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Abstract 

Linear logistic regression models the expectation of a dichotomous re- 

sponse variable with the model In(p(x)/( 1 -p(x))) - x’ a. Often the assump 

tion of linearity is violated, and alternative forms are sought. In this article 

we deal with models of the form In.(p(x)/(l - p(x))) - C#;(zi) where the 

4; are general smooth functions of the explanatory variables. Estimation 

is achieved using local maximum likelihood. The technique is illustrated 

with two examples, and is compared to existing techniques such as partial 

residual plots. 
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1. INTRODUCTION. 

An important statistical problem is that of regressing a binary response variable on a 

set of predictor variables. This has a special application in medical diagnosis problems and 

risk analysis. An example treated later deals with the survival of a patient after surgery for 

breast cancer. The response variable v is coded 1 if the patient survived after a specified 

period, else 0. For each patient we also have a vector x of explanatory or predictor variables 

such as age, year of operation and possibly some prognostic factors. We have a sample of 

such patients which we use to model the probability of the binary response as a function 

of the explanatory variables. We can also invisage using the resultant model to predict the 

response of future cases for which the response is not yet known.- F 

Specifically, we wish to estimate p(x) H p(y = 1 1 x) - 1 - p(g - 0 1 x) for any vector 

x. A standard approach to the problem is the linear logistic regression model 

In p(x) 
1 - P(X) 

- logit p(x) 

In words this says that the log-odds of surviving are linear in the predictor variables. The 

unknown parameters a can be found by maximum likelihood and teats of significance can be 

based on t,he likelihood ratio statistic (Cox, (1970)). The procedure is well implemented in 

the p&age GLIM (B a k er and Nelder, (1978)). Another approach is to make the assumption 

that the predictor variables are jointly normal with the same covariance matrix in each 

group (y=l or y==O) but with different mean vectom. For such a model the log-odds are 

once again linear in x and the parameters are functions of the parameters of the normal 

distributions. This is known as Fisher’s linear discriminant function. (Lachenbruch, (1975)). 

The logit form in (1.1) guarantees that the estimated probabilities are positive and in 

the interval [O,l]; It is also the form of the natural parameter for the Binomial distribution 

in the Exponential family. 

An often unjustified and misleading assumption is that logit p(x) is linear in x. The 

effect of a predictor may be felt only for a portion of its range. e.g. The effect of age on 
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the risk of heart disease may only be prominent after 35 years and a linear term would 

tend to smooth over this effect. Sometimes this linear effect is all that is required in terms 

of predict.ive ability; from a data analytic viewpoint, however, a linear term might be 

inappropriate and lead to the wrong interpretation. 

In order to generalize (l.l), we propose the model 

logit p(x) - t 4Xzi) (1.2) 
i-1 

where +$i(zi) is an unspecified non-parametric smooth function of Zip and p is the dimen- 

sion of x. The estimation is performed using the local likelihood technique introduced by 

Tibshirani (1982) in the context of censored data and the proportional hazards model. 

In section 2 we discuss in detail the estimation of the smooth functions and give some 

ideas on the degrees of freedom as well as inference. 

In section 3 we look at two examples. One consists of generated data where we know 

a- the true function. The other is an analysis of breast cancer data. 

__ In section 4 we compare the technique with the partial residual plots of Pregibon (1981) 

and also with the smoothing techniques of Henry (1983). 

2. ESTIM.ATION 

2.1 The linear logistic model 

We first consider the linear case in which logit p(x) - x’a. The log-likelihood for n 

independent observations (~1, xl), . . . , ( yn, h) is 

I(S) = 2 [YilnPi + (1 - Vi)ln(l -Pi)1 
i-1 

= 2 [yi~a - ln(1 + A’)] (2.1.1) 
i-1 

where p; = p(q). Let X be a n X p matrix of the predictor variables, y an n vector of 

responses and p an n vector of model probabilities with ith element pi. The maximum 



likelihood estimate Q maximizes (2.1.1) and the score 

xqy - fi) = 0 

where 

The expected information matrix is given by 

I(a) - X9X 

where V is a diagonal matrix with ith entry pi(l - pi). The Newton-Raphson iterative 

(2.1.2) 

function is given by 

procedure can be used to solve the non-linear system (2.1.2) with the estimate at the (t + 1) 

st iteration 

i(t + 1) = s(t) + z-‘(i(t))x’(y - P(t)) (21.3) 

See, for example, Landwehr, Pregibon and Shoemaker, (1982). 
a- 

2.2 The non-linear model with one predictor 
-- 

In this section we show how to estimate the model logit p(z) - d(z) where z is a scalar 

predictor variable. Let the sample points zl, 22,. . . , z,, be sorted in ascending order. 

We wish the estimate at each point zi to exhibit the IocaI behaviour of the response. We 

thus consider only those points within a certain neighborhood of Zi and base the estimation 

on them. The neighborhood is defined in terms of a span, which is a proportion of the 

sample. Usually we take half the span to the left, and half to the right of Zi. At the 

endpoints we have to consider asymmetric neighborhoods. Consider then the local likelihood 

for span s,(8 E (0, l]), at point i given by 

f i,u) 

l(a(i),i,8) = h j I(. )[~jUO(i)+ vjZjOl(i)- ln(1 + c*(q+‘l(+j)] (2.2.1) 
- :,s 

where 

I(i,s) = max(O, i- [y]) 

t(i, 8) = min(n, i + [y]) 
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Let i(i) maximize (2.2.1) and define 

i (Zi) - 4; 
= b(i) + ii (i)%i (2.2.2) 

The estimate of d(zi) is only affected by the ns/2 nearest neighbors to the left and ne/2 

to the right, and thus exhibits local properties of the data. 

As we move to estimate d(zi+l), point I(i, 8) leaves the likelihood and point r(i, 8) + 1 

enters it, and thus the likelihood does not change much. As a consequence, i(i + 1) is not 

much different from 6(i), and hence & (zi+l) is not much different from 4 (2;). This results 

in a smooth estimated curve 4 (.). A s 8 increases towards 1, 4 wiil get smoother and in the 

limit is the usual straight line. 

Each local likelihood is maximized using the above iterative procedure and can be time 

consuming. However, i(i) is an excellent starting value for the (i + 1) at local likelihood 

and convergence is usually achieved in 1 or 2 iterations. 

3.3 The non-linear model with more than one predictor 

-- 
The procedure here is related to the back&t& algorithm applied to additive models 

in Friedman and Stuetzle (1982), and adapted by Tibshirani (1982) for local likelihood 

estimation in the Cox model. 

Suppose we are given +I(.), . . . , g&,-l(.) and let 

where Y$ = (~il,~j2,. . . ,zjP). We need to estimate qbP(z&). We can write the local 

likelihood as 

I(a(i), i, 8) = Vj@(p)(Xj) + Vjao(4 + Vjz&al(i) - 4 
1 1 

+ 
c4(p)(Xj)+ao(i)+Q1(~~2jp 

> 

(2.3.1) 

where the data is sorted according to zip. The score function is now 

(2.3.2) 



where logit (ii) = +(p)(Zj) + Go(i) + ii (i)z+ The local information is defined similarly. 

Thus JP (.) can be found using the Newton-Raphson procedure m before. The backfitting 

algorithm is now given: 

Initialize: Set igld(.) wz OVj, O(l)(.) ES 0, k - 0 

Loop: k = k (mod p) + 1 until convergence. 

l) +(k)fxj) - Et1 6f’d(z~7) 

2) find $;“(.) as outlined above. 

3) replace atd(.) with piew (.) 

4) test fit for convergence using 

d4ibY) = -2 ~{viln~i+(l-lyi)ln(l--i)} 
i-l 

where logit ii = +(k)(xi) + 4;“” tzik) 

-- End Loop 

’ The quantity deu defined above is the analogue of the residual sum of squares in regression. 

It is the deviance (Nelder and Wedderburn, (1972)) an d is minus two times the maximized 

log-likelihood. As yet no proof of convergence has been found, although the procedure has 

converged in all the examples considered by the author. 

2.4 Degrees of Freedom and inference 

In classical linear logistic regression the maximized liklihood ratios give us a x2 test for 

nested hypotheses. Specifically, let Ho be the hypothesis that a p dimensional parameter 

vector a lies in a q dimensional subspace a*. We calculate dcu(6’) - &u(i) which is 

distributed as a x& variate if Ho is true. In particular, if Ho specifies a = 0, then 

dew(O) - &u(i) - xf if Ho is true (Cox, (1970)). 

This suggests an ad hoc procedure for estimating the complexity or number of param- 

eters in the fit obtained by smoothing against a single predictor variable x. Suppose that 

cll; = n1- Generate a random sample of size n from a Rernoulli(nr/n) distribution and 
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assign them to a vector yk. Find 4k(z) and h ence dev( fik, yk). Calculate the deviance 

for the model with only a constant term dev(nlk/nk 1, ye.), where nlk is the number of 

ones observed in replicate k and nl~/nkl is the maximum likelihood estimate for p in the 

constant model. Finally, Iyt the difference between the two be 

de&j& = de+lklnk 1, Yk) - d4ihy Yd (2.4.1) 

Repeat this a number of times and obtain the mean, variance and quantiles of the tr’ev(~~). 

Let the approximate number of parameters be the mean. The idea is that if the deviances 

really had a x2 distribution, the mean would be the appropriate quantity :.o use. 

The following simple example demonstrates the procedure. 2w values of z were gen- 

erated from a standard normal distribution. 200 values of y were generated repeatedly XI 

times from a bemoulli($). Each such y vector was smoothed against x using the above 

procedures with spans of .2, .3,. . . , . 6. The whole procedure was repeated for 10 different 

random x vectors and the results were pooled yielding 200 replications per span. The means 

#- and variances of dcv(Jk) for all the spans are given in table (2.4.1). 
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Table 2.4.1 

Means and Variances of dcv($k) for different spans 

.2 .3 

Span8 

.4 .5 .6 

1 ii 5.0 3.3 2.5 2.0 1.6 

Ave( deu) 5.0 3.3 2.0 1.3 1.1 

Var(deu) 12.9 8.4 6.1 3.7 3.4 

Ratio .43 .39 .33 .36 .33 

Table 2.4.2 

Quantiles of dco(Jk) and appropriate 

Chi-square and Gamma distributions 

Span==.3 
-- 

Dicltribution .50 .75 

@Iantile 

.90 .95 .99 

Xi 2.37 4.11 6.25 7.81 11.3 

d4& 2.09 4.84 7.08 8.75 14.7 

X3 3.36 5.39 7.78 9.49 13.3 

3.26 2.02 4.44 6.65 8.26 11.9 

Gamma( 1.27,0.39) 2.45 4.50 7.08 8.95 13.6 

It would seem that the relationship 

is roughly satisfied. For a span of 1 we are back to a linear function then it is satisfied 

exactly. 



The mean-variance ratios given in table (2.4.1) are not in general i as would be the 

case if they had a x2 distril?ntion. Furthermore, in table (2.4.2) we examine the quantiles 

for the case when the span is .3 and compare them to the appropriate x2 quantiles. The 

correspondence is fair but it turns out that we can improve the situation. 

Two approaches were considered. Firstly we matched the moments to a Gamma dis- 

tribution and compared the quantiles. The correspondence is closer than for the x2 and 

is also displayed in table (2.4.2). The other approach was to scale the deviances so that 

the mean/variance ratio was 4. This is then matched to a x2 distribution with appropriate 

degrees of freedom and displayed in table (2.4.3). 

It is not suggested that the Monte-Carlo type experiments are &formed each time with 

real data, since they are computationally expensive. They are given here to support the 

rule of thumb given above, and give a rough idea about how inference could be performed. 

Table 2.4.3 

Percentilw of scaled dev(Jk) 

and Chi-square distributim 

Span=.3 

Distribution .50 .75 

Quantile 

90 .95 39 

XL3 1.90 3.43 5.47 0.95 11.8 

scaled dev( a) 2.10 3.77 5.51 6.81 11.5 

3. EXAMPLES 

3.1 Simulated data 

The first example is simulated data. Two predictor variables were generated indepen- 

dently for each case from a uniform distribution on (-1,l). The values of y were generated 
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from the bernoulli distribution with mean p(x) where 

logit p(x) = xl + 2 sin(nz2). 

200 such observation vectors (yi,x;) were independently generated. The proc-&re con- 

verged in 3 iterations of the backfitting algorithm with a span of .5 to the solution given 

in figures (3.1.1) and (3.1.2). The continuous curve is the true function and the points 

represent the estimated function. 

3.2 A real example 

A study conducted between 1958 and 1970 at the University of-Chicago’s Billings Hospi- 

tal concerned the survival of patients who had undergone surgery for breast cancer (Habcr- 

man, 1976). There are 306 observations on four variables. 

SIi = 1 if patient i survived 5 years or longer 
= 0 otherwise 

%-- Zil = age of patient i at time of operation 

xi2 = year of operation i (minus 1900) 

-- Xi3 = number of positive axillary nodes detected in patient i 

The linear logistic model yielded deu = 328.25 with 302 degrees of freedom (dof). 

-- Landwehr et al (1982) analyzed this data set and in particular considered partial residual 

plots in order to identify the fundamental form in which terms should appear. Their final 

model was 

logit P(X) = PO + slbl + +h + ZfB3 + 2284 + 212285 + (log(1 + zg))/Ig (3.2.1) 

with a dev of 302.3 on 299 dof. We fitted the additive model 

lo& P(X) = 2 4Xzi) (3.2.2) 
i-1 

with a span of .5 at each stage. The results are displayed in figures (3.2.1),...,(3.2.3). The 

iterations converged to a deu of 307.37 with an estimated dof of 301.41 = 306 - 5.59 = 

306-(I+ 1.70+ 1.42+ 1.47). In model (3.2.1) an interaction term for zl and 22 is included. 

This caused the deu to drop only 1.6 in our model, so we left it out. 

We estimated the dof in a similar fashion to the technique used above. For each of 

the predictor variables, a small Monte-Carlo experiment was performed. For each of 100 



replications, a sample of size 306 was drawn independently from a Bernoulli distribution 

with parameter p = 225/306. This corresponds to the complete independence model since 

there were 225 observed positive responses in the sample. The generated responses were 

smoothed against the predictor variable in question, and the resultant value of dev(i) was 

recorded. This is once again a difference of deviances as in (2.4.1). The estimated dof for 

the predictor is the mean of the 100 replicates of de”(i). We also add in 1 for the constant 

term. 

The shape of the estimated curves immediately give us an idea of the functional form 

in which each predictor appears in the model. In particular the Clemenson’s hook of zl 

(Landwehr et. al. 1982 ) d is irectly modelled without resorting to a cubic term, as is the 

logarithmic form of 23. 

4. DISCUSSION 

-&-- The method described above gives a direct way of identifying nonlinear effects in the 

logistic regression model. Clearly these ideas are not restricted to logit models, but can 

be applied to any parametric model in which estimation is done by maximum likelihood. 

In the GLIM package, the range of models include loglinear models for contingency tables 

* (Poisson or multinomial data), linear regression models for normal errors, the above logistic 

regression models as well as components of variance models (Gamma variates). 

The regression situation has long been solved using the variety of scatterplot smoothers 

available. These could not be used directly for the logistic model since the logit transform 

is not defined for the O-l data. That is why maximum likelihood is an attractive framework 

for estimation, since the observations appear implicitly in the estimates. 

In the case of loglinear models, the technique is not really useful since the predictor 

variables are usually discrete and unordered, and the concept of local no longer has meaning. 

In those situations, the best nonlinear model is found anyway, since the model fits a constant 

for each category. 

Landwehr et. al. (1982) use partial residual plots to identify non-linearities. These 

will not be described in detail here. Partial residual plots are used in linear regression 

models and may, in some situations, identify the form of the nonlinear effect of a particular 

predictor variable. In order to generalize the ideas to logistic regression, one exploits the 

10 



relationship between the Newton-Raphson updating equations and generalized least squares 

(details can be found in the above reference, and in Nelder and Wedderburn, (1972)). The 

local likelihood method should always identify the nonlinear form. The partial residual 

plots are still useful in their own right, since they identify outliers. 

Henry, (1983) has considered methods for directly smoothing the O-l response variables. 

A weighted form of conditional expectation is used (nearest neighbor averaging) and the 

posterior probabilities are modelled directly. One disadvantage is that the logit form is no 

longer there to guarantee that the estimates are in [0, 11. This provides problems especially 

when more than one term is in the model. Since we model the logit of p, the terms in the 

model, be they linear or non-linear, can take on any finite values. *A major advantage is 

that the smoothing models are computationally much cheaper since the estimate at point 

i can be updated to yield the estimate at point (i + 1). This is not possible using the local 

likelihood technique. 

Logistic regression is a widely used technique, and it seems appropriate to have at hand 

a’- a method for identifying non-linearities within that framework. Often simple parametric 

forms are suggested, and one can then return to the standard models. With the rapid 

improvements in computing power, techniques which would previously have been impossible 

are now becoming computationally viable. 
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Figure 3.1.1 

The true function and fitted function for the simulated 

data. Variable number 1 in the true model logit p(x) = zl + 

2sin(lrz2). The span of the local likelihood smoother is .5. 
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Figure 3.1.2 

The true function and fitted function for the simulated 

data. Variable number 2 in the true model logit p(x) = zl + 

2sin(nq). The span of the local likelihood smoother is .5. 
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Figure 3.2.1 

The fitted function & (~1) for the breast cancer data. 

The span of the local likelihood smoother is .5. The esti- 

mated do/ is 1.70 and the dcv is 307.37. 
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Figure 3.2.2 

The fitted function 42(q) for the breast cancer data. 

The span of the local likelihood smoother is .5. The esti- 

mated do/ is 1.42 and the dcu is 307.37. 
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