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ABSTRACT a - 

- This paper develops a framework which allows us to treat the topology and 

dimension of the space-time continuum as dynamically generated. We present 

examples of quantum systems which are defined without a notion of space, but 

which nevertheless undergo a transition to a space-time phase. The dimension 

of the space is an integer valued order parameter which characterizes distinct 

phases of a single system. We also show the interactions between the low energy 

particles of the system are gauge-like. Finally, we discuss the computability of 

Newton’s constant in this class of theories. 
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1. INTRODUCTION 

Self-consistency problems in many areas of physics have forced theorists to 

try to achieve a better understanding of phenomena at, or near, the Planck 

scale. Such considerations, whether they have to do with the structure of the 

early universe and the flatness problemf or with applications of supergravity to 

solving the hierarchy problemf necessitate that we learn to incorporate Einstein 

gravity into the structure of quantum field theory. Unfortunately, to date, no 

satisfactory way of doing this has been proposed. 

Many talented physicists have failed to solve the problem of renormalizing a 

conventional field theory of gravity plus matter, and the concommitant problem 
.-- 

of “fine tuning” the cosmological constant. For this reason we feel the time is ripe 

for a reappraisal of basic tenets with an eye towards eliminating unnecessary as- 

sumptions. This paper presents the result of one such reappraisal. We find there 

is a way of formulating quantum field theory which violates our most cherished 

beliefs and yet appears capable of describing physics as we know it. The notion 

abandoned as superfluous to a quantum field theory is that of the four dimen- 

sional space-time continuum. There seem to be quantum systems which start 

out with a well-defined notion of time but no notion of space, and dynamically 

undergo a transition to a space-time phase - a phase in which the physics of the 

low energy degrees of freedom of the system are best described by an effective 

Lagrangian written in terms of conventional relativistic fields. In this sense, the 

notion of the four dimensional space-time continuum as the arena within which 

the game of field theory is to be played is replaced by the notion of the space-time 

continuum as an illusion of low-energy dynamics. 

On the face of it the idea that one can abandon relativity and the space- 
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time continuum as superfluous baggage seems ridiculous. For this reason we 

begin with a discussion of some of the ideas which led us to this approach. We 

go on to describe the class of Hamiltonians suggested by these considerations, 

and present the methods we will use to analyze such systems. In particular, we 

anticipate results of the sections to follow and discuss the notions of dimension 

and scattering for a theory formulated without reference to an underlying space- 

time. The next section introduces simple examples and argues that for these 

examples low energy physics is correctly described by effective lfl-dimensional 

relativistic field theories. This is followed by a section devoted to the problem of 

obtaining higher dimensional space-times. We present toy Hamiltonians which 

-I- lead to effective 2 + 1 and 3 + 1 relativistic space-times, thus demonstrating that 

this problem is solvable. We also discuss the relationship between the space- 

time dmensions, internal “flavor” symmetries, and of possible phases of a given 

Hamiltonian. The last section summarizes results and presents a list of caveats 

and speculations about those aspects of the problem not yet studied in detail. 

2. FUNDAMENTALS 

2.1 MACH'S PRINCIPLE AND THE COSMOLOGICAL CONSTANT. 

A suggestive way of looking at the problem of “fine tuning the cosmological 

constant” is that it might be related to the fact that the Einstein theory does 

not successfully embody Mach’s principle: which asserts that the local inertial 

properties of matter should be determined by the other (in particular distant) 

matter in the universe. This assertion implies that in a really empty universe 

a “test particle” should not know how to move; as a corollary, an empty space 
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should have no geometry at all. On the other hand, the Einstein equations allow 

for a Aat space geometry 

in a universe devoid of matter and radiation. 

This failure of Einstein’s theory to incorporate Mach’s principle is likely to 

be related to the problem of “fine tuning” the cosmological constant, which arises 

when one attempts to couple quantum matter fields to general relativity. Quan- 

-I- turn fields generally have a non-zero vacuum energy, whose contribution to the 

energy-momentum tensor is equivalent to an enormous cosmological constant. 

Unless this contribution is precisely cancelled by an equally enormous bare cos- 

mological constant, i.e. “fine tuned away”, Einstein’s space-time curls up into 

a tightly curved manifold. In contrast to this situation, a theory which obeys 

Mach’s principle and yields no geometry at all for a truly empty space, i.e. de- 

void of even quantum fluctuations, might yield a flat geometry tll when quantum 

effects are taken into account. In this case the flatness problem would have a 

natural solution. However, now we have to solve another problem: How to arrive 

at such a desirable state of affairs? 

As a starting point we focused upon the fact that our ideas of space-time are 

derived by carrying out measurements with clocks and rulers, the latter being 

replaced by radar sets in more modern expositions of the subject! In other 

words, our notions of space and time are the result of carrying out a large class 

tfl We mean, a flat geometry for the background space-time metric of the low-energy physics. 
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of scattering experiments. The necessary input to this constructive approach is 

the existence of some objects that can be scattered and a Hamiltonian which 

describes the scattering process. Space-time, if it is an appropriate description of 

low energy physics, then emerges as a construct. This sort of argument naturally 

leads us to inquire as to what role the coordinates x,, play in conventional field 

theories. 

2.2 WHAT ARE THE x,'s? 

Space-time is usually treated as an arena for dynamical theories, even when 

one takes into account the Einstein approach to gravity as geometry. To better 

2- appreciate this fact, let us reexamine the usual formulation of quantum field 

theory. The Hamiltonian for a self-interacting scalar field in m-dimensions is 

written as 

H= I12(x) + pq2 (x) + v (Q(z))] * (2-l) 

What is the significance of the variables 5,’ which appear in this formula? 

At the level of the canonical commutation relations the xP’s are nothing but labels 

for independent operators Q(x) and II(x) which define the theory. A priori there 

is no reason for xP’s to have anything to do with space and time. However, the 

way the gradient terms appear in (2.1) ensures that space-time defined by this 

Hamiltonian leads us back to the same xP’s (up to a Lorentz transformation). 

This rather non-trivial result implies that a preconceived notion of the topological 

and diflerentiable structure is associated with the underlying variables and that 

certain aspects of xP’s must be taken into account before we define the quantum 

problem. In fact, great care must be taken in renormalizing the theory so as not 

to do great violence to this relationship. 
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At first glance Einstein’s theory takes care of these troubles. In this case we 

consider an action of the form 

L = 
/ 

dmx e [ R(X) + matter terms ] , (24 

which is invariant with respect to arbitrary coordinate transformations of the 

variables xP. This invariance seems to reduce the significance of the xP’s to their 

role as labels for independent quantum degrees of freedom. From a heuristic 

point of view this approach has another beautiful property to recommend it: if 

the background metric of space-time arises as a dynamical effect, then there is 
2- 

a natural reason why the space-time reconstructed from scattering experiments 

must come out intimately related to the variables xP. The equations of general 

relativity, and therefore the Heisenberg equations of the quantum theory (assum- 

ing that the theory can be quantized) form a set of hyperbolic partial differential 

equations. It is known5 that for this set of differential equations the causal 

hypersurfaces of the combined system of fields are determined by the causal hy- 

persurfaces of the universally coupled spin-two field, i.e. gPv . ( By the causal 

surfaces of the fields, we mean the submanifolds of the space-time across which 

the fields may be discontinuous, i.e. the light cones of the theory. ) It follows 

that if gPV develops a ground state expectation value, iPV, then solving the quan- 

tum problem for the matter fields will reconstruct a theory whose light cones are 

those specified by iPV. If in particular ijPV = qllV, the space-time constructed 

by scattering the matter fields will be the desired Minkowski space. This seems 

to be a highly attractive scenario, modulo difficulties in defining the quantum 

theory; unfortunately this heuristic picture isn’t completely correct. 

6 ---.a, 



Although going over to the Einstein theory of gravity removes the geometri- 

cal significance of the coordinates xcL, the fact that they specify the differential 

topology of the system remains. In other words, although the notion of dis- 

tance has become a dynamical concept, we still need to introduce the notions 

of ‘neighborhood’ and ‘deriuatioe’ as primitive, i.e. undefined, terms. When we 

assume the xP’s to be coordinate patches on a certain manifold, we establish 

a certain topological and differentiable structure for the -space-time. Since the 

primitive notion of differentiability must be defined before we specify an action 

or a Hamiltonian, the assumption that we are dealing with a theory defined on 

a differentiable manifold carries non-trivial content. 
.- - 

2.3 BASICS. 

Motivated by these considerations, we explore the question of whether formu- 

lating a theory so that the analogs of the xP’s are reduced to labels for quantum 

degrees of freedom6 will allow us to progress towards the goal of incorporating 

Mach’s principle into field theory. We begin by introducing an indexing set 

J = (l:l=l,...,N) . 

We then introduce a set of quantum “harmonic oscillator”, or “bose field”, vari- 

ables II(Z) and Q(Z) , satisfying canonical commutation relations 

and multicomponent “Fermion field” variables \E, (1) and X4!/: (1) , satisfying canon- 
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ical anti-commutation relations 

Intuitively, these quantum degrees of freedom are to be thought of as playing the 

role of site variables in some sort of lattice field theory. 

In addition to these site fields we also introduce link j&Z&, which for the sake 

of definiteness we choose to be harmonic oscillator variables Pap Um) and XaP (lm) ’ The 
notation ‘(Zm)’ is introduced to stand for an arbitrary pair of integers I, m E J, 

ordered such that 1 < m. These link fields are assumed to satisfy the canonical 

.-- commutation relations 

The role of the link fields is to provide dynamical variables which allow us to 

write the analogue of a kinetic term for a Hamiltonian without requiring that the 

notion of differentiation or even neighborhood to be defined. 

Starting with these objects we consider a Hamiltonian of the form 

H = c [$ H”(Z) + Xfm@(I) a(m) + V(Q(Z)) 

- iXl,a { Q+(Z) K@(m) - ‘E+(m) Q(Z) } 

+ f P”r,, + v (- * - X(1,) * * *) ] . 

Note, to simplify the discussion we will temporarily treat the fermion fields as 

one component objects and drop the Dirac indices CY and /3. We also introduce a 
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matrix notation for the variables X(lm): 

Xl, = - Xml = 1 X(1,) for 1 < m , 

Xtrnl) for m < 1 ; 
(2.4) 

and define X”, to be 

Xfm = c &k Xkm - 
kcJ 

(2.5) 

As it stands, (2.3) is the Hamiltonian of a complicated quantum mechanical 

system all of whose couplings, for want of a better choice, are assumed to be of 

order unity. The idea we wish to pursue is that, for some dynamical reason, a 

subset of the variables X(1,) acquire non-vanishing ground state (i.e. vacuum) 
.-- 

expectation values X(lrn) . When this occurs, the terms quadratic in the fields 

6(l) and K@(Z) yield a solvable zeroth order Hamiltonian for the “matter fields” in 

_ the system and, to the extent that fluctuations in the fields X(1,) can be ignored, 

map the matter problem into some sort of lattice theory. The terms involving 

variables X(lm) which have non-vanishing expectation values are identifiable as 

the derivative term in this effective lattice Hamiltonian. Two main questions 

are: “What drives the dynamical generation of expectation values of the fields 

X(lm) ?“, and “What sort of lattice forms?“. While the meaning of the first 

question is self-evident, the second merits a brief discussion. 

If the ground-state of a Hamiltonian of the form defined in (2.3) corresponds 

to the vanishing vacuum expectation value of the fields Xtlrn) , no zeroth order 

geometry (or effective lattice theory) - reasonable or unreasonable - forms. In 

other words there is no sense in which the matter fields scatter in a background 

determined by the vacuum expectation value of the link fields; everybody inter- 

acts on an equal footing with everyone else. On the other hand, if a pattern 
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of vacuum expectation values does develop, then there is a zeroth order matter 

field theory whose arena of definition is specified by those link variables with 

non-vanishing expectation values. Our problem is to determine if there is any 

reasonably simple way of choosing terms for (2.3) so that the resulting theory 

becomes equivalent to a Hamiltonian lattice theory with dynamics closely ap- 

proximating that of a relativistic continuum theory. The aim of this paper is 

to show that for a large class of Hamiltonians of the type specified in (2.3), the 

second possibility is realized. In addition, we will show that simply by increasing 

the number of degrees of freedom the resulting lattice theory can be made to 

approximate a relativistic continuum theory arbitrarily well. 
.a- 

2.4 BISONS VERSUS FERMIONS AS FUNDAMENTAL BUILDING BLOCKS 

-- 

Before discussing specific calculations, let us see if we can intuitively un- 

derstand those aspects of the theory which control the dynamical generation of 

ground-state expectation values for link-variables. Obviously the potential terms, 

v(*‘*X(lm) *.‘) 9 can determine whether the theory develops non-zero expecta- 

tion values of the link variables; however the vacuum energy of the matter fields 

can play a similar role. The possibility that matter fields cause spontaneous 

generation of non-vanishing link-field expectation values by themselves, i.e. irre- 

spective of the details of the link Hamiltonian, is very appealing. In a moment 

we will argue this possibility is realized if the dominant matter fields in the sys- 

tem are fermionic. Unfortunately we will find that fermionic fields alone cannot 

stabilize the resulting space-time structure against quantum fluctuations of the 

link variables. This will lead us to consider generalized plaquette terms in the 

link-field potential (we will define them later), which can produce stable space- 
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times. These generalized plaquette terms will play a crucial role when we address 

the question of obtaining 3+1-dimensional space-times, and when we discuss the 

way in which these theories generate effective low energy gauge theories. 

Despite the fact that the matter fields cannot, by themselves, play the decisive 

role in determining the structure of space-time, it is pedagogically advantageous 

for us to begin our discussion of the general theory with an analysis of the role 

they play. This will allow us to introduce, in the simplest context, most of the 

important but unfamiliar concepts we will need in the discussions to follow. Let 

us begin by focusing on the effective quadratic problem defined for the fields 9(Z) 

in (2.3). Since we are dealing with Bose fields, their contribution to the vacuum 

-I- energy is 

& boson = fc+: 7 P-6) 

- - - where by 6~ we mean the eigenvalues of the matrix x:m . ( This is just the 

familiar sum over the zero-point energies of a set of independent harmonic oscil- 

lators. ) The contribution coming from (2.6) is a positive function of the vacuum 

expectation values xflrnj , and is minimized when all EA’S are equal to zero. This 

occurs if and only if the ground-state expectation values of the link-variables 

vanish. Hence, the Bose site fields play no interesting role in our problem and 

we will ignore them in all discussions to follow. 

The situation is quite different for fermions because their contribution to the 

vacuum energy is negative. Computing the fermionic contribution to the vacuum 

energy reduces to diagonalizing the quadratic form 

I .  -  iXl, - [Q!+(Z) Q(m) - ‘E+(m) Q(Z)] . (2.7) 

By definition, the matrix of expectation values Xlm is antisymmetric; hence, it 
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has an equal number of positive and negative eigenvalues (it may have some zero 

eigenvalues as well). Since the ground state of the theory is obtained by filling 

the negative energy sea, it follows that the fermionic contribution to the vacuum 

energy is the sum over the negative eigenvalues of Xlrn , or 

& fermion = -&q. (2.8) 

From (2.8) we see that even if the potential terms in (2.3) do not lead to dynam- 

ical generation of non-vanishing vacuum values for link-variables, the fermions 

perforce generate such an effect. What we have to study is whether the fermionic 

-I- contribution alone is sufficient to stabilize the effect against quantum fluctuations 

of the link variables. 

2.5- LINK MEAN FIELD THEORY. 

Assuming that our generic Hamiltonian only includes link and fermion fields, 

we turn our attention to the tools we will use to analyze the theory. Determin- 

ing the properties of the ground-state of a Hamiltonian like (2.3), even without 

the Bose-fields, is an extraordinarily difficult non-perturbative problem. Our ap- 

proach is to adopt a variational technique which has proven to be quite effective 

when applied to lattice systems, namely, Hamiltonian mean-field theory.7 While 

this method, a variant of the familiar Rayleigh-Ritz variational technique, is not 

particularly successful when applied to the calculation of critical exponents or 

the order of a phase transition, it is usually quite successful in determining what 

phases exist. Since this is the only way in which we will apply this method, we 

feel comfortable using it in its simplest incarnation. 
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The approach, as we will implement it, is to choose as a trial wave-function 

for the ground state of (2.3) ( minus the Bose fields) a product state of the form 

I’,) = n exP (- a ( x(lm) - C(lm))2) ’ [*fermion) - P-9) 
Vm) 

The variational parameters appearing in the wave-function are: the variables 

C(lm) , which determine the expectation values of the operators X(lm) ; the vari- 

able 7, which determines the width of the gaussians, and therefore the expectation 

value of operators such as P$,, and ( Xflm, - C6m, ) ; and the unspecified state 

I *fermion ) . To determine whether or not the link variables have non-vanishing 

expectation values in the ground-state of the system we simply compute the ratio 
.-- - 

& effec the ( C(lm) 9 7 9 I *fermion) ) = 
(Q’varl H 1%x) 

(*varlQvar) ’ 
(2.10) 

_ and minimize it as a function of the parameters C(lrn) , 7 and I\kfermion) . 

2.6 SCATTERING PROBLEM. 

What do we mean by discovering a scattering problem hidden within the the- 

ory specified by Hamiltonians of the form (2.3) ? Our approach is quite straight- 

forward and not necessarily the most general one; nevertheless, it will suffice for 

our purposes. We will show that for the cases of interest there exists a function 

F(Z,S) of the E UC 1 l’d ian coordinates 5 and points 1 E J, which allows us to define 

the effective fields @I(5) as 

Q(Z) = c F( Z,Z)xlqZ) , (2.11) 
IEJ 

such that they have canonical equal time anticommutation relations in the limit 

of infinite number of quantum degrees of freedom. Furthermore, we will show 
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that the quadratic part of the effective fermionic Hamiltonian can be written in 

terms of Q’(Z) as 

H fermion = dxXD+(Z) r;-a’,Kl!(Z) . 
I 

(2.12) 

Given these “continuum” fermionic fields, we define the time dependent operators 

Q( 3, t ) = e-itHfermion \zl(,jZJ eitHfermion (2.13) 

and use these operators 

fact that the Heisenberg 

to define wave packets and scattering states, etc. The 

equations of motion for these fields comes out to be the 

usual relativistic equations guaranties that the space-time reconstructed using 

.-- them will be of the desired type and that its dimension will be (d + l), where 
.‘J 

Ed is the dimension of the variables 5, provided the residual interactions among 

the effective low energy degrees of freedom look approximately local in the same 

- x-coordinates. It remains to be shown that this is the case. 

Despite the fact that we have no definitive answers to the question of the 

residual interactions, it is worth noting that there are in principle two ways 

in which they can be approximately local. In any lattice approximation to a 

continuum theory there appear non-local, non-linear interactions of the form 

IG- /11 dxi @t(xI) *(x2) . . . \E(x%) - A(x1,x2,. . . ,x,) , (2.14) 
i 

where the support of the function A (xl, x2,. . . , xn) extends over a set 

!& = {(~1,x2,-~, x,): (xi-xj( 16 for i,j=l,...,n) 

One possibility for interactions (2.14) to look approximately local is to include 

only terms with small values of 6 (as measured in the physical units), so that 
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all violations of locality occur at separations too small to have been resolved to 

date. The second possibility allows for large values of 6, but only for terms which 

have very small magnitude IC. These terms are potentially more dangerous, since 

if the support of A(xr, . . . , xn) extends over the whole set, then the magnitude 

of K must be very small. 

3. TWO-DIMENSIONAL SPACETIMES 

3.1 THE SIMPLEST SPACE. 

To get a feeling for the variational procedure and the way in which we will 

,i 
.-- discuss the results of such a calculation, let us begin with the simple Hamiltonian. 

H = C [ : P{,) + c Xbrn) - ix(lm) - { Q+(l) Q(m) - Q+(m) *l(Z) }] . 

_ W 
(3.1) 

The virtue of this Hamiltonian is that we can completely analyze our problem 

using straightforward analytic techniques; the drawback is that the results are 

uninteresting. Using the general trial wavefunction specified in (2.9), we obtain 

-ic(lm) ‘( \k Xl?+(Z) Q(m) - KP+(m) Q(Z) I!Pf) ] . fl 

(3.2) 

The variation over 7 is easily carried out, yielding rrnin = p, which leaves us 

with the problem of minimizing over the class of all purely fermionic functions, 

J 
IKPf). Since the fermionic term in (3.2) is purely quadratic in the fields, the best 

Iqf) is obtained in the usual way, namely by diagonalizing the matrix Ctlrn) , 
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expanding the fields Q! (1) in terms of the eigenfunctions UX(Z) and filling the 

negative energy sea. To be specific, if the normalized functions UX(Z) satisfy 

where icx are the eigenvalues of the matrix Cl,, we introduce orthogonal linear 

combinations of the operators Xl?(Z) 

xP(X) = c u;,(Z) Q(Z) . 

In terms of these operators the fermionic Hamiltonian can be written as 

where the variables *t(A) and @(A’) satisfy th e same anti-commutation relations 

as the original fields. If we define IO) to be the state annihilated by all of the 

operators Xl!(X), then the ground state of the Hamiltonian is obtained from IO) by 

applying to it all of the operators *t(A) f or which the eigenvalue EA is negative. 

The ground state energy is 

& vacuum = -:c,& ’ (3.3) 

..- 
Returning to the discussion of (3.2), we observe that the matrix Cl, is an- 

tisymmetric and can, by means of a real similarity transformation, be brought 

- 16 
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into the form 

It then follows that the variational energy can be written as 

(*,,I H Iflj’,) = “‘“s- ‘) - (7 + %> + $ c c”x ---f c fi - c3s5) 
x x 

From (3.5) it is clear that not only does the variable 7 come out independent of 

N, but that the minimum is achieved when all of the eigenvalues have the com- 

*- mon N-independent absolute value 1~1~1 = fip2. This analysis shows that, as 

advertised, the fermionic contribution to the ground state energy forces at least 

some link variables to develop non-zero vacuum expectation values. The ques- 

-- 

tion “to what space-time does the resulting theory correspond?” can be partially 

answered by saying that to the degree this theory has a space-time, its dimension 

is 1 + co. Let us explain this rather cryptic remark. 

Following the discussion in the preceding section, we extract the space-time 

dimension from knowledge of the energy spectrum by inverting the usual Fourier 

transform procedure. This works because it is in the momentum basis that the 

fermionic Hamiltonian (2.12) is diagonal. For a massless theory c(k) = fl, 

so a d-dimensional Hamiltonian has a density of eigenstates which behaves like 

P(E) 0s: ft ‘-’ - Hence, if we order the eigenvalues of the fermionic Hamiltonian Cl, 

in ascending value and plot them versus the integers j = -n, . . . , nf2 we can read 

off the dimension from the detailed shape of the plot: in a d-dimensional case 

112 We have chosen an odd N = 2n + 1. 
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c(j) is proportional to fi. It follows that as d + 00 the energy c(j) tends to 

the same value for all positive j ; hence this simple system is infinite-dimensional. 

There are two major lessons to be extracted from this exercise: first, fermions 

behuue us expected and cause the vacuum expectation value of the link variables 

to become non-zero; and second, jermions by themselves tend to push the system 

to high dimensions. The real problem is to understand how to get a reasonable 

system of low space-time dimension. 

3.2 MAKING A ONE-DIMENSIONAL SPACE. 

The results to be presented in the rest of this paper were obtained by means of 

a mixture of numerical and analytic techniques. Although the results of analytic 

methods alone would suffice at this stage of the discussion, we feel that comparing 

them with the results of computer calculations may lead to some useful insights. 

Moreover, some of the speculations which are presented in the last section of this 

paper are based solely on the computer results obtained for small N. For this 

reason we have chosen to present the material to follow in semi-historical fashion. 

Inspection of the simple Hamiltonian (3.1) reveals why the eigenvalues tend to 

come out equal in absolute magnitude: the vacuum energy is a sum of invariants 

of the matrix Cl,. The term multiplying the variable p2 is the trace of the 

matrix Cfrn , and the fermionic energy is proportional to the logarithm of the 

determinant of CFrn . This leads to the conjecture that the situation will change 

if one destroys this property of the Hamiltonian, and a more connected pattern 

of vacuum expectation values will develop. In order to test this hypothesis we 
..- 
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study a slightly more complicated Hamiltonian, namely 

H = C [i’l$m) + VxT[m) - ix(lm) ‘{ Q+(Z) Q(m) - Q+(m)*(Z) } ] . 

(14 
P-6) 

We are interested in this problem for r > 1, since the case r = 1 reduces to 

(3.6). Our early attempts to understand this problem began by assuming that 

the parameter 7 in our trial wavefunction was large and constant. We then 

studied the vacuum energy of the system as as function of the parameters C(lm) 

alone. In this case finding the minimum of the function 

P-7) 

is no longer a procedure which can be carried out analytically: unlike the pre- 

_ ceding case, the term 

cannot be expressed as a function of the eigenvalues alone. For this reason we 

turned to a computer analysis of the problem for values of 11 < N 5 121. 

This analysis led to the surprising result that the configurations which min- 

imized (3.7) h ave non-vanishing vacuum expectation values of all link variables 

Xtlrn) ; moreover, absolute magnitudes of the expectation values tend to be equal: 

lvacl x(lm) Ivac> = &x. On the one hand, this means that our original conjec- 

ture was correct and breaking the invariance of the Hamiltonian forced the for- 

mation of more interesting highly connected configurations; on the other hand, 

these configurations seem to have nothing in common with any easily recogniz- 

able lattice theory. On the contrary, these systems appear to describe a set 
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of fermions living upon what a mathematician would call an “N-simplex” i.e. 

an object for which every point 1, is a nearest neighbor of every other point 1’. 

Naively an object of this sort appears to have dimension (N - 1). 

At this point, it is important to recall that the dimension of the corresponding 

space-time picture can be obtained only from an investigation of the spectrum of 

eigenvalues of the matrix (vacl X(1,) I vat). In order to better understand what is 

happening we must study the spectrum of eigenvalues for fermionic Hamiltonians 

of the form 

H* elmplex = t -Ix c(lm) ’ { *+Cz) *trn) - *+Crn) *Cz) } 9 (3.8) 
(14 

*- where the variables C(lm) are randomly assigned the values f 1. The result of 

carrying out this eigenvalue analysis on a large sample of matrices is the re- 

markable fact that over most of its range, the spectrum of eigenvalues is linear 

when plotted versus the integers i = -n, . . . , n. This means that, contrary to 

our intuition, theories defined by Hamiltonians of the type specified in (3.8) are 

equivalent to 1+1-dimensional field theories. 

Understanding the Pattern of Eigenvalues. It is obviously impossible to diago- 

nalize all antisymmetric matrices of type (3.8) f or arbitrary large N, so we cannot 

be absolutely sure that we are dealing with 1+1-dimensional object solely on the 

basis of computer calculations for N 5 121. However, Dyson’s results’ con- 

cerning the behavior of eigenvalues of random matrices enables us to understand 

our computer results and to explore the pattern of eigenvalues for almost all 

matrices C(lm) . 

Our problem is to find the distribution of eigenvalues for a real antisymmetric 

matrix, whose [independent] matrix elements are essentially random. Let us 

20 
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follow F. Dyson in our definitions: a random antisymmetric matrix is a random 

element of an ensemble AG of all real antisymmetric (2n + 1) x (2n + 1) matrices 

with a gaussian probability distribution 

PC 41,2) * * * A(2n,2n+l) 1 = c exp [ - c ( A$,m)b2) ] dJ4(1,2) - - - dA(,th,,tL,l) 3 

(km) 

where a and C are constants. The major result which we will need for our 

discussion is the following 

Theorem I: A random element of AG has eigenvalues 0, fiEl , . . . , GE, f” 

whose probability distribution is given by 

P(El,..., 1 
-g(E:/4z2) .dEl...dE, . 

i=l 1 
Given the probability distribution P , we can compute the function of inter- 

est, namely the eigenvalue density p(E) which tells us the expected number of 

eigenvalues in the interval [ E, E + dE ] . Th’ IS eigenvalue density (i.e. density of 

states) can be found by Dyson’s method and in our case of an imaginary anti- 

symmetric (2n + 1) X (272 + 1) matrix, all of whose entries are 31, it comes out 

to be 

and vanishes for 1 E 1 2 fi . ( See the appendix for a simple derivation of p(E) 

due to Brezin, Itzykson and Zuber. ) The spacing between eigenvalues is given 

fl3 This is the case for any real antisymmetric (2n + 1) x (2n+ 1) matrix. 
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47rn A(E) = 1 = -. 1 

P(E) 2n+l &GFTF ’ 

which in the large n limit becomes 

A(E) = &. (1 - ?J-1’2 . 

We see that near E = 0 eigenvalues are spaced fairly uniformly, but near the 

endpoints of the spectrum the spacing becomes thinner. These results are in 

complete agreement with the numerical results. 

.s- Why Is This a One-Dimensional Space ? The Dyson calculation tells us that 

our computer result is not an artifact of small n, but a behavior one expects to 

hold for n + 00. For energies small on the scale of fi eigenvalues are uniformly 

- spaced; therefore the index j = -n, . . . , n , which labels them, can be interpreted 

as a momentum variable for an effective one dimensional theory. In order to make 

this interpretation more physical, let us multiply the Hamiltonian (3.8) with a 

scale factor A = a& ’ having the dimension of a mass. Then we can write the 

spectrum of eigenvalues which are relatively close to zero as 

, (3-g) 

where 

k=?! * L’f , j = -n,...,n and L=&Q . (3.10) 

Momenta defined by (3.10) are characteristic for l+l-dimensional lattice theories 

defined in a spatial volume L. Equation (3.10) allows for maximal momentum 
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k moz = 7;- 2*n = ffi-A, h’ h w lc corresponds to the lattice spacing a = r/k,,, = 

ucd-. As we take the limit n + 00, the ratio of L to a grows like n, and 

the equivalent lattice theory passes over to a continuum theory defined in infinite 

volume. This limit is only unusual in that the lattice theory simultaneously gets 

both finer and larger, as measured in units of the scale parameter A. 

The explicit unitary mapping of the N-simplex theory into an equivalent 

lattice theory whose kinetic term is given by a generalized SLAC-derivative can 

now be explicitly given: we define transformed fields Q(z) as 

Q(x) = Ali2 c eizk(j) U;(Z) X4(1) , (3.11) 
1EJ 

-n<j<n 
2- 

where the-function uj(l) is the eigenfunction of the matrix C(lrn) having eigen- 

value Ej . The variable x has the dimensions of length; for x taking discrete 

.- values zP = p-a, (3.11) is a unitary equivalence. Actually, it is possible to think 

of the variable z as a continuous variable, and think of the fields g(s) as an over- 

complete set of fields satisfying anticommutation relations which are non-local 

over a distance scale on the order of a - w/Jn.’ This amounts to defining 

a set of fields which interpolate between the variables U(Q) and which, in the 

sense of weak limits, pass over to the continuum fields in the limit &i + 00. 

The momentum-space form of the fermionic Hamiltonian is given by 

H = 1 kj q+(j) Q(j) , 
i 

which in z-space becomes 

L/2 

H= 
/ 

dx @+(x) 2, Q(x) . 

-L/2 

(3.12) 
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Thus we have established that that the dynamical system (3.6) generates a theory 

whose low energy degrees of freedom organize themselves into an apparent l+l- 

dimensional relativistic field theory. We see that this approximation becomes 

arbitrarily good as the number of degrees of freedom tends towards infinity. 

Understanding The Minimum. Having obtained an understanding of fermions 

on an iv-simplex, we are now in a position to understand why this highly con- 

nected pattern of expectation values is favored for the case r > 1. Let us compare 

values of the effective potential (3.7) bt o ained with different patterns of C(lrn) . 

In the “infinite-dimensional” case of (3.4), (3.7) becomes 

(3.13) 

- Minimizing (3.13) with respect to variables ci, we find that all Jcil are equal and 

the vacuum energy &, is negative and proportional to n. On the other hand, 

in the “one-dimensional” caSe of C(l,) = kc, (3.7) reduces to 

&r = n(2n+l) rj.C2r - $J%(2n+l).C 
(3.14) 

w 2n2 r] . c2’ _ & n312 . c , 

The factor of n3i2 appearing in (3.14) comes from the fact that the density of 

states factor is proportional to fi and that the fermionic ground-state energy 

is, in the limit of large n, well approximated by 
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Minimizing &r with respect to c yields 

Emin m n-1/(4r-2) and & a -n(3/2-l/(4r-2)) . (3.15) 

From this we see that for r > 1 the energy of the highly connected configuration 

grows like n to a power between unity and 3/2; whereas for the simpler con- 

figuration it only behave like n. This explains why the numerical calculations 

select the highly connected configurations over the less connected ones. It is also 

not important that all C(i,) do not vanish. Numerical computations show that 

if we allow C(l,) to take the values &C and 0 with varying probabilities, the 

one-dimensional nature of the spectrum remains intact when as many as forty *a- 
percent of-the variables C(lrn) vanish. 

What About Fluctuations in the Link Variables ? Up to this point we have been 

- - interested in establishing the relationship between numerical studies and the anal- 

ysis based upon Dyson’s theorems for random matrices. Having seen that these 

techniques reproduce all of the essential features of the computer results obtained 

for small values of n, we now return to the question of how quantum fluctuations 

in the link-field variables affect our conclusions. This means restoring all of the 

r-dependent terms to our expression for the expectation value of the Hamilto- 

nian. For the case r = 2, i.e. the case of a Hamiltonian having a quartic potential 

in the fields X(l,), this expectation value has the form 

& = n(2n+ 1). 671 6t-j c2 
;+-+- 

4r2 2-t 
+ qC- - aCn3/2 , 1 (3.16) 

where cy is an undetermined constant of proportionality of the order of unity. 

Inspection of (3.16) reveals that in the limit of large n, the variable 7 tends to 
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a constant value and ?? tends to zero. This means two things: first, that this 

case reduces to an effective “infinite dimensional” theory; and second, that the 

fluctuations in the field dominate the vacuum expectation values, since 7 tends 

to an n-independent constant but c vanishes in the limit of large n. For this 

reason we will refer to this case as being fluctuation dominated. 

We can rescue all of our previous results if we extend our basic Hamiltonian 

to include what we will call generalized plaquette terms, ;.e, if we add to (3.6) a 

term of the form 

, 

vAangle = - C xf?kl) xflm) xtkm) 3 
k<l<m 

(3.17) 

which is independent of the signs of the individual factors Xl, ; or a term of the 

form 

(3.18) 

which, as we will see in the next section, forces the signs (or phases) of the Xlm’s 

to satisfy exactly the constraints which are required for the effective theory to 

be equivalent to a lattice &-gauge theory. Terms of the form (3.17) or (3.18) 

tend to favor the formation of triangles of non-vanishing expectation values. The 

conditions i < j < k tell us that there are three different link-variables appearing 

in each such term. The important feature of this class of terms, which avoids the 

difficulty of the fluctuation dominated case is that there are $z” such terms. If, 

for the sake of argument we choose to add (3.18) to (3.6), then (3.16) becomes 

& = n(2n+ 1). 6~ 6q c2 
;+-+- 

4r2 27 
+& 1 

n(n-l)(n-2) - 6 .[F’+!c] -... , 

(3.19) 

---.a, 
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where the dots stand for the fermion terms, and we have implicitly assumed that 

the signs of the variables Xl, have been chosen so all possible triangle terms 

contribute a negative term to the expectation value of V1. It is easy to convince 

oneself that the minimum of (3.19) occurs when c - n and 7 - n. Thus, the 

addition of a simple term to (3.6) of the form (3.17) or (3.18) both solves the 

problem of forcing the theory to develop a pattern of connected non-vanishing 

expectation values and controls the fluctuations of the link fields, so that the 

mean-field approximation is valid. 

Note that at this point the role of the fermions has changed. From the 

fluctuation analysis we see that the fermions, by themselves, are not capable of 

driving the theory to the desired form; nevertheless they will play an important 

role in determining the structure of the full theory. This is because there are 

many mean-link configurations which are degenerate at the level of the effective 

potentials which we have been considering. The fermion term in the energy 

provides a mechanism for lifting much of this degeneracy by effectively providing 

gradient terms which distinguish between the various cases. We will see an 

example of this sort of thing when we discuss the question of computing Newton’s 

constant of gravitation in the higher dimensional theories. Although the role 

played by the fermions is different than we thought at first, they still play an 

important role in selecting among possible configurations and, of course as probes 

they define what we mean by our effective space-time picture. Despite the fact 

that at present we do not have analytic tools for finding the true minimum 

selected by the fermion terms, we wish to emphasize at this time that all of these 

quasi-degenerate configurations define l+l-dimensional theories. 
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3.3 THE QUESTION OF LOCALITY. 

The preceding discussion has established the following results: first, we have 

seen from the example of the theory of fermions defined on an N-simplex that 

it is easy for a system of this type to have a very different geometry than one 

intuitively expects; second, we have seen that a very general class of Hamilto- 

nians can define a system which, at least at the level of our mean-link theory 

analysis, dynamically produces vacuum expectation values which lead to a l+l- 

dimensional relativistic field theory. This interpretation is incomplete in that it 

uses only the analysis of the resulting free fermion theory; it remains to be shown 

that this is compatible with the scattering processes which occur due to quantum 
e- 

fluctuations of the link variables. The key question is whether these processes will 

look local (always up to some cutoff scale) with respect to the effective variables 

x. Unfortunately, we do not know the answer to this question for the general 

Hamiltonians we have been discussing; however, there are some things which we 

can say about this question. 

For the case of the N-simplex theory it is relatively simple to invent e.g. 

four-fermion terms which will be guaranteed to look local in the variables x. One 

need only take these interaction terms to be of the form 

c WI, * * * J4) * Q+(h) Q(Z2) Q+(z3) q/4) , 

11 ,...,l& J 

where the function F( Zr , Z2, Zs, 14 ) is defined to be 

F(h,z2,z3,z4) = c 6( h + h + ki + h) -k$l) &(/2) uk$3) Ui1(z4) - 

kl,...,kr 

It is easy to verify that changing over to the variables Q(x) yields an interaction 
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of the form 

/ ( dx Xl!+(x) Q(x))’ . 

Numerical evaluation of the function F( Zr, Z2, Zs, Z4) for small values of N shows 

that this function is as non-local on the simplex as the “derivative”. While this 

is an interesting result and tells us that we expect interactions which look local 

in our effective space-time to look highly non-local in terms of our indexing set 

labels, it introduces highly artificial interaction terms which have nothing to do 

with our original Hamiltonian. It is by no means clear that our results remain 

stable if we enlarge our scheme to include four-point functions as dynamical 
r- 

variables (in analogy to the link variables). Nevertheless, this is an interesting 

-question and merits further study. 

A-more interesting possibility is that by slightly complicating our Hamiltonian 

we can obtain a scheme which naturally evolves, in addition to its effective lattice, 

a leftover gauge theory which is responsible for all low energy scattering processes. 

The hope is that an effective lattice gauge interaction will tend to be better 

behaved with respect to the locality issue. This situation automatically occurs if 

we relax the condition that the fields X(Z,) are real. In this case we consider a 

Hamiltonian of the form 

H= 
U4 (3.20) 

-a xUm) - Q+(z) Q3 Q(m) - Xbrn) ; 

3 

for the obvious reasons, we have now made our fermionic fields two-component 

objects. In this case we see that a general mean-link wavefunction will yield an 
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expectation value for the variables X(lrn) which is a complex number, and which 

can be suggestively written as 

(vacl X(lrn) I vat) = 1 X(lrn) 1 . eiAgm) . (3.21) 

Not surprisingly, this pattern of expectation values also yields a relativistic l+l- 

dimensional theory. It follows from another theorem by F. Dyson’ that considers 

the probability distribution of eigenvalues of Hermitian matrices. 

Theorem II: Random elements of a gaussian ensemble of Hermitian N x N 

matrices have probability distribution of eigenvalues as given by 

-&Ef/4a2) .dEl...dEN . 
i=l 1 

If this distribution is treated the same way we have treated the case of anti- 

symmetric matrices, then modulo unimportant details the conclusions are the 

same. 

Equation (3.21) is suggestive in that the variables Atim) look suspiciously like 

gauge fields. This impression is strengthened by the fact that (3.20) is invariant 

with respect to a large class of transformations of the form 

W) -+ t+(l) Q(z) 
(3.22) 

Hence, the mean link minima for this theory are highly degenerate, and the 

true ground state must be a linear combination of these minima in order to 
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become the state of lowest energy. This in effect says that the ground state of 

the system is “gauge invariant” and that only “gauge invariant operators” can 

have vacuum expectation values. In other words, one has to restrict attention to 

gauge invariant Green’s functions. Of course, at this stage of our discussion this 

Ugauge-invariance” is in terms of the labels of the indexing set and there is no 

a priori reason why it must reflect itself as a local gauge invariance in terms of 

the effective coordinates x. This is a statement which requires a proof, and as 

we have already noted the question remains open. At this juncture the index- 

set gauge invariance is important in that it helps to guarantee that the residual 

low energy interactions of the theory involve only as many dynamical degrees of 

*- freedom as there would be in any lattice gauge theory. 

Let us now turn to exactly this question, namely “How many quantum degrees 

of freedom participate in low-energy interactions?“. We begin by noting that what 

keeps us from interpreting the fields A(l,) as the sort of gauge degrees of freedom 

we are used to in ordinary lattice gauge theories is that there are too many of 

them. Recall that a lattice gauge theory defined on a (2n + 1)-point lattice 

should have only 2n + 1 independent gauge degrees of freedom. While there are 

n(2n + 1) link terms which can be written down in such a theory, they satisfy 

constraints of the form 

eiA(kt) . eiA(t,) . e-iA(lm) = 1 . (3.23) 

This is just the statement that for an abelian theory there are only as many 

independent link-variables as site variables, and that the remaining link-variables 

can be written as “path-ordered” products of the independent variables. 
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Let us now recall the triangle terms V1 which we added to (3.6) in order 

to control the fluctuations of the link fields. It is easy to see that these terms 

are precisely what we need to enforce constraints (3.23) on the dynamical level. 

Consider terms of the form 

- X(kl) X(lm) Xbrn) + H-C- 1 - (3.24) 
k<l<m 

When rewritten in terms of the absolute values of the link variables X(Z,) and 

their phases A(lrn) , (3.24) becomes 

.? - - X(kl) x(lm) x(km) A(kl) + A(lm) - A(km) ) - (3.25) 
k<l<m 

Since, as we discussed in the preceding section, the expectation values of the 

- fields-grow like n, we see that the argument of the cosine term wants to be zero. 

Hence, we see that those configurations which are not like gauge-fields pay a 

price on the order of n3 in energy, whereas gauge-like excitations pay no such 

price. Combining this fact with the index set-gauge invariance, that guaranties 

that there are exactly the same number of classical variables which one would 

encounter in any formulation of a theory in A0 = 0 gauge, it appears that the 

effective low-energy theory is a 1 + 1 dimensional gauge theory. Since in the case 

under consideration the phases AtI,,) of the link variables are no longer random, 

the effective coordinates 3 are related to the lattice sites Z in an approximately 

local way. Therefore, in the low energy/long wavelength limit our theory reduces 

to the well-known Schwinger model, which is indeed a local relativistic theory. 
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4. BEYOND ONE SPATIAL DIMENSION 

In the preceding discussion of fermions on N-simplices we learned two impor- 

tant lessons: first, our naive notions of the dimension which should be assigned to 

a particular fermionic Hamiltonian tend to be incorrect; second, one component 

fermions tend to view almost any lattice as a relativistic l+l-dimensional space- 

time. Since, as we know, the real world does not quite fit into 1 + 1 dimensions, 

producing a realistic theory becomes a challenging task. 

Before proceeding to a detailed discussion of satisfactory theories with multi- 

component fermions let us try to get an intuitive feeling for why theories with 

one-component fermions do not work. Multi-component fermions are different 
e- 

in that they admit a set of d anticommuting Dirac matrices Q, where d is the 

spatial dimension of a theory. In continuum theories Dirac matrices constitute 

_ velocity operators; in lattice theories o-matrices play the role of corner operators 

and tell the fermions when they are changing direction. This strongly suggests 

that in a theory without Dirac matrices fermions only know if they are moving 

forwards or backwards; as a result they only perceive one spatial dimension. The 

above reasoning may sound simplistic, but it is most probably true. At least no 

counterexample has been found to date. 

We should be careful to point out that it is not absolutely necessary to have 

multi-component fermions in order to write lattice theories whose continuum 

limit is higher-dimensional. Exploiting the phenomenon of species doubling, 

Kogut and Susskind introduced fermions which had only one component per 

lattice site (modulo gauge degrees of freedom, etc.) in order to produce theories 

whose continuum limit was a 2+1 or 3+1-dimensional relativistic theory. Uti- 

lization of species doubling, however, requires careful control of the signs of the 
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lattice links. Even minor violations of the proper pattern of signs lead to major 

distortions in the fermion spectrum. Computer simulations show that randomly 

reversing the signs of 10% of the links of a Kogut-Susskind lattice changes the 

fermion spectrum from two-dimensional to one-dimensional. Since we have no 

way of analyzing dynamical generation of the link expectation values to the level 

of precision required by Kogut-Susskind fermions, we prefer to consider a less 

sensitive scheme. The scheme we present in this section exploits multi-component 

fermions that live on a generalized SLAC lattice. 

4.1 GENERALIZED SLAC LATTICE: THE DESIGN. 

To understand why we have to go to a generalized SLAC lattice, one must 

realize that multi-component fermions constitute a necessary, but insufficient 

_ condition for obtaining more than one space dimension. Basically the problem 

is that simply having multi-component fermions in a theory is more likely to 

lead to an internal symmetry than to a higher-dimensional space. In order to 

illustrate this point consider the a priori simplest object one can build with 

two-component fermions, namely an N-simplex with all three Pauli a-matrices 

randomly assigned to its links. Our original conjecture was that the introduction 

of the a-matrix algebra would by itself make the fermions see this object as three- 

dimensional (or at least two-dimensional, if chiral fermions do not work). The 

computer calculations surprised us: the spectrum of fermion energies came out 

linear and doubled - a clear indication of a one-dimensional theory with SU(2) 

internal symmetry. It turns that such a behavior is an unavoidable consequence of 

yet another Dyson theorem concerning eigenvalue distribution random hermitian 

quaternionic matrices. This theorem applies to the case at hand because the Pauli 

*--.a, 
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a-matrices form a representation of the quaternion algebra. 

Since a completely random pattern of link expectations values is inadequate 

for constructing a higher-dimensional space-time, we would like to follow a dif- 

ferent line of approach. To begin, let us consider an example of a lattice which 

does describe a 2+1-dimensional space-time. Sites on this lattice are labelled by 

pairs of integers, p and q, so our indexing set is J2 = { (p, q) : p, q = 1,. . . , n } . 

Fermion fields are Q(p, q) and the Hamiltonian has the form 

H = c [ -;x,,,9+(P’,q)a,~(P,q) - ;~l~~+(P,q’)~,~(P,q)] * (4.1) 
PA 

.-- Xpfp and Yqfq are random antisymmetric n x n matrices, which can be indepen- 

dently diagonalized. Following the arguments of the preceding section we rewrite 

HC3.S 

H = c *+(k,,k,){k,a, + k,ay}\k(k,,ky) , 

which looks like a momentum space form of the 2+1-dimensional Dirac Hamil- 

tonian. In the usual way, H is rewritten in terms of creation and annihilation 

operators for positive and negative energy solutions of (4.2), and its ground state 

is obtained by filling the Dirac sea of negative energies. 

The eigenvalues of (4.2) are 

&(k,,k,) = *dk:+k; . (4.3) 

Since each of the variables k, and k, is a one-dimensional momentum variable, 

we see from (4.3) that the energy spectrum of H has the desired 2+1-dimensional 

density of states. Generalizing the approach of the preceding section we define 
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an overcomplete set of fields Q+(z, y) and Q(z, y) , and the Hamiltonian of the 

equivalent theory can be written as 

Q+(x,y) ( -iaz& - iaydy) *(xv Y) } - 

It follows that the Heisenberg equations of motion of the effective fields will, in the 

limit of large n, yield a good approximation to the usual relativistic equations 

of motion. Hence,we can use these fields to define localized packets, and by 

scattering these packets reconstruct the desired space-time. 

In our original theory the sites are labelled by the indexing set J1 = { I : 1 = 

1 ,“‘, N = n2 } and link variables X(n,) connect every pair of sites 1 and 1’. We 
.s- - 

would like to show that the 2+1-dimensional Hamiltonian (4.1) can be obtained 

as a subcase of this general theory. To begin, we identify the pairs (p,q) E J2 

with single integers l(p, q) = n(p - 1) + q E J1. This allows us to identify the 

fermion fields XP(p, q) with !P (Z(p,q) ) . Under this identification, (4.1) corre- 

sponds to having the following ground-state expectation values for the link vari- 

ables X(W) = X(f(p,q)I(p’,q’)) : 

x(PP’) * oz for q = q’ , 

%(P,q) qP’,dN = 
1 %?‘) - uY for p = p’ , (44 

0 otherwise . 

Before constructing a Hamiltonian that leads to the above pattern of the link 

expectation values, we would like to point out those features of (4.5) which make 

it so different from the random N-simplices we discussed in the previous section. 

1. Most of the links have vanishing ground-state expectation values. There 

are only N3i2 non-vanishing link expectation values as opposed to the total 

of :N2 link variables. 
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2. All links that do not vanish can be divided into two disjoint sets: the 

contribution of every non-vanishing link to the fermionic Hamiltonian is a 

two-site term that has either CT, or oy sandwiched between fermion fields. 

To simplify the language we will refer to those links as x-links and y-links. 

3. When only x-links are considered, the whole lattice breaks into n = fl 

subsets of n points each. Every site in a subset is connected to every other 

site within the same subset, so we may call these subsets ‘x-simplices’. 

However, no sites belonging to different x-simplices are connected to each 

other by an x-link. 

4. Different x-simplices are connected to each other by y-links in such a way 

that-any site in some x-simplex A is connected to one and only one site in 

any other x-simplex B. 

5. -When only y-links are considered, the lattice breaks into n y-simplices, that 

are connected to each other by x-links in the same way as x-simplices are 

connected to each other by y-links. 

Suppose now that a pattern of link expectation values obeys conditions l-5. 

Label x-simplices with an index q and y-simplices with an index p. Relations 

between x- and y-simplices implied by l-5 guarantee that every lattice site cor- 

responds to one and only one pair (p, q) o m f ’ d ices and vice uetsa. By the very 

definition of p and q, only sites of equal q are connected by x-links, and only sites 

of equal p are connected by y-links. Conditions l-5 thus imply a two-dimensional 

lattice structure, which we define to be a generalized SLAC lattice. 

The only property of (4.5) not implied by l-5 is the condition of q-indepen- 

dence of X@,,) and pindependence of Y(,,,) . If this condition does not hold, 
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i.e. X(ppl) (q) and q,,q (PI are not constant functions of their arguments, then 

separately Fourier transforming p and q does not work. Analyzing the fermionic 

spectrum then becomes more difficult. Note, that this is the sort of situation one 

might expect to encounter when studying a system of fermions, moving in a fixed 

background gravitational field, i.e. non-flat space. We will return to the issue of 

whether this theory can admit weak gravity at the end of this section. 

4.2 GENERALIZED SLAC LATTICE: THE CONSTRUCTION. 

We have seen that fermions indeed recognize the generalized SLAC lattice as 

a higher dimensional object. The question we have not yet answered is: “Is there 

a- a Hamiltonian for which the ground-state expectation value of the link variables 

eorresponds to a generalized SLAC lattice?“. The purpose of this section is to 

provide an example of such a Hamiltonian. We will do so by selecting a particular 

type of Hamiltonian and tinker with its parameters until it yields the desired 

pattern of link VEVs. Obviously, a Hamiltonian found by such a method need 

not bear any relation to the universe we live in, but it will be sufficient for proving 

the existence theorem. 

Let us consider a Hamiltonian that has the generic form 

H = ;cy (p&J2 + v (... , x&&j ,...) 
-i C{ x$?a, * q+(Z) MA Q(m) - X&j+. Q+(m) MA Q(Z) } . 

Um) A 
(4.6) 

Note that because the fermions are multi-component we have introduced a com- 

plete set {MA) of hermitian matrices to be sandwiched between fermion fields (so 

as to suppress the Dirac indices themselves). Link fields Xi;“m, which multiply MA 
-_ 
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are chosen to be independent quantum variables; this allows for all possible site- 

site interactions. To simplify the discussion to follow we have also chosen these 

fields to be real, i.e. hermitian. The alternative choice (i.e. of complex link fields) 

would lead to residual gauge interactions of the sort discussed at the end of the 

section on l+l-dimensional Hamiltonians. Interesting as these interactions are 

in the case of multi-component fermions, the question of dynamically generating 

a generalized SLAC lattice is more important at the moment. We introduce yet 

another simplification by restricting our attention to the case of two-component 

fermions; this will suffice for constructing 2+1 and 3+1-dimensional space-times. 

a- In this case we only need four different M matrices which we choose to be the 

Pauli a-matrices for Ml,2,3 and the 2 x 2 unit matrix for MO . 

Our problem is to determine a potential V which will make link expectation 

values in the ground state of (4.6) form a two-dimensional generalized SLAC 

lattice. As before, our analysis of this problem will be at the mean-link level 

primarily because we do not know any simple way to do better. We begin by 

noting that if all terms in V are positive-definite, then the universe should be 

fluctuation dominated. This is because the only negative contribution to the 

ground-state energy comes from the Dirac sea and there are more bosonic link 

variables than fermionic site variables. Following the approach introduced in our 

discussion of the 1+1-dimensional case we use generalized plaquette terms to 

drive link expectation values beyond the range of quantum fluctuations. The 

potential we consider has the form 
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+ f Cj,k,l,m’ c?l,..., B=O kCD * xgk) xfL) x&n) xgrn) > 

2 

3 

where ?-&CD are symmetric under cyclic permutations of indices and some of 

3ABCD are negative. Note that only plaquette terms With ibur distinct vertices 

j, k, 1, m  are included in (4.7); plaquette terms with other numbers of vertices 

will be discussed later in this section. 

Consider for a moment the case where all ~BCD are negative. In such a 

#- theory all 44 x g of the plaquettes are welcome and thus every link variable 

-qm, turns on, i.e. develops a non-vanishing expectation value. The resulting 

lattice defines a fermionic Hamiltonian wherein the coefficients multiplying the 

fields form a randomly chosen quaternionic hermitian matrix. By the appropriate 

Dyson theorem this Hamiltonian has a linear, i.e. one-dimensional, spectrum. 

A  slightly different lattice arises if only 3A&&4 < 0, A = 0,. . . ,3. In this theory 

only “pure” plaquettes (i.e. made of links of the same kind) are welcome, and 

the resulting lattice “turns on” only one type of links - the most favored one. 

Note however, that every link of the favored type is present and so once again 

the resulting fermionic Hamiltonian is one-dimensional. In principle, since the 

number of independent parameters &BCD is finite, it should be possible to map 

the entire phase diagram of (4.6) with potential (4.7). At present we are quite far 

from the completion of that task. Nevertheless, we have found a range of values 

for 3I_BCD which result in a generalized SLAC lattice; we will demonstrate this 
- 

fact in the discussion to follow. 



Consider the following arrangement of 3mCD : 

(4 h2 = -F<O, 

@I 5111 = 32222 - f 2 0 , 
(4.8) 

(4 Jill2 , 6122 , %;222 > F > 0 , 

(4 other &BCD > 0 . 

Let us begin the analysis of (4.8) by stating the obvious. First, due to condi- 

tion (d), any link, which is not of x-type or y-type, contributes only positive 

terms to (4.7). S econd, due to condition (c), for any link which has both an x 

and a y component the overall contribution to (4.7) coming from at least one 

of the components is positive. In terms of the link expectation values these two 
a- 

facts mean that every non-vanishing link prefers to be either a pure x-link or a 
-- 
pure y-link, which is exactly the SLAC-lattice condition 2. It is also obvious that 

both x-links and y-links have to be present since only xyxy plaquettes contribute 

negative terms to (4.7). 

Showing that for an appropriate choice of f (4.8) yields a generalized SLAC 

lattice requires further discussion. Note, that due to condition (b), no large x 

or y simplices can form if j is positive. The n x n SLAC lattice has only n4/4 

plaquettes of the xyxy type, but it contains 2n simplices having n4/8 xxxx or 

yyyy plaquettes each. Hence, if all links of the SLAC lattice have equal strength, 

then in the large n = fl limit the positive contribution of xxxx and yyyy 

plaquettes overwhelms the negative contribution of xyxy plaquettes. There are 

two ways around this obstacle: first, j need not be strictly positive; second, link 

expectation values need not have equal strength. Since the second possibility 

cannot be discussed using the techniques we have introduced, we will arbitrarily 

assume f = 0. 
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Consider a pair of x-simplices, A and B. ( It is obvious that for j = 0 

some x-simplices have to form. ) Any pair of y-links that connect A with B 

yields an xyxy plaquette. Since a link can be shared by many plaquettes, k 

y-links between A and B together yield k(k - 1)/2 xyxy plaquettes. Therefore, 

k grows until y-links start to get into each other’s way, which happens when 

two of them share the same vertex in A or B. Adding a y-link which shares a 

vertex with another y-link yields as many xxyy plaquettes as xyxy ones. Since 

31122 •t F&J > 0 (condition (c) ), turning such a y-link Uon” yields positive net 

energy change. This argument tells us that the y-links connecting x-simplices A 

and B obey the SLAC-lattice condition 4: any site in A is joined to a one and 

a- only one site in B. Now consider x-links joining sites in A with sites in B. Every 

such link yields k xxxy plaquettes, where k is the number of y-links connecting A 

with B. Since the contribution of these plaquettes to the Hamiltonian is positive 

and large, it follows that A and B will not be connected by x-links unless k = 0. 

On the other hand, if k = 0 then every x-link between A and B will be “turned 

on”, since there is nothing to forbid it. In this case A and B will be melded 

into a single x-simplex A U B. Since the two cases are complementary, any pair 

of x-simplices that are not completely melded together into a single x-simplex 

has to be disconnected, i.e. without a single x-link to connect the two simplices. 

This fact is equivalent to the SLAGlattice condition 3: the entire lattice can be 

partitioned into disconnected x-simplices. 

The remaining SLAC-lattice conditions follow more easily. First, we observe 

that the same arguments used to establish the properties of x-simplices can be 

applied equally well to the case of y-simplices. This verifies condition 5. Condi- 

tion 1 is not really independent and can be easily derived from the other four. 
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Showing that the maximal number of xyxy plaquettes is obtained when all the 

simplices have the same size is a minor problem, and we leave this as an exercise 

for the reader. 

Having presented the argument which says that at the level of vacuum expec- 

tation values we expect a generalized SLAC lattice to form for a specific range of 

parameters in (4.8), we now turn to a discussion of the effect of quantum fluctua- 

tions. We will argue that in the limit of large N link fluctuations become small on 

the scale of the expectation values. Once again we will use the approximation in 

which we assign an independent wave-function to each link. Since every link is ei- 

ther “on” or “off” we will generalize our previous approach and represent each of 

a- these states in terms of variational wavefunctions U,,(X) a: exp (i(X - C)“) 

and KPO,(X) dc exp $X2 . ( > 
Ignoring for a moment link variables which are 

turned “off”, we write the ground state energy as 

&- = N312 . 7 + N3i2 C2’ 1 + ‘(z,z,l) + . . . ) 

(4.9) 
-+N2FC8 

+ -*- ' 

where we have ignored terms with non-leading powers of N (including fermionic 

contributions). Minimizing (4.9) with respect to C and 7 we obtain 

c = ( $jjl)1’4r-16 , 7 = ,/%(i=ij- ( g - N) 1’4r-16 , (4 1o) 

E, = ( 1 _ f ) ( F/r)r/r-4 . N2r-6/r-4 . 

-- 
Thus the relative fluctuation size (C27)-l, behaves like 0 Nd3j4’-16 

> 
and be- 

comes negligible in the large N limit. Accounting for fluctuations in the “off” 
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links is more complicated due to existence of several types of “phantomn pla- 

quettes, i.e. plaquettes which appear in the Hamiltonian, but include links that 

are “turned off”. Keeping the contribution of “phantom” plaquettes in mind it 

is a straightforward exercise to show that the gaussian width of the “off” links 

decreases in the large N limit (in fact, it decreases even faster than the width 

of the “onn links). Since the expectation value of the “onn links grows with 

N, the concept of the lattice of link expectation values is indeed a meaningful 

approximation. 

a- 4.3 ” THREE- DIMENSIONAL S LA C LATTICES. 

So far we have constructed a 2+1-dimensional space-time. This was done by 

introducing two-component fermions and ensuring that ground-state expectation 

values of the link variables form a two-dimensional generalized SLAC lattice. We 

argued that this two-dimensional structure was a phase of a very general Hamil- 

tonian which was selected by imposing certain constraints on various coupling 

parameters. The natural question to ask at this juncture is: “Can one construct 

a 3+1-dimensional space-time using the same techniques?“. We will show that 

the answer to this question is in the affirmative. 

-- 

As in the 2+1-dimensional case we begin by exhibiting an example of a 3+1- 

dimensional fermionic Hamiltonian. In this case we label lattice sites by triples 

of integers belonging to an indexing set J3 = {(p, q, r) : p, q, r = 1,. . . , n} . The 

fermion fields are !V(p, q, r) and the Hamiltonian has the form 
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H = c [ -i ~Xppb,r) .~+(p’,q,r)o,9(p,q,r) P,q,r P’ 

-i C Yqq+v) .9t(p,q’,r)oy~(p,q,r) (4.11) 

-i C G(P,Q) .~+(p,q,+‘)~2\1E.(P,q,r) ] . 
r’ 

Once again flat three-dimensional space corresponds to the case in which X(q, r), 

Y(P, 1.1 and Z(P, q) are constant functions of their arguments. In this case one 

has only to diagonalize three random antisymmetric matrices. If this is done, H 

becomes 

-- H = - c Q+(kz,ky,kz) { kzuz + k,u, + k,u,} W(k,, k,, k,) . (4.12) 
k.,k,,kz 

The eigenvalues of (4.12) are given by 

& = *\lk:+k;+k; , 

so H indeed can be mapped onto a relativistic 3+1-dimensional theory. 

-- 

Similarly to the 2+1-dimensional case, we will use the name “generalized 

three-dimensional SLAC lattice” for a lattice of link expectation values of the 

form (4.11). T o shorten our discussion of this case, we will not discuss the 

analogue of conditions l-5, but will instead begin by writing down an appropriate 

Hamiltonian for the link fields. We will then show it indeed leads to a three- 

dimensional SLAC lattice. The link Hamiltonian we wish to consider has the 

45 
--..m 



form 

H = & go [ (pt4)2 + (xh)2r] 
m 

kCDEF - 
11 ,..., 1s A ,..., F=O 

(4.13) 

where TA..JF are symmetric under cyclic permutation of indices or reversal of their 

order. The only plaquettes included in (4.13) are six-vertex plaquettes where all 

-- vertices are distinct. 

-- Let us-recall for a moment the conditions (4.8) which led to the formation of 

the two-dimensional SLAC lattice. Negative 3 1212 favored the formation of xyxy 

plaquettes characteristic of the two-dimensional SLAC lattice. On the other 

hand, all plaquette types which do not occur on a SLAC lattice were forbidden 

by choosing sufficiently large positive values for the corresponding 3ABCD’S. Pla- 

quettes of the types xxxx and yyyy which abound on the SLAC lattice required 

special care since they are even more abundant on the global simplex. Therefore 

we had to set their coefficients to zero. The desired range of couplings for the 

three-dimensional case can be obtained from the obvious generalization of these 

guidelines. To be precise, we are interested in the following range of TA..JF : 

l To... > 0 

This condition excludes O-links from the lattice. 

l For the sake of cubic symmetry we assume that TA...F are symmetric under 

interchanges x ++ y * z. ( It is not clear whether this is necessary. ) 
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l q23123 = ?l23213 = ?l21323 = 523132 = -T < 0 

These are the only negative coefficients (up to permutations). 

T-12112 = 7111212 = -** = 7112212 = --* = t2 2 0 

We will arbitrarily assume tl = t2 = 0 until we learn how to explore lattices 

with unequal link strengths. 

l All other ~AJF should be positive and large (i.e. larger than O(T) ). 

We will now prove that under these conditions link expectation values form 

a generalized three-dimensional SLAC lattice. Once again we begin by stating 
a- 

the obvious, namely that every link which is turned on should be a pure x, y  

or z  link, and that all three types of links have to be present. Next, we observe 

that for tl = 0 formation of homogenous simplices (i.e. x, y  or z  simplices) is not 

suppressed. The next step is to show that as far as only links of one particular 

kind are concerned, the entire lattice breaks into disconnected maximal simplices. 

This can be done by trivial modifications of the arguments we have used in the 

two-dimensional case; we see no point of reproducing them here. The rest of 

the proof goes as follows: first, we consider two simplices of the same kind and 

investigate links which join their sites; second, we demonstrate that as far as only 

x-links and y-links are concerned, the lattice breaks into many replicas of the 

two-dimensional SLAC lattice; and finally, we show that these two-dimensional 

sublattices are joined by z-links to form the three-dimensional generalized SLAC 

lattice. The reader who is not interested in technical details may skip the rest of 

this subsection. 

As we promised we begin by considering a pair of x-simplices, A and B, 
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having 0 (n) points each. Suppose there is a y-link joining A with B and a z- 

link as well. Then there have to be O(n2) six-site plaquettes of the energetically 

suppressed types xxyxxz and xxxyxz. We see, that links of different kind joining 

the same pair of simplices interfere with one another. Now suppose there are 

links of only one kind, say y, but two of these links share a common site in A 

or B. Then there have to be O(n3) plaquettes of the type xxxxyy, which is 

also energetically suppressed; therefore two y or z links which share a common 

site also interfere with one another. On the other hand, links of the same kind 

that join the sites of A with the sites of B in one-to-one fashion do not interfere 

with one another, so they can be turned “on” simultaneously. The proof that all 

a- such links are turned Uonn in the ground-state configuration constitutes a simple 

exercise which we leave for the reader to solve. At this stage we may conclude 

that if two x-simplices are joined to each other by y or z links; then all sites of 

these simplices are joined in one-to-one fashion; and the links which join them 

are all of the same kind. Of course, similar statements hold with respect to 

y-simplices and z-simplices. 

Let us forget for a moment about z-links and focus attention on the way 

x-simplices and y-simplices enmesh with each other. Let A0 be an x-simplex 

and let us consider all x-simplices Al, As, . . . , A, which are connected to A0 by 

y-links. Let lo be a site in A0 . Then in any of the A, , q = 1,. . . , n , there is 

one and only one site I, which is joined to lo by a y-link. Now recall that as far 

as y-links are concerned, the entire lattice breaks into disconnected maximal y- 

simplices. Hence, one of these y-simplices has to consist of the sites Zo,Zr, . . . ,Z, . 

Since there is nothing special about the site lo E A, every site in A0 belongs to 

some y-simplex BP which intersects every one of the x-simplices Ao, Al,. . . , A, 
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at one and only one site. If we now define S  to be 

n n’ 
(4.14) 

q=o p=o 

then every site in S  can be uniquely identified by its coordinates p and q. More- 

over, two sites in S  are joined by an x-link if and only if their q coordinates are 

equal; a similar statements holds for y-links. Therefore, S  is a two-dimensional 

generalized SLAC lattice. 

Now consider the entire lattice. We have started from an arbitrary x-simplex 

A0 and have shown that A0 is a part of a two-dimensional SLAC-like lattice 

“xy-slice” S. It is easy to see that two such xy-slices, S  and S’, cannot intersect 
a- 

one another; therefore the entire lattice can be described as sum of disjoint two- 

dimensional SLAC-like slices Sr , r = 0, 1, . . . , n’ . At this stage we return to 

_ considering the z-links. Observe that if two sites of the same xy-slice are joined 

by a z-link, then two x-simplices already joined by n y-links are also joined by a 

z-link. Since such a configuration would include O(n4) energetically suppressed 

plaquettes of types xxxxyz, xxyxxz, etc. (actually more, since y-simplices are 

also involved), it is clear that xy-slices have no internal z-links. 

On the other hand, links which joins sites of different xy-slices yield multi- 

tudes of energetically favored plaquettes, so we should expect the lattice to con- 

tain as many z-links as one can put in without causing interference. Our question 

is, therefore, when do z-links interfere with one another? First, consider two z- 

links which join the same lattice site with two sites in the same xy-slice. In this 

case there have to be O(n3) plaquettes of energetically suppressed types xxxyzz, 

xyxyzz, etc. Since the usual yield of a z-link is O(n2) energetically favored pla- 

quettes, this is a clear case of interference. To avoid this kind of interference, the 

49 



sites of any pair of xy-slices should be joined by z-links in one-to-one fashion. 

Next, consider two sites, 11 and 12 , in one xy-slice and two more sites, 23 and 14, 

in another xy-slice, such that Ir and Z2 belong to the same x-simplex but 1s and 

14 do not. What happens if z-links join 11 with 1s and 12 with ld? In this case 

these two z-links participate in n’ energetically favored zxzyxy plaquettes, but 

they also participate in 2n’ energetically suppressed plaquettes of types zxzyyx. 

Once again we have interference between z-links. 

Now consider two xy-slices which whose sites are joined in one-to-one fashion 

by z-links. This connection between the two slices defines a mapping from one 

slice onto another. We have just seen that if this mapping does not respect 

the partitioning of the slices into x-simplices this causes z-links to interfere with 

one another. Naturally, failure to respect the partitioning of the slices into y- 

simplices causes the same effect. On the other hand, a mapping that respects the 

x-simplex and the y-simplex structures of the slices causes no interference. Next 

observe, that if x and y simplices of one xy-slice are mapped onto appropriate 

simplices of the other slice, then the coordinates (p, q) of a two-dimensional SLAC 

lattice can be properly mapped from the first slice onto the second. Moreover, 

this mapping of coordinates from one xy-slice onto another is transitive, i.e. if 

one maps coordinates from S, onto $1 and then from $1 onto a third slice Srn , 

the resulting coordinate system on S ,B is the same as the one obtained by direct 

mapping from S, . 

We are now ready to introduce the global coordinate system (p,q,r) on the 

entire lattice. The r-coordinate of some site 1 is the index of the xy-slice I 

happens to belong to, while the coordinates p and q are obtained by mapping S, 

onto some fixed reference slice S,, . The sum total of our arguments implies that 
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this coordinate system has the following properties: two sites with respective 

coordinates (p, q, I-) and (p’, q’, r’) are joined by an x-link if and only if q = q’ and 

t = r’, joined by a y-link if and only if p = p’ and r = r’, and joined by a z-link if 

and only if p = p’ and q = q’. Therefore, the fermionic Hamiltonian has the form 

(4.11) and we have constructed the three-dimensional generalized SLAC lattice. 

Q. E. D. 

4.4 DIMENSION VERSUS INTERNAL SYMMETRIES. 

We have now exhibited Hamiltonians which, for specified ranges of couplings, 

dynamically generate (1 + 1), (2 + 1) and (3 + 1) d imensional relativistic space- 
a- 

times. It is important to emphasize that we used different Hamiltonians to discuss 

each of these cases for pedagogical reasons alone. In fact we consistently pointed 

out that the l+l-dimensional theory can be obtained as a trivial subcase of each 

Hamiltonian, and it is not difficult to show that for negative values of parameter 

t2 Hamiltonian (4.13) yields a 2+1-dimensional theory. Thus, although we did 

not emphasize the point, at the same time that we demonstrated the existence of 

Hamiltonians which generate (d + 1) d imensional space-times, we also established 

that all of these space-times can exist as different “phases” of the same theory. 

For this class of theories the spatial dimension d plays the role of an integer 

valued “order parameter”. This is of course just the result which we promised 

in the introduction. The existence of these phases implies the possibility that 

finite-temperature effects can cause dimension-changing phase transitions. It is 

interesting to speculate as to the significance of this result within the context of 

discussion of the early universe, but we will refrain from doing so at this time. 

Having established that there exist Hamiltonians for which the dimension of 
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the effective low-energy space-time is tunable, we would now like to consider what 

determines the maximum dimension of the system. As we have seen in specific 

examples, the maximal dimension of the lattice is determined by the structure 

of the terms in the link-field Hamiltonian. In particular, higher dimensional 

generalized SLAC lattices can be obtained only if generalized plaquette terms 

involving a sufficiently large number of links are present. However, we have seen 

that the perceived dimensions of an effective theory can be different from the 

lattice connectivity. In particular, a generalized d-dimensional SLAC lattice is 

not perceived as such by fermions which have too few components. Our previous 

discussion suggests that in order to see a system as having d-spatial dimensions 

a- the fermions must form a representation of the Clifford algebra for that num- 

ber of dimensions; the lowest representation of this algebra needs 2P-component 

fermions for d = 2p or d = 2p + 1. For this reason, one component fermions can 

perceive at most l+l dimensions. 

Consider now what happens when fermions have more components than re- 

quired for the dimension which is defined by the lattice they live upon. It appears 

that in this case the resulting theory acquires a gauged internal flavor symmetry; 

at least this is what happens in the simple example of quaternionic matrices. 

The details of the way in which this works, and the flavor decomposition of the 

fermionic multiplets seems to depend on the detailed structure of the plaquette 

terms in the Hamiltonian, and we have no general results to present at this time. 

However, it is clear that if one adopts the simplest scheme, then one appears 

to trade off dimensions against SU(n) flavor symmetries in a manner reminis- 

cent of Kaluza-Klein theories; except that there seem to be amusing algebraic 

constraints on the way in which this can happen. 
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For example, if we have four component fermions then we can arrange for 

the Hamiltonian to produce a 1+1-dimensional space-time with an SU(4) inter- 

nal symmetry; or 1+3-dimensional space-time with a doublet of chiral fermions; 

or, if mass terms are included in the Hamiltonian, a single massive fermion and 

no flavor symmetry. If we have eight component fermions, then we can have 

a 1+1-dimensional theory with SU(8) symmetry; or a 1+3-dimensional theory 

with SU(2)-symmetry; or a 1+5-dimensional theory with no internal symmetry 

(for the purposes of this discussion we will always assume mass terms so as not 

to get confused by chiral versus non-chiral fermions). Thus, we see that for a 

given choice of Hamiltonian parameters and number of fermion components only 
.? - certain specific combinations of space-time dimension and internal symmetry are 

possible. Amusingly, if we have twenty component fermions then the biggest 

dimension the effective theory can have is four space-time dimensions with an 

SU(5) internal symmetry, since the dimensions of the Clifford algebras for mas- 

sive fermions are 2,4,8,16,32, . . . . Clearly, this interplay of internal symmetry, 

structure of the Hamiltonian and the dimension of space-time is fascinating and 

should be explored further. 

4.5 Is THERE A ROOM FOR GRAVITY?: A QUESTION OF SCALES. 

The infinite N limit of the Hamiltonian (4.11) defines a 3+1-dimensional 

relativistic continuum theory. In the case of large, but finite N, one obtains an 

effective theory which has finite volume L3 and finite resolution a. A simple 

counting of degrees of freedom makes it obvious that L/a = n E $%. What is 

not obvious is the way L or a are related to physical quantities. We will argue 

that a is comparable in magnitude to the Planck length Miin,r, while L may 
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become arbitrarily large. 

We begin by multiplying the generic Hamiltonian (4.6) by an arbitrary scale 

parameter A. Let us assume that the link-field Hamiltonian yields a three- 

dimensional SLAC lattice with all non-vanishing link expectation values having 

equal strength X; then each of the matrices XPPf, Yq41 and &,I that appear in 

(4.11) is an antisymmetric n x n matrix whose elements are &AX. Diagonalizing 

these matrices, as we did in the one-dimensional case, we find an energy spectrum 

where 

k 
2Tr 
z *&,z , i&,jz = - 3 

n Z Z,Y,Z , . . . ,- 
2 

(4.15) 

This spectrum is characteristic of a theory defined on an equivalent lattice with 

volume L3 and lattice spacing a = r/k,, = L/n. 

Having computed L and a in terms of the parameters of the defining Hamil- 

tonian we now wish to relate those parameters to some dimensionful physical 

parameters. The only such parameter one can reasonably hope to compute with- 

out detailed analysis of effective gauge theories, let alone GUTS, Technicolor, 

etc., is Newton’s constant. Of course, Newton’s constant has meaning if and 

only if the effective low-energy theory has some sort of Newton-like gravity. To 

verify whether this is the case in our theory one has to demonstrate the following 

points: 

1. Show that the lowest energy configuration corresponds to flat space. 

2. Identify the low-lying excitations of the lattice which violate the flatness 

and compute their energies. 
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3. Show that these excitations interact with fermions in an approximately local 

way. Here locality refers to the effective space-time coordinates rather than 

to lattice sites. 

4. Derive the effective gravity theory and show that is has a proper Newtonian 

limit. 

Unfortunately, to this point in time, we have no rigorous results pertaining to the 

first two points and no results whatsoever pertaining to the last two. However, we 

have some interesting numerical results concerning the behavior of the fermions 

on small two-dimensional generalized SLAC lattices. Assuming that these results 

can be extrapolated to large three-dimensional lattices, and also assuming that 

points 3 and 4 are true, we will argue that Newton’s constant should be G - um2. 
-- 

Recall that the link Hamiltonian is symmetric with respect to independent 

changes of signs of the link fields. Therefore, an eigenstate of the link Hamiltonian 

which has b links with non-zero expectation values is 2*-fold degenerate. In 

particular, if the ground state is a three-dimensional generalized SLAC lattice 

its degeneracy is 23n4f2, and most of these degenerate configurations are not 

perceived by fermions as flat three-dimensional spaces. On the other hand, since 

different configurations lead to different fermionic spectra, the total zero-point 

energy of the fermions is also different, thus lifting the degeneracy between non- 

equivalent configurations. Hence the true ground state is a configuration for 

which the sum of the negative fermionic eigenvalues is most negative. Our first 

goal is to show that this configuration is flat - this will solve the problem of 

fine-tuning the cosmological constant. 

-_ 
As we have already mentioned, we have no analytic results for the case of 

fermions on generalized SLAC lattices which are not flat. The results we will 
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present here were obtained by numerical diagonalization of fermionic Hamilto- 

nians for rather small lattices. To be precise, the lattices which we considered 

were two-dimensional generalized SLAC lattices of sizes up to 9 x 9. The abso- 

lute values of all links were taken equal, but signs of the links formed different 

patterns from lattice to lattice. For every such lattice we have diagonalized the 

fermionic Hamiltonian and computed the net negative energy of the Dirac sea. 

To our relief, we have found that the most negative zero-point fermionic energies 

were indeed obtained for lattices which yielded flat spaces. If this results persists 

for large three-dimensional SLAC lattices, then point 1 is true. 

=- 
Having found that the true ground state seems to be flat, we considered non- 

flat excited states. We compared plots of the fermionic spectra for many non-flat 

SLAC lattices and found that the more “frustrated” the lattice was, the less two- 

dimensional the fermionic spectrum looked. ( We define “frustration” of a lattice 

as a fraction of its four-link Wilson loops which are negative. ) More frustrated 

lattices yielded linear fermionic spectra, and at the same time less negative zero- 

point fermion energies than flat lattices. This reduction in negative energy of 

the Dirac sea reaches a maximum of about 15%. Moreover, the relative energy 

cost of randomizing the signs of links seems to be independent of the size of the 

lattice. Inspired by these facts, we denote by -&, the energy of the Dirac sea 

of the flat n x n x n generalized SLAC lattice and by -&A the Dirac sea energy 

of the totally frustrated lattice of the same size. Making a wild extrapolation, 

we assume that in the large n limit the difference between -&i and -&n remains 

finite fraction of &, . 

-_ 
Unfortunately, all we know about effective space-times which correspond to 

frustrated lattices is that they are not flat. If we assume that highly frustrated 
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3 

lattices correspond to some effective 3+1-dimensional space-times, we might ex- 

pect such space-times to have curvature of the order of magnitude R - uS2. 

Obviously we cannot even tell whether this curvature is positive or negative, let 

alone answer more detailed questions. Our goal is to relate Newton’s constant 

to the resolution a of the effective theory and to the number N of degrees of 

freedom. In order to do so we make two unsubstantiated assumptions about 

the effective gravity in our theory: first, we assume the effective gravity to have 

Einstein-like behavior at large distances; second, we assume that even at curva- 

tures comparable to the inverse square of the shortest distance in the effective 

theory, the dominant contribution to the gravitational energy is given by 

a- 
.” 
‘. 

& grav = G- 
/ 

d3ZR(Z) . (4.16) 

Highly frustrated lattices have R - a -’ all over the space, so their gravitational 

energy should be Eg - GL3/u2. Equating this gravitational energy with the 

change in the Dirac sea energy En - &A - En, we can estimate Newton’s constant 

G- (N E n3). 

It remains to estimate the Dirac sea energy &, . This can be easily done by observ- 

ing that the Dirac sea energy per fermion &n/N has the same order of magnitude 

as the maximal fermion energy emax. The latter is given in a relativistic theory 

by k,, = X/U. Combining this result with (4.17) we obtain 

or in other words a = l/MPlanclr. Q. E. D. 

(4.18) 
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The case of massive Dirac fermions is similar to that of massless Weyl fermions. 

In this case the fermionic Hamiltonian has the form 

H = c [m @(p,q,r)@*(ww-) 
Pd,r 

- iA c Xpph r) - * +(p’,q,r) dQw,r) 
P’ 

- iA c Yqqh r) - Q+(p, q’, r) asl *-(P, q, r) 
9’ 

- 
- iA z & (P, q) . *+(P, q, r’ a2 Q(P, q, f-) ] ) , 

r ’ 

where Q,,~,~ and /3 are Dirac matrices. The spectrum of this Hamiltonian is given 
.*- 

by 

& = m2 + k; + ki + ki + 0 , 

where kZ,y,Z are the same as in (4.15). W e see that the effective continuum 

fermion fields have mass m. To understand the physical consequences of this we 

need to express m in physical units. 

3 

We begin by observing that if the original Hamiltonian has only one defining 

scale A, then m = O(A). Next, we recall that u-l = O(AXm and that 

L/u = n. Finally, we generalize (4.9) and (4.10) to the 3+1-dimensional case 

and find that X = O(n1/‘-6). After that, deriving 

m-u -1 . (j+)-f-A 

-_ 
becomes straightforward. We have already established the physical value of u-l - 

A4 Planck- As far as L is concerned, we know only the lower bound L 2 101’Z.y., so 
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we can give only the upper limit on m, which comes out as 

m 5 0.005 ev - 1O-61/‘-6 . (4.19) 

Therefore, the only known fermions whose masses can be due to the mass term 

in the original Hamiltonian are neutrinos; the masses of quarks and leptons must 

have other explanation. 

5. CONCLUSION 

5.1 WHAT HAVE WE GOT? 

.=- 
At this point we have some specific examples under our belt and so the time 

has come to summarize just what we believe we have accomplished. Our primary 

goal was to establish a framework for discussing the question of where space-time 

comes from, and what controls the dimension of a given theory. It is our belief 

that this paper makes a step in that direction. 

To be more precise, we have shown that one can define a class of theories and 

a computational scheme within which one can meaningfully discuss dynamically 

generating an effective space-time. Moreover, we have shown that in this class 

of theories dimension can be thought of as an integer valued “order parameter” 

which characterizes distinct phases of a single dynamical system. It is interesting 

to notice that when a theory does develop an effective space-time it is almost 

certain to be a relativistic one. 

In addition to establishing a framework for discussing space-time as an illusion 

of low energy physics, we noted some remarkable facts which made this class 

of theories even more interesting. First, there are residual interactions among 
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the low-energy degrees of freedom which have the structure of a gauge theory. 

Second, our computer calculations indicate that fermionic effects provide room for 

an effective gravitational theory of some sort, and that the true physical vacuum 

has a flat metric. Finally, if this effective gravity is similar to Einstein’s theory, 

then Newton’s constant is a calculable quantity. Specifically, we have shown 

that if our computer results can be extrapolated to large numbers of degrees of 

freedom, then the cutoff imposed by the condition that gravitational fluctuations 

should stay small coincides with the shortest distance of the effective theory. This 

remarkable result is intimately related to the fact that it is the fermionic degrees 

of freedom which cause the flattening of the space-time. It is worth noting that 

ad if the system was dominated by bosonic rather than fermionic fields then the 

space-time would curl up instead of flattening. 

5.2‘ CAVEATS 

Having listed these wonderfully looking results, honesty forces us to list po- 

tential problems. First, we have used a variant of mean-field theory to obtain all 

of our results and it could be a seriously flawed tool. To the best of our knowl- 

edge this method has not been used on a problem of this sort and it is possible it 

just doesn’t work. This question deserves and will get further attention. More- 

over, to simplify our analysis we have limited the discussion to cases when all 

non-vanishing vacuum expectation values of the link fields are presumed to have 

equal magnitudes; obviously, this is a strong restriction. It is possible that the 

requirement of zero coefficients for certain terms in the Hamiltonian in order to 

obtain a higher-dimensional space-time are artifacts of our calculational scheme. 

It may even be possible to find a Hamiltonian whose ground state is a SLAC lat- 
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tice in the strong sense, rather than a generalized one. In this case the residual 

gauge interactions can be shown to be local with respect to the zP’s (at least in 

the abelian case). Analyzing this kind of problems will require the application of 

more sophisticated techniques (e. g real-space Hamiltonian renormalization group 

methods) to the problem, or the development of new techniques. 

a- 

Another question arises due to the fact that we are dealing with systems 

which have very large but finite numbers of degrees of freedom. It is well known 

that such systems never undergo true phase transitions, and from our point 

of view this means that states with different patterns of link expectation values 

must mix if their energies coincide. In the case of apparently different generalized 

SLAC lattices which correspond to different coordinatizations of the same system, 

their mixing would be analogous to what happens in gauge theories and would 

provide the explanation of why in general relativity physics is independent of 

coordinate system. In other cases the key question relates to the rate at which 

the mixing occurs, and if it involves changes over a few or many degrees of 

freedom. If the mixing involves changes in a relatively small number of degrees 

of freedom at a time, then it presumably can occur rapidly and perhaps invalidate 

our link mean-field theory results. If, on the other hand, mixings involve many 

degrees of freedom at once, then the fact that different configurations must mix 

is presumably completely harmless, because the mixing times involved will be 

enormous. In this case we would expect that the dimension and effective geometry 

of the theory will be well defined, even if the way in which they are coordinatized 

changes. 

-- 
The most important caveat relates to the locality of the residual gauge and 

gravitational interactions. Clearly, if these interactions do not come out approx- 
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imately local in terms of the coordinates zP, then the space-time constructed 

by carrying out scattering processes need not look like that determined by our 

analysis of the motion of the fermions in the background field of the links. Such 

an occurance would be a disaster for this approach. At present we know that for 

certain patterns of link-field expectation values the residual gauge interactions 

are local, but we do not know whether there exist Hamiltonians for which these 

patterns of expectation values occurs naturally. 

5.3 IRRESPONSIBLE REMARKS 

If the reader has not found the material in the body of this paper speculative 

enough, we would like to close with a few remarks which are tantalizing but have 
-- 
not been carefully explored to date. First, we would like to observe that even 

_ if we-do not take the dynamical picture of the way in which the link variables 

achieve vacuum expectation values seriously, the unusual way in which fermions 

see lattice structures provides a new way of introducing unusual dynamics by 

hand. For example, if one thinks about replacing each of the vertices of a gen- 

eralized SLAC-lattice by an No-simplex, one obtains a lumpy system for which, 

because of the fact that all N-simplices yield one-dimensional systems, we have 

string-like dynamical degrees of freedom connected together in a peculiar way. 

We have no real experience with these type of theories, but we have played with 

them numerically and found they have very amusing properties. In particular, 

if NO is odd, each of these vertices has zero-modes which interact through the 

connecting links provided by the remaining “SLAC lattice”. Depending upon 

the relative strengths of the links within vertices and the links joining distinct 

vertices, these zero modes can behave as zero-mass particles with short distance 
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structure. The question of whether or not dynamics of this sort can be exploited 

to produce preon theories with properties vastly different from those considered 

to date is entirely open. 

Along the same lines, it is clear that one can by hand produce systems wherein 

strongly interacting fermions cannot break their chiral symmetries by the mech- 

anism discussed by Drell et. aZ.l’ This is because in the case of N-simplices 

the effective strong-coupling theory becomes a Heisenberg antiferromagnet on a 

triangular lattice; just about the only thing known about that system is that it 

does not spontaneously magnetize. 

-?- 
Although we could go on and on in this vein, we will conclude with the follow- 

ing observation. Aside from the deeper questions relating to origins of space-time, 

-we have also discovered that there are many poorly understood facts about the 

dynamics of fermions, which could perhaps be exploited in more conventional 

contexts. This subject reminds us of the story of an elephant presented to blind 

men: the more you poke it, the more unusual and seemingly contradictory as- 

pects it chooses to present. Nevertheless, even if we are not sure what kind of 

beast we are dealing with, it is certain to be a remarkable one. 
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APPENDIX 

The purpose of this appendix is to compute the density of eigenvalues for 

random imaginary antisymmetric matrices. The derivation presented here is 

due to Brezin, Itzykson and Zuber. As noted in section 3, we define a random 

imaginary antisymmetric matrix as a member of a gaussian ensemble of hermitian 

N x N matrices whose matrix elements are constrained to-be imaginary. For any 

function F(A) f o such matrices the average value of F is defined as 

(F) = /n ( o!Aii e-IAla/20’ ) - F(A) , (A-1) 

where the product is over independent matrix elements of A. The quantity which 

interests us is the average spectral density of matrices belonging to our ensemble. 

We begin by computing the average square of the resolvent of A: 

(Tr’(X - A)-’ ) = c ( (X - A);; . (X - A)il ) 
kl 

Now we use the explicit definition (A.l) and see that 

(&F(A)) = /n (dAi~e-1A12~2u’). &F(A) 

(integrating by parts) 

dAii e-lAla/202 > - +(A) 

=a -2 (A;* F(A)) = C2 ( Alk F(A) ) . 

64 
--..a* 



Therefore, 

( Tr2(X - A)-’ ) = am2 c ( Alk (A - A);: ) 
kl 

=CZ -’ (Tr (A (X - A)-’ ) ) = urn2 (Tr (X(X - A)-’ - 1) ) 

= -$.(Tr(x-a)-‘) - 5 . 

(A-2) 
In the “thermodynamical” limit of large N one can use the approximate 

equality (Tr2 F(A)) B (TrF(A))2 which holds up to terms of relative order of 

magnitude 0(1/N). This allows us to rewrite (A.2) as 

G2(X) - -&2(A) + $ = 0 , (A-3) 

where 

G(X) E (Tr(X - A)-‘) 

is the average resolvent of A. Solving (A.3) with respect to G(X) we find 

G(X) = $ f 

Finally, we notice that the relation 

p(E) = $ [G(E+~o) - G(E-i0)] 

between the spectral density of a hermitian matrix and its resolvent is linear; 

therefore it also holds for the average spectral density and the average resolvent. 
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Combining this fact with (A.4) we find that for the ensemble under consideration 

p(E) = &/4u2N - E2 for [El 5 2ufl , (A-5) 

and p(E) = 0 otherwise. Note, that (A.5) obeys the normalization condition 

E lllLX 

I 
dE p(E) = N . 

E rain 

It remains to fix the value of a. Fermionic Hamiltonians we are actually con- 

sidering are (2n + 1) x (27~ + 1) h ermitian matrices, all of whose entries are &a. 

a- Any such matrix A has Tr A2 = 2n(2n + 1). On the other hand, in our gaussian 

ensemble - 

E max 

(TrA2) = 
/ 

dE p(E) . E2 

E min 

2a&Ti 
1 

= 2m.3 / 
dE E2 4u2(2n + 1) - E2 

-2a&GiTi 

=a 2 - (2n+ 1)2 . 

Hence, equalizing the average (Tr A2) for both cases requires a = 2n/2n+l. This 

gives us the following expression for the average density of states for fermions on 

a simplex: 

P(E) = ~.vGT. 
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