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BEAM-BEAM INSTABILITY 

ALEXANDER W. CHAO 
Stanford Linear Accelerator Center 

Stanjord University, Stanford, CA 94805 

INTRODUCTION 

The subject of beam-beam instability has been studied since the invention 
of colliding beam storage rings. Today, with several colliding beam storage rings 
in operation, it is not yet fully understood and remains an outstanding problem 
for storage ring designers. No doubt appreciable progress has been made over 
the years, but current knowledge is still rather primitive. 

The subject of beam-beam interaction can be divided into two areas: lu- 
minosity optimization, and the dynamics of the interaction. The former is 
concerned mostly with the design and operational features of a colliding beam 
storage ring; the later concentrates on the experimental and theoretical aspects 
of beam-beam interaction. Although both areas are of interest, our emphasis 
will be on the second area only. In particular, we will be most interested in the 
various possible mechanisms that cause beam-beam instability. These have been 
reviewed more completely in Refs. 1-5. 

1 THE STRONG-WEAK PICTURE 

Figure l(a) shows a storage ring in which two oppositely charged particle 
bunches circulate and collide at two opposite locations. As our first beam-beam 
picture, let us assume that one of the bunches consists of a single particle (weak 
beam), while the other bunch is a dense Gaussian charge distribution (strong 
beam). The strong beam is assumed to be a smooth cloud of charge rather than 
a collect,ion of many point charges. 

As the weak beam passes through the on-coming strong beam, it receives a 
transverse impulse. The strong beam, on the other hand, is unperturbed. In this 
“strong-weak” picture, the weak beam acts as a “probe” into the beam-beam 
force of the strong beam. The issue here is whether the weak beam motion will 
be stable under the beam-beam perturbation. 
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STRONG-WEAK STRONG -STRONG 

Fig. 1. The “strong-weak” and “strong-strong” cases of beam-beam interaction. 

More specifically, let us specify the weak beam by its horizontal and vertical 
displacements, z and y, and their slopes Z’ and y’. Then, as the weak beam 
passes through the strong beam at the collision point, its displacements are 
unchanged but its slopes change by amounts related to z and y according to6j’ 

Ax/ = _ “(‘, 9) 
ax and A,j=-augy) (1) 

where U(Z, y) is an equivalent potential-well produced by the strong beam space 
charge and current, 

x2 
2(6,2 + t) - 

(2) 
with IL’ the number of particles in the strong beam, to = c2/rrrc2 the classical 
radius of the particle, y the Lorentz energy factor of the weak beam, and a, 
and oY the rms beam sizes of the strong beam at the collision point. 

Problem 1. Show that when the beam is round, with bz = by = O, 
Eqs. (1) and (2) reduce to 

At/ 2Nr0 0 =-.- e 
[ 

--P/202 _ 1 
I 

. 
Y  r (3) 

The problem is onedimensional in nature. Eq. (3) can also be obtained 
directly from Gauss’ law and Ampere’s law. 
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After each collision, the weak beam executes a free betatron oscillation with 
its (2, x’, y, y’) being transformed linearly by the matrix8 

cos 112 &sinpz 0 0 

--.sinpz LO cos Pz 0 0 

0 0 cos Py B,‘o sin cry 

0 0 --&sinpy B fms 
YO 

Py 

(4 

where cl2 and pY are the betatron phase advances from one collision point to 
the next, and p,*o and pi0 are the beta-functions at the collision point. 

The weak beam motion is then described by a sequence of mappings on 
(1, x’, y, y’), alternately representing free betatron oscillations and collisions - 
the former being linear and the latter nonlinear. The problem of the weak beam 
motion is thus equivalent to a mathematical problem of nonlinear mapping on 
the vector (z,z’, y, y’), i.e., 

beam-beam problem = nonlinear mapping problem . (5) 

The question being asked is, again, whether the weak beam motion is stable 
under repeated application of the mapping procedure. 

It should be emphasized here that the statement (5) is valid only if the 
strong-weak picture is adopted. Figure l(b) shows the more realistic case of two 
strong beams. In this strong-strong picture, statement (5) is no longer valid. In 
this sense, (5) represents only a rather limited view of the beam-beam problem. 
We will postpone the discussions of the strong-strong case and this point until 
later. 

2 LINEARIZED STRONG-WEAK MOTION 

Some insight is to be gained by considering a weak beam that executes a 
small amplitude motion with z << bzr y << by.’ Equation (1) becomes 

AZ’=- 2Nro 
v&z + by) 

2 and Ay’=- 
2Nro 

Yq&z + ql) 
Y* (6) 

In this case, the 2 and y motions are decoupled, and the problem is linear and 
can be readily solved by a matrix technique. 

After linearization, we need to consider one dimension only. Let it be the 
y dimension. The transformation of the (y, y’) vector through the beam-beam 
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collision is described by the matrix 

1 2Nro 
7 = Vy(bz + 03) (7) 

where f is the equivalent beam-beam focal length. 

As a numerical example, a round beam with 1012 particles, 0.2 mm radius 
and 5 cm length produces at its edge a magnetic field of 10 kilogauss. If lin- 
earized, the beam-beam kick is equivalent to a quadrupole of gradientill 50 
kG/mm, which is a strong gradient indeed. For a lO-GeV particle, the corre- 
sponding focal length is about 13 cm. This beam-beam quadrupole is of course 
focusing in both x and y planes. 

For symmetry reasons, we will split the beam-beam kick in the middle and 
observe the weak beam there. The transformation from one collision to the next 
is then 

~04~ + A4 ,6* sin(p + AP) 
- k sin@ + Ap) co@ + A4 1 

(8) 

where p* is the perturbed beta-function at the collision point, and Ap is the 
perturbation on the phase advance. 

As the weak beam circulates around, its (z, z’, y, y’) is transformed repeat- 
edly by the matrix (8). If the net motion is stable, the matrix can be parame- 
terized as Eq. (8) with the perturbed quantities related to the unperturbed ones 
through 

C@ + Ap) = cos p- -sin JL , 
2f 

B* sin p 
z =sin(p + Ap) ’ (9) 

ll)More correctly, the gradient should to doubled since the electric field also 
contributes. But then the length of interaction should be halved to 2.5 cm 
because both beams move and they move in opposite directions. 
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Note that in the linear approximation the entire problem is specified by the 
two scaling parameters p (more specifically, p modulus 2~) and 

(10) 

where & is the well-known beam-beam parameter9 that specifies the beam-beam 
strength. The beam-beam parameter in the z-motion is obtained from Eq. (10) 
by exchanging z and y. 

Figure 2 shows the stable region in the (cc, c) space. Outside the stable 
region, the absolute value of the trace of matrix (8) is larger than 2; Eq. (9) 
then does not have a solution. The dividing boundary between the stable and 
unstable regions is 

0.3 

0.2 

& 

0. I 

0 

&cot; . 2n 

Stable 

0 0.5 
a- 83 /.lL/27r 461.A1 

(11) 

Fig. 2. Stability region for a weak beam executing small 
oscillations. ~1 is the betatron phase advance between 
collision points. The diagram repeats with period ~1 = n 
and shows a periodic sawtooth behavior which is typical 
of beam-beam models. 
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Figure 2 shows that the weak beam is most unstable if the tune advance 
~/2n between collision points is slightly below a half-integer and is most stable 
if it is just above a half-integer. (Signs switch for two beams with same sign of 
charges.) 

In case ~1 is not close to a multiple of R, the tune shift Ap/27r is approximately 
equal to c if [ << 1. This is why sometimes c is also identified (somewhat loosely) 
as the beam-beam tune shift per collision point. 

The linear strong-weak model described above is our first beam-beam in- 
stability model. Unfortunately, it does not explain the observed beam-beam 
instability. It predicts much too high a value for the stability limit. Even worse, 
such linear instability can in principle be removed by simply readjusting the 
unperturbed storage ring optics and consequently can not constitute a funda- 
mental limitation on the maximum beam intensity. 

3 A STRONG-WEAK SIMULATION 

In case the weak beam does not have small amplitudes, the linearization 
breaks down and the beam-beam force must be considered in its full glory. 
Such a nonlinear mapping problem is extremely difficult to handle analytically. 
We must then seek the help of the almighty computer. (See for example Refs. 
10 and 11, which also contain interesting analytical techniques.) The hope is, 
of course, that by taking into account the nonlinear terms in the beam-beam 
kicks, we could readily explain the beam-beam instability. 

To simulate the weak beam motion with a computer, we launch the beam 
with initial conditions (20,x;, yo, yh) and apply the transformations (1) and (4) 
alternately and repeatedly. As an illustration, we assume a round strong beam 
(see Problem 1, above) and launch the weak beam with ~0 = 0 and ~6 = 0. The 
weak beam will then stay in the y plane. After each transformation the beam 
acquires a new set of values for y and y’, which is then represented as a discrete 
point in the (y, y’) phase space. Repeated application of the transformations 
then traces out the weak beam trajectory in the phase space. The motion is 
stable if the trajectory does not migrate away from the origin. 

Figures 3(a) to 3(d) are the results of four strong-weak simulation runs. 
Figure 3(a) is the result if we ignore the beam-beam force. Not surprisingly, the 
weak beam traces out an elliptical trajectory in the phase space and the motion 
is stable. 

In Fig. 3(b), we take into account of the linear term, i.e., the first term 
in the Taylor expansion of Eq. (3), of the beam-beam force. The weak beam 
still traces out a stable ellipse, although now the ellipse is distorted. Stability is 
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assured by the fact that we are in the stable region of Fig. 2. 

Figure 3(c) takes into account the next octupole term in the Taylor expan- 
sion of the beam-beam force. We find that some trajectories trace out stable 
islands while some others show “stochastic” behavior in the phase space.12 The 
trajectories that show stochastic behavior finally get outside the scope of the 
figure. Inclusion of the octupole term of the beam-beam force has caused the 
beam t,o become unstable. 

Had we stopped here, we might have thought that we had found the ex- 
planation for beam-beam instability. But Fig. 3(d) shows the case when the 
complete beam-beam force is included. What is striking is that the stable 
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Fig. 3. Weak beam trajectories in the normalized phase space (u,u), where 
U = y/u, u = p;y’/u. We assume ~(/2a = 0.23. (a) We ignore the beam- 
beam force. (b) We include only the linear term of the beam-beam force. 
(c) We include the linear and the octupole terms. (d) We take into account 
the complete beam-beam force. In each diagram, trajectories of the same 
five sets of initial conditions are followed. Note the qualitative difference 
between (c) and (d). 
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islands seen in Fig. 3(c) are still there, but the stochastic regions have basically 
disappeared! 

This means that the nonlinear beam-beam force alone does not destabilize 
the beam, at least for the parameters considered. This is in sharp contrast to 
the resonance instabilities driven by magnetic field imperfections, as exemplified 
in Fig. 3(c). The reason for such behavior has been explained analytically.13 
The point is that the beam-beam force diminishes quickly once the weak beam 
acquires an amplitude larger than the size of the strong beam. In fact, in the 
limit of very large amplitudes, the weak beam acts as if unperturbed and is 
necessarily stable. The beam-beam force therefore produces islands in the phase 
space but not yet an instability. 

4 TUNE SPREADS 

Before proceeding to more sophisticated beam-beam concepts, let us first 
introduce one of the most prominent nonlinear effects of beam-beam interaction 
- tune spreads.15*15 

We already know that, if a particle executes small oscillations, its tunes 
will shift by & and &, in the horizontal and vert.ical motions. We have also 
learned that a particle with very large oscillation amplitudes experiences little 
beam-beam perturbation - and consequently small tune shifts -since it simply 
stays outside the range of beam-beam force most of the time. Therefore the tune 
shifts are functions of the oscillation amplitudes of the particle. (This behavior 
is called detuning.) If now a weak beam contains a distribution of particles of 
various amplitudes, it will end up with tune spreads. 

The horizontal and vertical tune shifts are directly related to the slopes of 
the beam-beam forces af/&r and af/ay.12) For given z and y amplitudes, the 
tune shifts of a weak beam particle are calculated essentially by averaging the 
slopes of the beam-beam force over the range reached by the particle. The case 
of a particle executing a onedimensional y-motion is illustrated in Figs. 4(a) 
to 4(d). In the general case, with a Gaussian strong beam, the tune shifts per 
collision point as functions of amplitudes are found by the averaging procedure 
to be14-16 

AL+=< 
du 

t1 + g3/2(1 +-!$)I/2 zlk%) z2(+) ’ 

12)After all, a quadrupole ma.gnet changes the tune because it produces a force 
with nonzero slope. 
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Fig. 4. Schematic illustration of the beam-beam tune shift mechanism: (a) 
shows the beam-beam force; (b) the slope of this force. Before averaging, the 
tune shift is proportional to -aflay in such a way that Av = < at the origin, 
as shown in (c). This AI/(Y) is averaged over the range reached by a given 
amplitude; two such ranges are also shown in (c), one for a small amplitude 
particle and one for a large amplitude particle. The result after averaging gives 
the detuning curve, which looks like (d). 

AvY = ~(~)~~~+u)3,2~~+~211)112 z2(,;:2~)z1(+$) ’ (12) 

with functions 

Zl(z) =e-’ ko(4 - h(41 I 

Z2(2) =e-‘IO(z) , 

where ,& and fi are the amplitudes normalized by o2 and cry, respectively, 
a = o~/o~ is the aspect ratio of the strong beam distribution, and IO and 11 
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are Bessel Bessel functions. In Eq. (12), we have assumed that the beam-beam 
parameters in z and y are equal, i.e., & = &, = c. 

We have come across an important result in passing. The tune spread of the 
beam is equal to the tune shift of small amplitude particles, and both are equal 
to <: 

tune spread = small amplitude tune shift = c . (13) 

In other words, the parameter [ has now acquired a second physical meaning, 
namely, the strong-beam induced tune spread. 

Figures 5(a) to 5(c) show the tune spreads in the V, - var space. Without 
beam-beam collisions, the weak beam has tunes uzo and UN. When the beams 
collide, particles with small amplitudes have their tunes shifted to ud + & and 
vyo + ty, while particles with large amplitudes keep their unperturbed tunes. 
The weak beam as a whole then occupies an area in the V, - vy space. The 
“working point” thus extends in the upper right direction into a “working area” 
in the tune space. Note that in both x and y motions, Eq. (13) is independently 
sat,isfied. 

Problem 2. Find the tune shifts as functions of amplitude if the 
strong beam has (a) a round Gaussian distribution, (b) a uniform disk 
distribution. Draw the working area in both cases. In case (b), the weak 
beam does not have tune spread until it goes beyond the boundary of the 
strong beam. Then, the weak beam motion is entirely linear. 

5 THE SINGLERESONANCE MODEL 

The calculation of tune spreads described above assumes there is no destruc- 
tive resonance 

pvz + qvy = n (n q, n = integers) (14 

trespassing the working area. Otherwise particle motions will be seriously per- 
turbed by the resonance. One then argues that these resonances - at least the 
lower-order ones - must be avoided. Note that the resonances can be driven 
by the beam-beam force itself as well as by the storage ring nonlinearities. 

In order to avoid resonances, the tune spread must not be too large. One 
possible picture of the beam-beam instability then emerges: the tune spread c 
must be small enough that the working area can be fitted into a tight resonance- 
free region, as sketched in Fig. 5(d). This is the single-resonance model of the 
beam-beam stability limit. 
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Fig. 5. Beam-beam tune spreads. We assume the two beams have opposite 
charges. (v,u, ~~0) is the unperturbed working point. W ith beam-beam colli- 
sions, the working point extends into a working area. The dotted lines are the 
contours for particles with amplitudes satisfying z2/crf4 + y2/bi = n2. We as- 
sume & = &  = 0.05. Case (a) is when the aspect ratio is u = 1, i.e., a round 
beam. Case (b) is when a = 0.1, i.e., a flat beam. Case (c) gives the result in 
the limit a = 0. Fitting the working area (shaded region) into a resonance-free 
region in the tune space is shown in (d). 

It is not clear how small 6 must be because it is not clear to what order the 
resonances must be avoided. The conventional wisdom has it that the maximum 
tolerable c is about 0.05 for electron rings and 0.005 for proton rings. In the 
singleresonance picture, the difference is attributed to the fact that there is 
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radiation damping in electron rings but not in proton rings; as a result, the 
available resonance-free region is larger for electrons than for protons because 
protons are vulnerable to resonances up to order, say, 10, while electrons need 
to avoid resonances only up to order, say, 5. 

For e+e- storage rings, the aspect ratio tends to be small, say, a = 0.1. 
Inspection of the shape of the working area in Fig. S(b) shows that the better 
choice is to have the unperturbed working point lie on the lower right side of 
the destructive resonances rather than on the upper left side. For example, 
when applied to the diagonal 2~~ - 2u, = n resonance, this means that the 
unperturbed working point should be below the resonance line, as was first 
pointed out by Montague. l7 Note, however, that the principle applies to other 
resonances as well. 

But there is a problem. As Fig. 3(d) showed, although a low-order resonance 
near the working area perturbs particle motion, its main effect is to produce a 
set of islands in the phase space and not really to cause any instability. The 
beam-beam instability is therefore still lacking a mechanism. To reconcile this 
apparent difficulty, several possibilities have been suggested. A few examples of 
these will be given in the next two sections. 

6 TRAPPING MODEL AND ENHANCED DIFFUSION MODEL 

The single-resonance model described above assumes that all parameters 
such as tune and < stay constant in time. In this section, we will first describe 
a trapping model in which the tune is modulated more or less sinusoidally in 
time with a certain slow frequency and, during this process, repeatedly crosses 
a resonance value n/q. Unlike the static single resonances, this provides a 
mechanism18 which continuously brings particles from small to large amplitudes. 
A physical aperture limitation on the amplitude then potentially explains the 
observed lifetime limitation in colliding beams. 

In the static model, a particle moves along a constant Hamiltonian contour 
and, as shown in Fig. 3(d), some contours form islands in the phase space. 
Since the distance of the islands from the phase space origin is proportional to 
u- n/q, islands in phase space move in and out as the tune oscillates. Phase 
space area elements, together with the particles encldsed in them, are distorted 
and relocated by this island motion. In particular, particles may be trapped by 
the islands as they move out in phase space (small oscillations around the island 
centers are stable.). This then causes particle loss to the aperture limit. The 
process is schematically shown in Fig. 6. 
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Physical Aperture 

Fig. 6. The trapping model. Some par- 
ticles are being trapped and moved out- 
wards to an aperture limit. How many 
particles are trapped depends on the reso- 
nance strength and the island moving speed. 

One possible source of tune oscillation is the synchrotron oscillation of a 
particle’s energy coupled with a chromatic dependence of the tune. In this case, 
the tune is modulated at the synchrotron frequency. 

We now turn to a second variation of the singleresonance model. This time 
the parameters are time-independent, but in addition to the beam-beam force 
there is a diffusion effect on particle motion. Although a beam-beam induced 
single resonance does not directly cause particle loss, it does enhance the diffusion 
process and cause particle loss indirectly.lgB21 

In electron rings, the diffusion caused by the synchrotron radiation noise 
and the radiation damping provided at the acceleration cavities counteract each 
other; an equilibrium beam distribution is reached when the two effects are in 
balance. The beam lifetime is then determined by the particle diffusion rate 
at the physical aperture limit. The larger the aperture, the longer the lifetime. 
Clearly the distortion of phase space by the presence of a single resonance will 
also distort the equilibrium distribution. As a result, the effective physical aper- 
ture limit is reduced by an amount of the order of the width of the phase space 
islands. The beam lifetime will then be shortened accordingly. 
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For proton rings, candidates for the diffusion effects are intra-beam scatter- 
ing, residual gas scattering, power supply noise, etc. These diflusion effects will 
also be enhanced by the presence of single resonances. 

7 OVERLAPPING RESONANCES 

The enhanced diffusion and the trapping models described above are not the 
only possible explanations of beam-beam instability by way of strong-weak single 
resonances. We now describe still another possible alternative in this section. 

To do this, we need to take into account resonances of not just the lower 
orders but all orders. The working area is then covered densely by resonance 
lines. Although the higher-order resonances have narrower widths, the fact that 
there is an infinite number of them may still result in a significant effect. Indeed, 
as suggested by Chirikov,22 if these high-order resonances are wide enough that 
they overlap into a continuum in the tune space, particle motion will be unstable 
even if the working area is free of low-order resonances. 

Computationally what we do is first calculate the widths of beam-beam 
resonances of all orders as if they were separated single resonances and then 
add up these widths to obtain a total width. If this total width is comparable 
with or larger than the available tune space, we will have reached a stability 
limit. This procedure is called the Chirikov criterion. Since the total width of 
all resonances is proportional to c, the Chirikov criterion sets a stability limit 
on 6, which is referred to as the stochastic limit. 

Figure 7(a.) shows a detuning curve like that in Fig. 4(d), but here we have 
indicated two resonant tune values within the tune spread range, one of the 5th 
order and another of the 8th order. The Sth-order resonance occurs at a smaller 
amplitude than the 8th-order resonance. 

Below the st,ochastic limit, particles move along closed smooth contours in 
the phase space, as in Fig. 7(b), and there is no instability. The two strings 
of islands correspond to the two resonances at two separated amplitudes. If [ 
exceeds the stochastic limit, however, the two sets of islands overlap each other, 
as illustrated in Fig. 7(c). But particle trajectories do not intersect in the phase 
space; as a result, not knowing which set of islands to follow, particles can only 
move stochastically from one island region to another, yielding what is shown 
in Fig. 7(d). Although each resonance is stable if considered alone, overlapping 
resonances make it possible for a particle to gain amplitude rapidly within the 
stochastic region. 

More quantitatively, the resonance width is obtained by first computing the 
width of the phase space islands, &r in Fig. 7(b), and then translating this width 
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into v-units by Eq. (12). 22-24 For the one-dimensional case near the resonance 
u = n/q, the term 6o is approximately given by 

(15) 

where 

G&4 = & eaa[ (1 + 2a)Ip/2(a) + 24/2(~)] 9 Q = even 9 

is a term that appears in the Hamiltonian that drives the resonance,16 (~0 is the 
amplitude at which the island centers are located, and Au is the tune shift in 
the one-dimensional case with its derivative given by 

AY’(cr) = -{i eWall(cr) . (16) 

(a) 

UC)+& 
2/5 

3/a 

vO 

6-63 Overloppmg Resonances 4624A7 

Fig. 7. Sketches of single resonances and overlapping resonances. (a) 
Detuning curve, showing tune spread covering two single resonances. 
(b) Two isolated separated single resonances in the phase space. (c) 
Two overlapping resonances which actually end up looking more like 
(d), where the shaded area represents the region of stochastic motion. 
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The corresponding resonance width in v-units is therefore 

and the Chirikov criterion for beam-beam stability reads 

kot = c qbu < 1 (18) 
q=even 

where &tot is the sum of the widths of all resonances that occur in one unit 
range of tune space. Only even q’s are summed over because the beam-beam 
interaction does not excite odd q’s. The quantity &tot is proportional to c. 

Figure 8 shows &tot/[ as a function of (Y. It has a maximum at a N 8, 
where it has the value of about lO.S[. Figure 8 tells us that the most likely 
area for stochastic motion to occur is around an amplitude of about &a. In 
this region of the phase space, the beam-beam stochastic limit is found from Eq. 
(18) to be roughly 

climit X A= 0.095 . (19) 

12 

I I I I I 
0 IO 20 30 40 50 

8-83 a 4624A0 

- 

Fig. 8. The total beam-beam resonance width as a function of 
particle emittance. 

The limit (19) is much higher than what has been reached experimentally. 
One perhaps could explain this discrepancy by adding a time modulation to the 
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tune or by adding a diffusion to particle motion, as we did on the static single- 
resonance model. Note also, however, that we have included resonances of a 
one-dimensional motion only; all coupling resonances have been ignored. 

Figure Q(a) shows what happens to Fig. 3 if t = 0.2.13) Particle motion 
exhibits clearly stochastic behavior, apparently leading to an instability. One 
difficulty with this, however, is shown in Fig. 9(b), which is the same as Fig. 
9(a) but with an extended scale. Here we see that the stochastic region is limited 
to the region around a few sigma’s, and that outside this region the motion is 
bounded again by smooth curves. The physical reason for this is, of course, that 
the beam-beam force diminishes at large distances, as explained when discussing 
Fig. 3(d). In other words, unless we are interested in the fine details of single- 
particle motion (dependence on the initial conditions, etc., to several digits), 
the gross beam behavior does not depend sensitively on whether the stochastic 
limit has been exceeded or not. 

-10 -5 0 5 IO 
U 462bC9 

Fig. 9. Particle motion when the stochastic limit is exceeded. Diagram (b) is 
the same as (a) but with an extended scale. It could be misleading to look only 
at (a). 

This difficulty with Fig. 9(b) aside, the stochastic instability causes rapid 
growth of particle amplitudes in the stochastic region. For electron storage rings, 
since the radiation damping would damp out any instabilty that does not grow 
much in lo3 revolutions or so, we need not worry about other possible weaker 
instabilities. For proton rings, where there is no radiation damping, particles 

131,/27r = 0.23 and c = 0.2 is in the unstable region of Fig. 2. This shows up 
in that the origin is an unstable fixed point in Fig. 9. 
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need to be stable for the lifetime of the beam, i.e., 10” revolutions or so, and 
therefore instabilities much weaker than the overlapping resonances need to be 
dealt with. One such weak instability is called Arnold diffusion,25-n in which, 
long before resonances overlap in the (y, y’) phase space, particles can acquire 
large amplitudes by slowly channeling through the very thin stochastic layers 
surrounding the islands in multidimensional phase space. This phenomenon re- 
quires sometimes long-term numerical trackings and is typically rather intricate 
to study. 

8 THE INCOMPRESSIBLE FLUID MODEL 

An interesting alternative view of the Chirikov criterion was suggested by 
Teng.28 This view is based on the analogy between particle motion in the phase 
space of a Hamiltonian system and the motion of a viscous incompressible fluid. 
(After all, according to the Liouville theorem, phase space area is incompress- 
ible.) By writing the Hamiltonian equation on the one hand and the fluid equa- 
tion on the other, it is possible to establish the analogy, as given in Table I. The 
Chirikov criterion is then equivalent to the Reynolds condition in fluid dynamics 
that the viscosity must be large enough to prevent turbulence from occurring. 
This offers an alternative derivation of the Chirikov criterion. 

Table I Analogy between the overlapping 
resonances and an incompressible fluid 

Overlapping resonances Incompressible fluid 

particle motion in phase space 
Hamiltonian equation 
smooth contours 
stochastic behavior 
Chirikov criterion 

fluid motion in real space 
Navier-S tokes equation 
laminar flow 
turbulence 
Reynolds condition 

9 DYNAMIC BETA 

So far we have been talking about the strong-weak case. For the strong- 
strong case, beam-beam interaction becomes much more complicated because 
perturbation on one beam in turn influences the other beam. For instance, it 
would be invalid to preassume a Gaussian distribution since the distribution 
must come from solving self-consistently a dynamic system that contains both 
beams. 

Nevertheless, if we consider a linearized strong-strong case, the beam distri- 
bution would still remain Gaussian. The only effect is that the rms beam size at 
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the collision point is now proportional to @, where @* is the perturbed beta- 
function. Since, according to Eq. (9), p’ depends on c, which in turn depends 
on the beam size, this means the beam size, @*, and c depend on one another 
and need to be found self-consistently for any given value of beam intensity 
N. Such behavior is called the dynamic-beta effectm It is the simplest of the 
strong-strong models. 

One can also study the effect of dynamic-beta on the luminosity f. For a 
Gaussian beam, L is given by 

L 
N2fB 

= 4mzuy (20) 

where f is the revolut,ion frequency, and B is the number of bunches per beam.14) 

In Figs. 10(a) to 10(c), we show the dynamic-beta behavior of p*, t, and 
L. In the range of N of interest, the beam-beam force pinches /3* - and 
consequently the beam size a.t the collision point - to a smaller value if ~/27r < 
0.1. For larger ~/27r, the reverse is true. This behavior repeats with period 
p/2n = l/2. This means the luminosity would benefit from having ~/27r slightly 
above a half-integer and would suffer if ~/2n is slightly below a half-integer. Note 
also that there is always a saturation behavior on L versus N. 

In Fig. 10, we have assumed a round beam and pLz = pLy for simplicity. In 
this simplified case, the self-consistent solution is given by 

Pv% = J 1+ (24) csc /l)2 - 27r&) cot/i ) 

1 =LomP* , (21) 

where PO, (0, and Lo are the quamities in the absence of dynamic-beta. 

It is not clear whether there is experimental evidence of the dynamic-beta 
effect. There are some indications of increased luminosity as p/2x is lowered 
toward slightly above a half-integer, see Fig. 11.30 The fact that luminosity 
levels off at high beam intensities agrees with dynamic-beta, although almost 
any reasonable beam-beam model could have predicted the same. 

MF rom the beam dynamics point of view, luminosity is not a very interesting 
quantity. It is simply a geometrical quantity representing the transverse beam 
area. 
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Fig. 10. Dynamic-beta behavior of p’, 6, and f.. 
The term /.4/27r is the unperturbed tune advance 
between collision points (modulus l/2). The dashed 
lines in (b) and (c) are the reference values when 
the dynamic-beta effect is ignored. We have cho- 
sen the normalization that Lo = 1O32 cmm2 set-’ 
and b = 0.05 at N = 1012. 

One may also ask the following question: suppose the strong-strong case is 
not linearized, what will be the equilibrium beam distribution now that it is no 
longer Gaussian? This is an important practical question since it relates directly 
to the luminosity, but unfortunately it is also a very difficult one. Some progress 
has been made on the weak beam distribution in the strong-weak case,31p32 but 
as it stands now, more effort is needed in this research area. 

21 



1000 t , , , ,,,,,, , , , I,,,,, , , , (I,, r 

- E=lZGeV ,2 -1 
- ~yO=lOcm 
- VRF=230kV / 

00 r 

I IIII I I1111111 I Illllll. 

10-l IO0 IO’ IO2 

,- 79 i+= i- (mA) l>ll.i 

Fig. 11. SPEAR I data that show tune and beam 
intensity dependences of luminosity. 

10 LOW+* INSERTION 

The beam-beam parameter [, as explained in Eq. (13),‘has the meanings of 
the beam-beam induced tune spread and the small amplitude tune shift. In Eq. 
(19), it was used to set the stochastic limit. These studies, together with what we 
will see later, indicate that c  has the meaning of simply being the dimensionless 
scaling parameter of the beam-beam problem. It is the parameter that specifies 
the linear as well as the nonlinear beam-beam strength. 

This observation has one extremely important practical consequence - the 
invention of low-p* insertions. 33l34 According to this scaling property, it would 
be beneficial to make < as small as possible, and inspection of Eq. (10) shows 
that minimizing /3* would do this. 

Today, low-p* insertions are implemented on all colliding beam storage rings. 
As a result, luminosities have increased by one to two orders of magnitude. And 
yet this is not the end. Ideas for making /3* smaller are still actively being 
developed, and they bring success every time they are tried, as evidenced by 
current talk about “mini-p*” and even “micro-p*” insertions.35-37 

In a low-p* insertion, a few strong quadrupoles are inserted in the interaction 
region to pinch p* to a small value. Figure 12 illustrates the difference between 
a low-p* insertion and a normal cell structure. 
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(b) 

Fig. 12. Difference between (a) a normal cell structure 
and (b) a low-p* insertion. In each case, two typical tra- 
jectories are drawn. In (a), the effects of focusing and 
defocusing magnets tend to cancel each other. The net 
effect is focusing, but the focal length is long, and the 
displacement of a particle changes sign only after the 
particle passes through several magnets. In (b), a strong 
quadrupole magnet “overfocuses” the particle trajecto- 
ries so that all displacements change sign near the low-p 
point. Such an overfocused configuration is usually to 
be avoided in a normal cell structure. 

The low-p* insertion quadrupoles can not be too close to the collision point 
since the detector solenoid has compensating solenoids on both sides. This puts 
a limit on the smallest beta achievable at the collision point. In a mini-P* 
insertion, the compensating solenoids are removed to make room for the insertion 
quadrupoles (at the cost of some complications in ring optics) so that p* can be 
made smaller. One can even go one step further and contemplate the possiblity 
of having the insertion quadrupoles inside the detector to produce a micro-p*. 
These micro-p* quadrupoles need to be permanent magnets. The various small- 
/3* schemes are shown in Fig. 13. 

It is incorrect to say that the benefit of low-p* is due to pinching of the 
beam size at the collision point to a smaller value. Although the luminosity does 
increase when beam size is reduced, the idea of low-/?* actually tends to ask for 
a large beam size. The reason is basically given by 

LKN2/A’ , (22) 

where A* is the beam area at the collision point and we have assumed a, >> by. 
Since beam-beam limit is thought to be associated with a maximum allowed 
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value in c, the maximum beam intensity is given by 

NcxA* . 

(a) Detector Insertion 
Solenoid Quad 

I I I 1 

t t” 
Compensating I 

Solenoids 

(b) 

(23) 

Fig. 13. (a) Low-p*, (b) mini-P*, and (c) micro- 
p’ insertions. 

This leads to the conclusion that 

which means we want to have A* as large as possible, in contrast to what one 
might have expected.15] 

The question is therefore how to insist on a small p* and at the same time 
to ask for a large beam size at the collision point. There have been several 
clever ideas of how to do this. Some of them are listed below without much 
explanation: 

15]We are ignoring the subtlety that two t’s, & and &,, are involved in the 
beam-beam limit. The complete story is more involved, as always. See Ref. 
38. 
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- weaker focusing, i.e., smaller tune 

wigglers 39 - 

- mismatched dispersions in the ring lattice40 

- finite dispersion at the collision point 

The first three of these involve artificially enlarging the beam emittance. 
Clearly such ideas are restricted by their requirement for imply large beam sizes 
- and therefore a large vacuum chamber - not just at the collision point but 
also everywhere else around the ring, which is very expensive. The fourth idea 
does not have this problem, but it does have the problem that the beam-beam 
force may excite harmful synchro-betatron resonances41 

11 OPTIMUM ,8* 

One might ask what sets the limit in going to smaller and smaller values of 
p*. One limit results from the fact that the beams collide over a region of finite ’ 
length, while /3* is the value of ,!3 only at the center of this collision region.42r43 
For bunched beams, the collision region is of course given by the length of the 
bunches. We will explain in this section how the finite bunch length introduces 
an optimal value for /3*. It would not be beneficial to make /3* smaller than this 
optimal value. 

Let us adopt a simplified model in which the bunches have uniform longi- 
tudinal distribution with full length 2L. We will assume a flat beam and study 
the effect of making /$ small, leaving @ i unchanged. We will show that in this 
model, the optimum p* is about equal to l/4 of the full bunch length. 

As we move away from the center of the collision region by distance 8, the 
P-function increases quadratically according to 

(25) 

We see that as p* is pinched to a small value, the beams collide with a geometry 
like that shown in Fig. 14, keeping in mind that beam size at 8 is proportional 
q/m.w e see that too small a value of @*  is harmful because of two effects: 

1. The parameter 6 is effectively increased since a particle has to traverse 
the collision region with p > /3*. This means a stronger limit on the 
collidible beam intensity. 

2. For a given beam intensity, parts of the beams collide with large cross- 
sectional area, leading to degradation of luminosity. 
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Fig. 14. Colliding beams when /3’ 
is too small. 

Since & is proportional to &,/cra, and crl is proportional to ,,& the effective 
c  is given by averaging [ over the collision region, i.e., 

where u  = L/p*, f(u) = (l/u) In (U + dm), and co is the unperturbed 
value, which is proportional to N/,/G. This means that if we demand that c  
be less than some constant value, then the maximum beam intensity al lowed by 
beam-beam interaction satisfies 

fi 
Na: d /1+ u2  + f(u ) * 

The maximum luminosity then behaves according to 

(27) 

(28) 

where N is given by Eq. (27). 
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In Fig. 15 we have plotted the beam-beam limited beam intensity and the 
luminosity as functions of L/P,+. We find that both N and L reach maximum 
when a,* is about equal to l/4 of the collision region length 2L. Further decreas- 
ing /3* does not help the luminosity. 
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Fig. 15. Effect of finite bunch length on optimum choice of ,8*. (a) Maximum 
beam intensity allowed by the beam-beam limit versus B,*/L. (b) Luminosity 
versus p;/L. The units for N and f are arbitrary. The dashed curves are 
drawn with effect of finite bunch length is ignored. 

It should be pointed out that we have considered only the geometrical im- 
plicat.ions of a small p*. There are other considerations. One is that a small @* 
necessarily requires a large ,8 at the quadrupoles. This means these quadrupoles 
need to have large apertures to clear the beam, which in turn means they need 
to be very strong in order to produce the needed gradient. In addition, a large 
p at these quadrupoles means extreme sensitivity to errors in their construction 
and installation. 

Another effect associated with small ,P is the possibility of exciting synchrc+ 
betatron resonances.44 A particle executing synchrotron oscillation sees the 
beam-beam kicks away from the collision point. The kicks are applied to the 
betatron motion of the particle. If ,~3* is too small, this leads to strong modu- 
lation of the kicks at twice the synchrotron frequency, which then becomes a 
source of synchro-betatron coupling. 
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12 COHERENT OSCILLATION OF RIGID BEAMS 

The next strong-strong model to be considered is coherent oscillation of the 
bunches. As a first step,45-47 we represent all bunches by rigid distributions so 
that only their center-of-mass motions are allowed. The bunches, in addition to 
undergoing simple harmonic motion in the storage ring, now receive beam-beam 
kicks when they pass through each other at the collision points. All bunches (in 
both beams) are then coupled together through the beam-beam kicks to form a 
dynamic system in which all bunches oscillate in time. 

Note t,hat no such coherent motion is allowed in the strong-weak picture. 
This, in fact, is one serious drawback of the strong-weak picture, especially since 
coherent motions, as we will soon see, can potentially set tighter stability limits 
than incoherent motions. 

Let us first consider a storage ring with two oppositely circulating bunches 
that collide alternately at two collision points, as shown in Fig. l(b). The two 
bunches are specified by indices 1 and 2 respectively. Let the two bunches have 
small center-of-mass motions in the y-direction. The kicks given to the two rigid 
bunches are computed by averaging the kicks over the bunch distribution. In 
the linear approximation, the result is 

Ay: =-;(YI-~2)s > 

A?&?= -j(Y2-Y1)$ 9 (29) 
where y1 and y2 are the displacements of the two bunch centers at the moment 
of crossing, f is the focal length defined in Eq. (7), and l/ fi comes from a 
Gaussian form factor. See Problem 3. 

Problem 3. Equation (29) gives the coherent kicks for Gaussian beams. 
More generally, show that the kicks are given by 

Ay: = --Ad2 = - 
2J21;Nro 

d r (~1 - y2) * 7 dY’b2(Y) 6-w 2 -CO 

where $(y) is the normalized beam distribution and a flat beam is as- 
sumed. Show that (30) become (29) for a Gaussian beam. Show also that, 
for a uniform beam, the factor l/ & in Eq. (29) is absent. 

Equation (29) can be written in matrix form. Defining the vector (yl, 4, ~2, y’,), 
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the matrix that describes the beam-beam transformation is 

1 0 0 o- 

-- 
Jif 1 - Sf O 
0 0 10’ 

_ & O -& la 

(31) 

After collision, the bunches execute free betatron motion for half a revolution. 
The transformation is 

To = 

cos p #?;sinf4 0 0 

--$sinp 
PO 

C-P 0 0 

0 0 cos p /3; sin j4 

0 -J&I.lp 
BO 

cos p 

(32) 

where p is the betatron phase advance between two collision points. 

Let Ttot be the product of the two matrices (31) and (32). The coherent 
motion is stable if all eigenvalues of T& have absolute value equal to 1. In the 
case of two colliding bunches, the motion consists of two modes: a O-mode in 
which the two bunches move up and down together, and a n-mode in which the 
two bunches move out of phase. The O-mode is always stable because, as the 
bunch centers move up and down together, there is no beam-beam force acting 
on them. The r-mode is stable if 

E<1 cot! . 
2d2n 2 (33) 

Note that this is & times more stringent than the strong-weak stability limit 
described by Eq. (11). This is more clearly seen in the sawtooth diagram Fig. 
16(a). 

The picture becomes more complicated, although still straightforward, if 
there are more bunches in the storage ring. For instance, when there are 6 
bunches (3 per beam), there will be 6 modes of coherent oscillations. The sta- 
bility region is obtained by requiring that all 6 modes be stable. Fig. 16(b) 
shows the sawtooth diagram. The stability region is much smaller than in the 
incoherent case. 
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Fig. 16. St,ability region for two strong rigid beams executing 
small center-of-mass oscillations for (a) two colliding bunches 
and (b) six colliding bunches. The figures a.re periodic in u, the 
total tune of the storage ring; the periods are 1 in (a) and 3 in 
(b). The dashed 1 ines show the strong-weak stability limit and 
are reproduced from Fig. 2. 

Possibly the strong-strong coherent instability is more relevant than the 
strong-weak incoherent instability (i.e., the nonlinear mapping studies) in set- 
ting the observed beam-beam instability limit. This possibility is based on the 
following observat,ion: in coherent motions, the separation between one piece of 
the beam and the corresponding piece of the on-coming beam is effectively twice 
the separation when one of the beams does not move, as would be the case in 
t,he st,rong-weak case. As a result, the beam-beam kicks are effectively stronger 
for coherent motions. This observation applies not only to the rigid dipole me 
tions described in this section but also to motions of higher order modes to be 
described in the next section. 

Center-of-mass beam motions induced by beam-beam collisions have been 
observed in storage rings for the case of two colliding bunches.48s4g The measure- 
ments are less clean when there are more bunches. The rigid beam oscillations 
are not da.mped by the feedback syst.ems because in the unstable region the 
growth rate is very fast. 
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13 HIGHER-ORDER BEAM-BEAM MODES 

In case we relax the condition that all bunches are rigid, the calculation 
becomes more difficult. In addition to the inter-bunch modes associated with 
the coupling among bunches, the motion of an individual bunch can be described 
only as a superposition of modes in its transverse distribution. For instance, the 
lowest of such modes would be the dipole mode we just considered; and then 
there have to be quadrupole mode, sextupole mode, etc. 

For small beam-beam parameters, coupling among different transverse modes 
is weak; it is possible to study the coherent beam-beam effect by considering each 
transverse mode separately. Our calculation of the dipole coherent instability 
then still applies. In particular, the stability region will be a sawtooth diagram 
with instability occuring near u =integers, as shown in Fig. 16. 

One can also perform a stability analysis on, say, the quadrupole mode and 
obtain its stability limit. Then, as we will see, there is instability if u is close to 
half-integers. Similarly, sextupole modes are unstable if v is close to l/3, etc. 

To study the coherent quadrupole modes,16] let us consider the case of two 
bunches as sketched in Fig. l(b). In this case, both bunches have Gaussian 
distributions, but the second moments of these Gaussian distributions oscillate 
in time around some equilibrium values. Each bunch will be described by a C 
matrix5r whose elements are the second moments 

1 < < 22’ > z2 0 0 > < > C= < d2 > zz’ 0 0 < y2 0 > 
0 

CYY- 0 
0 1 * 

<yy’> <y2> 

Let us designate the equilibrium sigma matrix as &. On top of X(-J, each bunch 
has a small time-dependent perturbation, i.e., 

c(l) =& + Ax(‘) , 

Cf2) =& + AEt2) . (35) 
We have assumed that the bunch distribution is not tilted in the z-y phase 
space. The stability of the coherent quadrupole modes will be determined by 
the stability of the two matrices AX(l) and AE(2). 

1’lTh e work described in this section was done in collaboration with Y. Kamiya.” 
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The free betatron motion between collision points can be described by the 
transformation 

Ad2) out =ToAd2) ? ul 0 7 P-3 

where TO is the matrix (32). Matrix elements of AC(l) and AX(2) each transform 
among themselves (without coupling to each other) according to Eq. (36). 

The beam-beam transformation is more complicated. Beam 1, for example, 
will be transformed according to 

(37) 

where 

Tbb = TbbO + AT66 

is the beam-beam transformation matrix, and 

-1 0 0 0’ 
Tbbo -k 1 0 0 = 

0 0 1 0 
0 0 

L -$ la 

is the time-independent part of Tbb. The matrix ATbb results from beam 2 
executing quadrupole motion so that its distribution is not the equilibrium one. 
The matrix A& that acts on beam 1 therefore depends on AC(2). This provides 
the coupling between the two colliding bunches. Note that we have linearized 
the beam-beam force. 

In terms of the perturbation quantities, Eq. (37) reads 

The coupling among elements of AX(‘) and AC(2) is linear. That suggests we 
form a 12-dimensional vector 
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and compute the two 12 X 12 matrices that transform this vector through the 
free betatron region and the collision point. The product of these two matrices, 
Tbt, then gives the stability of the quadrupole motions. 

Among the 12 eigenvalues of T tot, 4 are associated with constants of the 
motion and are always equal to unity. The remaining 8 correspond to 4 dynamic 
inter-bunch modes. Fig. 17(a) shows the region of stability in which all 4 
quadrupole modes have stable eigenvalues. 

Figure 17(b) h s ows the stability region for the case of 6 bunches in the two 
beams. In this case, there are 12 dynamic modes and they all have to be stable 
in order for the colliding beam system to be stable. We see from Fig. 17 that 
quadrupole coherent modes impose additional constraint on the parameters u 
and 6. 
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Fig. 17. Stability region for two strong beams executing small quadrupole 
oscillations. The figures are periodic in u, the total tune of the storage ring; 
the periods are 1 in (a) and 3 in (b). A round beam at equilibrium has been 
assumed. 

Other approaches can be taken to studying the higher-order coherent beam- 
beam modes.52-54 The result of one such attempt53 is reproduced in Fig. 18. 
For a given <, the shaded area represents the unstable region in the (u,, uY) 
space. The calculation is made for the very special case of the storage ring 
DCI,55 in which each of the two colliding bunches is composed of electrons and 
positrons of equal intensity so that the net charge is neutral. 
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Fig. 18. Coherent instability region in the uz, uY space for the storage ring DCI. 
There is an instability when a resonance condition, Eq. (14), is met. The value 
of [ is ta,ken to be 0.05. 

The idea of DC1 is of course to eliminate the incoherent beam-beam force. 
But this did not help the luminosity and, according to Fig. 18, one possible 
reason is that although the strong-weak instabilities are in principle eliminated, 
the coherent instabilities are actually enhanced. It should also be mentioned 
that more recently several advances have been made on the strong-strong case 
of beam-beam interaction in the form of numerical simulations.44p56-58 These 
results generally agree quite well with the experimental observations that they 



simulate. (It is not clear whether these simulations agree with one another since 
they attribute the beam-beam instability to different mechanisms. Nevertheless, 
they all seem to agree with observations.) In some cases, they were even used 
successfully to find working points that yield better luminosities. 

14 IS THE BEAM-BEAM LIMIT GIVEN BY 
c < UNIVERSAL CONSTANT? 

We mentioned before that f is the scaling parameter of the beam-beam 
interaction effects. This idea led to the invention of low-B* insertions. In this 
section, we will discuss the question of whether the beam-beam stability limit is 
indeed correctly given by the simple condition 

e < universal constant . (40) 

W’e should point out that the idea of having e as the scaling strength param- 
eter is not challenged. Rather we are asking whether there are other parameters 
in addition to t that may also play a role. 

The question can also be asked in a different way. We mentioned previ- 
ously that, according to conventional wisdom, the beam-beam limit is given 
approximately by [ = 0.05 for electrons and c = 0.005 for protons. We then 
attributed the difference to radiation damping. But a moment’s reflection sug- 
gests that these ideas can not be a complete description of the beam-beam limit. 
If we consider an electron storage ring with beam-beam limit c = 0.05 and 
imagine that we slowly remove its radiation damping, then the difference be- 
tween electron and proton diminishes, and the beam-beam limit will decrease 
toward e = 0.005. If so, the c limit is clearly not given by a universal constant; 
the radiation damping rate has to play a role - at least during the transition 
from [ = 0.05 to 0.005. 

One sensitive control on the radiation damping rate in an electron storage 
ring is the beam energy. The radiation damping time Trad is proportional to rw3. 
To see whether radiation damping plays a role in determining the beam-beam 
limit, therefore, one way is to examine the energy dependence of the luminosity. 

First let us assume that condition (40) does correctly describe the beam- 
beam limit; then Eq. (10) would predict 

NE73 (41) 

since the beam dimensions bz and uY are proportional to 7 in electron rings.5g 
Inserting this into Eq. (20) then gives 

Lcrr4. (42) 
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The prediction (42) does not seem to agree with the measurements. Figure 19 
is a compilat.ion of luminosity versus beam energy for the storage ring SPEAR.6o 
According to Fig. 19, luminosity depends on beam energy as 

L ,y6.7k0.1 . (43) 

It has been suggested 61$2 that the discrepancy between (42) and (43) can 
be explained by a phenomenological “diffusion model” that incorporates the 
radiation damping into the beam-beam instability mechanism. This model is 
further discussed in the next section. 
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Fig. 19. Luminosity versus beam energy for the storage ring SPEAR. 

15 THE DIFFUSION MODEL 

The model begins with the assumption that the beam-beam kicks contain 
a “random” part in the sense that this part assumes a random value from one 
kick to the next. Clearly the linearized kicks described in Eq. (6) are totally 
correlated from one collision to the next and are not of interest here. The same 
applies to kicks considered in the single-resonance model. 

It may be instructive to demonstrate that the random part of the beam-beam 
kick, if it exists, must be much less than the kick itself. To see this, note first 
that the magnitude of a typical beam-beam kick is of the order of Ad = uY//, 
where f is the beam-beam focal length defined in Eq. (7). Since the rms beam 
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divergence at the collision point, by’, is equal to a~//$, we find 

If 6 = 0.05, this means Ay’ is about equal to 0.6 times ati. In other words, 
one single beam-beam kick is comparable to the natural divergence of the beam! 
If these kicks were uncorrelated from one collision to the next, the beam-beam 
interaction would not allow the beams to be stored in the storage ring at all. 

Let the random part of the beam-beam kicks be written as 

(45) 

where q is a phenomenological constant yet to be determined from experimental 
data. \Ye will consider a flat beam. 

The beam-beam random kicks contribute to a diffusion in the beam size just 
like the random contribution from the synchrotron radiation noise. These ran- 
dom contributions are counteracted by the radiation damping, and on balance 
t)his gives an equilibrium rms beam size 

(4 (46) 

where a0 is the beam size in the absence of beam-beam collisions, TO is the 
time between collisions, and (0 is the beam-beam parameter calculated without 
beam-beam blow-up. 

To get a rough idea, let us say that the beam size is doubled at the beam- 
beam limit of 60 = 0.05. If we then take ~~4 = 10 msec and TO = 1 psec, we 
find q = 0.03, i.e., about 3% of the beam-beam kick strength is random at the 
beam-beam limit. 

If the beam-beam instability is caused by an aperture limitation, then the 
beam-beam limit is reached when a3 is equal to a certain defined fraction (say, 
l/10) of the aperture. In case the beam-beam blow-up is significant, the beam- 
beam limit will be determined by 

. (47) 
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Assuming that q is energy independent and keeping in mind that au a: 7 and 
7,ad Q: ?-3, we find, at the beam-beam limit, 

N a q712 , 

La:?, (48) 
where < is the beam-beam parameter calculated with the blown-up beam. Note 
that the luminosity is proportional to q6, in reasonable agreement with Eq. (43). 

The beam-beam diffusion model just described has other implications. For 
example, it predicts that the main beam-beam effect is a simple blow-up of the 
beam size rather than some dynamical instability. It does not have any sensitive 
dependence on the tunes of the storage ring. It also predicts that the beam-beam 
blow-up depends on the number of collision points according to aa fl. 

One problem with the diffusion model, partly due to its od hoc nature, is 
that it is not clear how exactly the random part can be extracted from the 
beam-beam force. One possible source of randomness may be attributed to the 
stochastic motion when resonances overlap.62 

Another possible source of randomness, which can be shown to be a very 
weak effect, is included here for amusement. It results from the fact that the 
beam is really not a smooth distribution of charges but, rather, a collection of 
a large number of discrete point charges. One can imagine that every time a 
part)icle collides with an on-coming beam, the average distribution of the on- 
coming beam is the same but the detailed distribution of the point charges 
within this average distribution has been randomly rearranged. 

Consider then a Coulomb collision between the particle and a particle in the 
on-coming beam with an impact parameter b. The kicking angle is given by 

(49) 

If the impact parameter is less than a certain minimum value &in, the 
collision will be so strong that both particles will be ejected from the storage 
ring acceptance because of this single Coulomb collision. The quantity bmin is 
given by 
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where A 9’ is the maximum value of y’ at the collision point that can be accepted 
by the storage ring acceptance. 

These violent Coulomb collisions cause a continuous loss of particles. The 
beam lifetime 7, because of this effect,l’l is determined by the probability of a 
particle finding itself within a distance b,h., from a particle in the on-coming 
beam. We then find 

If we take N = 1012, A j/ = 5 mrad, crz = 2 mm, uy = 0.05 mm, TO = 1 psec, 
and a beam energy of 10 GeV, we find that &in = 6 X 10-l' m and the beam 
lifetime is about 8000 hours. 

For those particles that remain within the storage ring acceptance, there is 
a diffusion effect on the beam size. Very roughly,[8) each collision will contribute 
to the beam divergence by an rms amount of Ay’/ 0, where Ay’ is the typical 
beam-beam kick given by Eq. (44). The growth rate for this diffusion process is 
therefore 

which is a much weaker growth than the radiation damping. Compared with 
t,he diffusion process described by Eq. (45) this effect is equivalent to replacing 
r,~ by l/ dN. 
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17)Another perhaps more serious lifetime restriction comes from the bremsstrahlung 
scattering of the two electrons. The present consideration, however, is suffi- 
cient to illustrate the point. 

1’)~ more careful calculation would probably introduce a logarithmic factor 
ln(o/b,i,), but this is ignored here. 
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