Glauber region contributions are not the only relevant ones in the light 
cone axial gauge. For example one gets contributions from regions of phase 
space where one of the Sudakov variables ,B is 0(1/b) where S is the cut-off in 
the Principle Value prescription defining l/( n. k)p. All these contributions cancel 
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(a) (b) 

7-83 (d) 4611AS 

Fig. 9. Four more diagrams which give non-vanishing contributions from the 
,_Glauber region in the light cone axial gauge. Figures (a)-(c) are to be convo- 

luted with the lowest order graphs whereas figure (d) is to be understood as the 
convolution of the two one loop graphs shown. 

separately for the Drell-Yan process and for deep inelastic scattering. Diagram 
by diagram they are related not by Eq. (14), but by Eq. (14) modified by a 
factor (-1) on the right hand side, so this time the cancellation for each process 
separately is very significant. Thus we confirm the results of the Feynman Gauge 
calculation. 

Before presenting our conclusions we would like to add the following results: 

(i) We have not drawn any diagrams which include real gluons. In the light 
cone axial gauge it has been shown that, even individually, these do not 
have any non-factorising contributions of the kind discussed above. 

(ii) A  similar cancellation occurs for quark baryon scattering. 

(iii) A  similar cancellation occurs for meson-meson scattering. 201 

5. Conclusion 

After several non-trivial calculations, there is no evidence that the factori- 
sation of long distance contributions into parton distribution functions breaks 
down for the Drell-Yan process. This is in spite of the fact that the relevant the- 
orems of QED do not carry over to Non-Abelian Gauge theories, and hence we 
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have, a priori, no right to expect such a factorisation to hold. It is clear that our 
understanding of factorisation, even within the context of perturbation theory is 
far from complete. 

One may have expected absorptive effects to have spoilt factorisation, how- 
ever the calculations presented in this lecture indicate that, no matter how large 
the target, at sufficiently high energy there are no such effects (at least in pertur- 
bation theory). One possible interpretation is that the nature of the interaction 
is such that at high energies there is no time for multiple scattering interac- 
tions (which affect the colour quantum numbers of the partons) to alter the 
cross-section of the hard scattering process of lepton pair production. This is 
in analogy with the absence of bremsstrahlung from within the nucleus in high. 
energy electron nucleus scattering. 

Can one generalise the results presented above to all order of perturbation 
theory? This question is presently being studied “j~“j by analytically continuing 
the Feynman integrals from the Glauber to the Collinear regions and then using 
technology already developed for the studies of collinear singularities (collinear 

--Ward Identities). The problem, as always when trying to construct a proof to 
all orders of perturbation theory, is that it is hard to be sure one has identified 
all potentially non-factorising contributions. This is underlined by the surprises 
which have been discovered in the two loop calculations discussed above. 

An important question which has not been studied so far is whether a similar 
cancellation of non-factorising contributions will occur for other hard scattering 
processes such as the inclusive production of jets (or single particles) at large 
transverse momentum. 
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