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The theoretical description of the beam-beam interaction 
presented here takes into account all the important features of 
the beam-beam phenomenon: the nonlinear beam-beam force 
and its dependence on both transverse coordinates, damping 
of the oscillations, presence of noise in the particle motion, in 
particular the quantum noise in its synchrotron radiation, ac- 
tual machine functions, layout and the number B of interaction 
points, and to some extent imperfections present in the machine. 
The model deals not with a separate particle, but with the beam 
ss a whole using phase space distribution functions and the av- 
erage (unperturbed and perturbed) characteristics of the bunch 
such ss its emittances, space charge parameters, etc. 

The calculations are done by a perturbation method’ using 
the Green’s function of the Fokker-Planck equation. This limits 
the applicability of the method in at least two ways: First, the 
current of the strong beam (or its space charge parameter, 0 
should not be too large. 

The beam blowup is presented roughly speaking as a series 
in ratio (/2rs, where 2~5 is the betatron phase advance between 
adjacent interaction points. This ratio is usually smaller than 
1. Second, there are regions in the tune diagram where approx- 
imation breaks down even for small current (resonance regions). 
The r&hod treats all resonances simultaneously. The blowup 
curve is a result, of the action of an infinite number of resonances 
positioned at the same place 

At the-present stage of development of the theory presented 
in this work, the longitudinal particle motion is not implemented 
in the model. The following assumptions and limitations are 
used in the course.of the calculations. 

The weak beam - strong beam interaction. The particle 
distribution of the strong bunch is assumed to be unaf- 
fected by its interaction with the counter-rotating weak 
beam. 
The bunch is assumed to be short in comparison to the 
value of the beta function at the interaction point p. This 
might become a serious restriction, especially when con- 
sidering dynamic /I (i.e., perturbed by the linear part of 
the beam-beam force). 
The collisions are assumed to occur head-on. This as- 
sumption makes the beam-beam force antisymmetric, thus 
eliminating all odd order resonances. 
The aspect ratio of the strong beam is assumed to be very 
small (flat beam). 

Under these assumptions the beam-beam interaction pro- 
duces two effects in the motion of a weak beam particle. First, 
the linear part of the force with which the strong bunch acts 
on such a particle changes the effective machine parameters for 
the weak beam. The tunes, the values of the amplitude beta 
function at the interaction point, and consequently the values of 
space charge parameters and beam emittances are changed. I 
will refer to the new (dynamic) tunes, beta functions, and emit 
tances 8s perturbed machine parameters. 

Second, from the rest portion of the force (i.e., its nonlinear 
--part) a transverse component of the particle velocity experiences 

an instantaneous change (‘kick’), the magnitude of which de- 
pends on the particle coordinates at the moment of interac- 

tion. Between the subsequent interactions a particle performed 
damped betatron oscillations in both lateral planes. The me 
tion may be influenced by noise (such as the quantum noise in 
synchrotron radiation, for example) and this noise should be 
taken into account. Strictly speaking, the particle motion is in- 
fluenced also by other nonlinearities in the machine lattice (the 
most important of which are sextupole fields). 1 neglect here all 
nonlinear forces apart from the beam-beam force. The evalua- 
tion of the sextupole magnets influence on the particle motion 
is done in Ref. 2. 

The result of all the subsequent interactions should then be 
averaged over the particle distribution in the four dimensional 
phase space of coupled transverse motion. All these tasks are 
achieved here by using the Green’s function method. 

I restrict myself here to evaluation of the vertical emittance 
of the weak beam. Indeed, for the fiat beam, the beam blowup 
is observed mainly in the vertical plane. The reason for this is 
of course that the vertical component of the interaction force 
is in this case much larger than the horizontal one for the vast 
majority of the particles. 

The vertical beam blowup is presented here as a function 
of the tunes, V, r, the damping rates, Q, 6, the values of the p 
functions, ,Tz, au, at interaction point (IP), and the space charge 
parameters &, &,, of the perturbed machine for the horizontal 
and vertical planes, respectively. It also depends on the number 
and distribution around the ring of the interaction points and 
the aspect ratio of the strong beam, try/uz. The remarkable 
feature of the result & that for the machine staying away from 
the resonance, the vertical beam blowup is actually independent 
of the value of the damping rates. 

The derivation of the formula for the vertical beam blowup, 
i.e., the ratio of the vertical rms size C, of the weak beam per- 
turbed by the interaction to the unperturbed value uv of the 
same parameter, can be found in Ref. 3. The result is: 

where (1) 

where 

are the zeroth order terms of the expansion of the space charge 
parameters of the perturbed machine in the power series in 
&= ux/uz. The factors W have the following meaning 
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where‘fluj,j+i,r and @uj j+i-r are initial vertical and horizontal 
betatron phases of the i:th interaction point if the j-th interac- 

-tion point is considered to be a starting one. The prime on the 
sum sign in (5) means that the value of the zeroth term in it 
should be taken with the weight l/2. 
Discussion and Numerical Illustration There are several 
points which are worth being mentioned here. 

1. Apart from damping each term in the infinite sums (5) 
through (8) depends on 6 and 4 only through the func- 
tions ein2r6 or cos2n9 and sint@ or coe2e correspond- 
ingly. This is a consequence of the antisymmetric beam- 
beam force, which is assumed in the present work. 

2. The nonlinear character of the dependence of the terms 
in the sums W on sines and/or cosines, produces all kinds 
of the nonlinear resonance enhancements in the beam 
blowup. The condition for nonlinear resonance of the 
(m + k)th order for an imperfect ring is as follows: 

2vBm + 2rBk = C (14) 

where m, k, and C are any positive or negative integers. 
An infinite number of these resonances are positioned on 
each of the resonance lines (14). The sums W represent 
the result of simultaneous action of all such resonances. 

3. An ideal symmetric lattice with B identical superperiods 
-e and B interaction points does not differ from a lattice 

built out of one superperiod and with only one interac- 
tion point. Hence for the symmetric ring without errors 
formula (2) should be (and indeed is) invariant under the 

-- following transformation: 

v, Q, I, 6, B) = $Bu,Bo,Br,B6,1) . (15) 

Due to the damping of the oscillations, the blowup ap- 
pears to be finite even when the perturbed tunes u and 
T are exactly on one of the resonance lines (14). Still the 
magnitude of the blowup at such a point should not be 
considered to be strictly correct since here breaks the va- 
lidity of the perturbation theory. 
Formula (2) explicitly depends on the damping rates Q 
and 6, but its construction (especially the form of the 
sums WI and W2) is such that the result for tunes away 
from any resonance (at least for an ideal ring) does not 
depend on the values of Q and 6 separately (but only on 
their ratio o/6). The reason for this is the following. 
Summations in formulae (5) through (8) result effectively 
in the appearance of resonant denominators, in which 
the damping constants enter as quadratic terms. Away 
from any resonance such terms are negligibly small in 
comparison to t6e term depending on the distance to the 
resonance, since usually 6 a I and o d: Y. 
Since the zeroth term in (5) is taken with the weight 
factor l/2, the sums WI and W2 are proportional to 6. 
A more detailed discussion of such behavior of the sums 
like (5) can be found in Ref. 4. In regions around the 
resonance lines (14), where the approximation is not valid 
anyway, the magnitude of the blowup does depend on the 
damping rates. 
Formula (14) once more implies the importance of the 
machine imperfections in the problem of the beam-beam 
instability - the fact understood as the result of com- 
putational studies5 Indeed, the resonant structure of the 
beam-beam blowup is richer for the machine with imper- 
fections. Expression (2) allow% one to take into account 
several causes of the breaking of the symmetry of the 
storage ring differences in betatron phase advances per 
superperiod, @symmetries and asymmetries in bunch 
currents. 

As an illustration of the derived formula, I present here the 
results of calculation for the current PEP configuration. No im- 
perfections of the machine are included here. The calculations 
for storage rings with imperfections and comparison with exper- 
iment are presented in an accompanying paper.6 

Table 1. The unperturbed nominal PEP parameters 

Particle energy 14.5 GeV 
Strong beam current 24.0 ma 
Horizontal /9= 3.0 m 
Vertical & 0.11 m 
Ratio of vertical to horizontal emit&ices 0.01 
Number of interaction points 6 
Horizontal tune per superperiod 3.545 
Vertical tune per superperiod 3.032 

Figure 1 presents the beam blowup in function of the unper- 
turbed vertical tune. One can clearly see the resonant regions 
where the blowup actually occurs. Several main resonances are 
identified by comparing the horizontal and vertical perturbed 
tunes, dependence of which on the unperturbed values are pre 
sented in Figs. 2 and 3, correspondingly. Remember though, 
that the beam blowup at each point is the result of the simulta- 
neous action of the infinite number of resonances which appear 
at the same place. 
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Fig. I. Ratio of the perturbed rms vertical size of the bunch 
C, to the unperturbed one uy versus the unperturbed vertical 
tune SO per one superperiod of PEP. The strongest resonances 
are identified by the lowest order integers for perturbed vertical 
7 and horizontal v tunes (for example, 2u-27 = 1 represents all 
resonances m(2v-27) = m, where m is any integer). The widths 
of the resonance curves represent the estimate for the upper 
boundary, i.e., the step size in the increment of the independent 
viariable. The actual resonance curve might be narrower. 
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Fig. 2. The dependence of the perturbed tune (curve 1) and the 
space charge parameter (curve 2) on the unperturbed tune for 
the horizontal plane. 
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Fig. 3. The dependence of the perturbed tune (curve 1) and 
space charge parameter (curve 2) on the unperturbed tune for 
the vertica1 plane. 

Next, Fig. 4 illustrates the dependence of the beam blowup 
on the beam current for one particular point of the tune dia- 
gram. The rising branch of the curve is a natural one and it is 
easy to understand. The falling branch needs an explanation v-e 

since it is never observed in real life. One can attribute absence 
of the blowup decrease with the current increase to several rea- 
sons. The most obvious one is the negligence of the coherent 
beam-beam instability.’ It produces two main effects: a) creates 
additional unstable regions for the tune values, depending in 
particular on the number of bunches and b) offsets the bunches 
at the interaction points breaking thus the assumption of the 
head-on collision. The machine imperfections neglected here 
should produce much more dense mash of the resonances, espe 
cially close to the half-integer to where the tune is shifted with 
the increase of the current. That also can eliminate the falling 
branch of the blowup curve. 
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Fig. 4. The beam blowup C,/u, as a function of the strong 
beam current I in amp. 

At last it is not excluded that the decrease in the blowup 
might be connected to the failure of the perturbation treatment 
used in present work. Indeed, both space charge parameters 
grow with the increasing current. 
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