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1. Introduction 

Attempts to describe analytically the beam-beam interaction in a storage ring are 
asnumerous as they are disappointing and frustrating. One can find in the litera- 
ture many different theoretical approaches - single resonance models, trapping, linear 

- approximations, resonance overlap models, applications of Lie algebra, etc.? None of 
them give a satisfactory explanation of the observed phenomena either quantitatively 
or even qualitatively. 

At the same time the beam-beam instability is the most common limiting phe- 
nomenon for practically all storage rings. At least, it seems that all other observed 
instabilities are understood much better than the beam-beam instability and one or 
another cure has been found for them. 

This justifies endless continuous attempts (including the present one) to describe 
theoretically the beam-beam phenomenon. 

Submitted to Particle Accelerators 
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THere is not the place and the time to discuss all these models. More or less comprehen- 
sive description of different theoretical approaches can be found in several reviews*-’ 
available on this subject. 
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It seems to me that the description of the beam-beam interaction presented here 
is a little bit more successful than the previous ones in the following ways. First, 
more than the other models this one allows all the important features of the beam- 
beam phenomenon to be taken into account: the nonlinear beam-beam force and 
its dependence on both transverse coordinates, damping of the oscillations, presence 
of noise in the particle motion, in particular the quantum noise in its synchrotron 
radiation, actual machine functions, layout of the interaction points, and to some 
extent imperfections present in the machine. Second, this model deals not with a 
separate particle, but with the beam as a whole using phase space distribution functions 
and the average (unperturbed and perturbed) characteristics of the bunch such as its 
emittances, space charge parameters, etc. 

At the present stage of development of the theory presented in this note, the 
longitudinal particle motion is not yet implemented in the model. This constitutes a 
serious drawback. In particular, this makes difficult and unreliable the comparison of 
the obtained results to some of the more elaborate numerical simulations and of course 
to the experiments. Nevertheless, I believe that even such limited results are certainly 
of interest, mainly as a step toward a more extensive theory. 

E - 
The calculations are done by a perturbation method1 using the Green’s function 

of -the Fokker-Planck equation. This limits the applicability of the method in at 
least two ways: First, the current of the strong beam (or its space charge parameter) 
should not be too large. Evaluation of the magnitude of the space charge parameter 

’ t at which the approximation breaks down is very difficult. It is not clear what 
value of the parameter is actually small enough for approximation to be valid. As we 
shall see, the beam blowup is presented roughly speaking as a series in ratio 5/2nr, 
where 27~ is the betatron phase advance between adjacent interaction points. This 
ratio is usually smaller than 1. Second, there are regions in the tune diagram where 
approximation breaks down even for small current (resonance regions). Due to the 
presence of damping, the calculation usually produces a finite result close to or even 
on the resonance. But in the vicinity of the resonances, especially inside the stop 
bands, the actual beam blowup curve may be quite different from the calculated one. 
Practically speaking, this does not restrict the method too much, since it is more 
important to find bad regions of the tune diagram rather than to be able to determine 
the behavior of the beam inside such a region. On the other hand the method treats 
all the resonances simultaneously. The blowup curve obtained in the limits of this 
work is a result of the action of an infinite number of resonances positioned at the 
same place. Such a treatment is considerably more sound than one which singles out 
one particular resonance and considers the motion in its vicinity. 
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There are several assumptions and limitations which are used in the course of the 
calculations. Not being as fundamental as the two restrictions mentioned previously 
(absence of energy oscillations and the perturbative treatment of the problem), they 
greatly simplify the calculations and make them possible in their presented form: 

1. The first one is the limitation to the case of the weak beam - strong beam 
interaction. The particle distribution of the strong bunch is assumed to be 
unaffected by its interaction with the counter-rotating weak beam. That fixes 
the force acting on the particles of the weak beam. Otherwise the result of the 
interaction would depend on the distributions in both beams, demanding a self 
consistent solution of two coupled Fokker-Planck equations. 

2. Next, the bunch is assumed to be short in comparison to the value of the beta 
function at the interaction point ,8. This allows me to consider the result of 
the passage of the weak bunch through the strong one as an instantaneous kick 
and to treat p itself as a constant. This last assumption fails for very small 
/3 values. This might become a serious restriction, especially when considering 
dynamic p (i.e., perturbed by the linear part of the beam-beam force). 

-I- 3. The collisions are assumed to occur head-on. This assumption makes the beam- 
beam-force antisymmetric, thus eliminating all odd order resonances. This 
restriction seems to be not too difficult to omit and is kept for the reason of 
the simplicity. 

4. The aspect ratio of the strong beam is assumed to be very small (flat beam). 
This assumption is done in the very end of the calculation and allows me to 
present the result in its explicit form. Otherwise one needs to evaluate certain 
integrals numerically. 

Under these assumptions the beam-beam interaction produces two effects in the 
motion of a weak beam particle. First, the linear part of the force with which the strong 
bunch acts on such a particle produces changes in the effective machine parameters 
for the weak beam. The tunes are shifted by amounts proportional to the strong beam 
current. Further, the values of the amplitude beta function at the interaction point, 
and consequently the values of space charge parameters and beam emittances are also 
changed. I will refer to the new (dynamic) tunes, beta functions, and emittances as 
perturbed machine parameters. 

Second, from the rest portion of the force (i.e., its nonlinear part) a transverse 
component of the particle velocity experiences an instantaneous change (‘kick’), the 
magnitude of which depends on the particle coordinates at the moment of interaction. 
Between the subsequent interactions a particle performed damped betatron oscillations 
in both lateral planes. The motion may be influenced by noise (such as the quantum 
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noise in synchrotron radiation, for example) and this noise should be taken into ac- 
count. * 

The result of all the subsequent interactions should then be averaged over the 
particle distribution in the four dimensional phase space of coupled transverse motion. 
All these tasks are achieved here by using the Green’s function method. 

I restrict myself here to evaluation of the vertical emittance of the weak beam. 
Indeed, for the flat beam, the beam blowup is observed mainly in the vertical plane. 
The reason for this is of course that the vertical component of the interaction force is 
in this case much larger than the horizontal one for the vast majority of the particles. 
It will be instructive and not difficult to do the similar calculation for the horizontal 
emittance as well. The vertical beam blowup is presented here as a function of the 
tunes, the damping rates and the space charge parameters for both lateral planes of 
the perturbed (by the linear part of the beam-beam force) machine. It also depends on 
the number and distribution around the ring of the interaction points and the aspect 
ratio of the strong beam. The remarkable feature of the result is that for the machine 
staying away from the resonance, the vertical beam blowup is actually independent of 

,the value of the damping rates. 

Section 2 of this note contains expressions for the nonlinear beam-beam force as 
well as the first and second order corrections to the distribution function reproduced 
from Part I of this work. The first order calculation of the vertical emittance is 

--performed in Section 3. Here one can find perturbed machine functions also, which 
are used in the next section to find the emittance in the second order approximation. 
In the last, Section 5, I discuss the results obtained and present a numerical illustration 
of the application of the derived formulae. 

Several integrals relevant to the present calculations are evaluated and tabulated 
in the Appendices for the reader’s convenience. 

* Strictly speaking, the particle motion is influenced also by other nonlinearities in 
the machine lattice (the most important of which are sextupole fields). I neglect 
here all nonlinear forces apart from the beam-beam force. The evaluation of the 
sextupole magnets influence on the particle motion is done in Part III of this work.3 
It appeared to be small enough to be neglected at the present stage of the work. It 
is interesting though to look into the problem of the beam-beam interaction in the 

.w presence of other nonlinearities. 
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2. Basic Relationships 

To describe particle motion in a storage ring we use the Courant-Snyder variables7 
91, $(u’ G du/d+) for the horizontal and u, 8(w’ z dv/dO) for the vertical planes, re- 
spectively. The sudden change in the particle velocity by a passage through a counter- 
rotating strong bunch (‘kick’) in these variables is connected to the kick in variables 
z and y by the following relationship [cf. expressions (5.9) and (5.10) of Part I]: 

Fz (a, 4 = u fib [4fL), YWI , 

and 

(2-l) 

(2.2) 

where ,& and &, are the values of the horizontal and vertical beta functions at the 
interaction point. In order to avoid excessive indexing the tunes of the machine per 
interaction point are denoted v and r for horizontal and vertical planes respectively. 

,In the same manner Q and 6 below mean the corresponding damping constants. 

Let us assume for the sake of simplicity that apart from the nonlinear ‘forces’ (2.1) 
and (2.2) the storage ring is a linear machine. In other words we neglect the presence in 
a lattice of sextupole magnets and possible higher order magnetic fields in bending and 

- quadrupole magnets. Under this assumption the unperturbed equilibrium distribution 
function of the strong beam is gaussian (cf. expression (5.16) of Part I): 

90 = 
exP{-&-&- &&} 

(2r)%,vy 9 (2.3) 

where cz, .eY are horizontal and vertical emittances of the unperturbed (by the beam- 
beam perturbation) machine. We define then coupling as a ratio of these quantities 

The nonlinear forces F, and FY for the gaussian distribution (2.3) have the fol- 
lowing integral representation8: 

1 
i’, = -A,u 

/ 
dq exPk&) 

0 [P + 41 - P)13’2 
(2.5) 
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F, = 
1 

ewk&) 
dq [p+ q(l -p)j+? ’ 

where 

A z= 
WONb Jir 

7h 

(24 

P-7) 

P-8) 

P OY ( 1 
2 

=- w% - 
az - h$z ’ P-9) 

ro is the classical electron radius, hrb is the number of particles per bunch, 7 is the 
Lorentz factor, and at last 

*I- 

(2.10) 

The-linear part of the beam-beam force is easily obtained from expressions (2.5) 
and (2.6) by putting & = 0 (integrals resulting from this can be found in Appendix 
C): 

(2.11) 

(2.12) 

from which immediately follow expressions for the horizontal and vertical space charge 
parameters: 

(2.13) 

(2.14) 



We rewrite now here formulae analogous to (3.8) and (3.9) of Part I for the first 
and the second order corrections for the distribution function: 

Ih(h~k) = - c/ 6 Wi,dh~m) ( 
- wo 

J’z 
- a+0 

m<C 
m+Fy 1 

av’ v (2.15) 
Om 

and 

~2~Vl~C) = c pl w ,d’bk) 
k<C 

k $+Fy $ v ) l,k 
(2.16) 

X C /WG(b,~k,Va,~rn)(~z z+f’ys$)v , 
m<k O,m 

where V = (u, u’, V, v’) and Vo = (uo, ub, vg, v’,), are points in a four-dimensional 
phase space of the transverse motion, and 

G(V, Sk, fi, srn) = Gu(u, U’, $k !UO, Ub, 4rn) Gv(v, U’, OkI VO, Ub, em) (2.17) 

is the Green’s function as it is discussed in Part I. The summations in expressions (2.15) 
an-d (2.16) for any given ‘moment’ 8k are performed over all the ‘moments’ 8m < 8k 
at which a particle experiences a kick from the side of a nonlinear beam-beam force. 

The‘ perturbed distribution function + = $j-j + $1 + +J allows us to calculate 
the perturbed beam emittances. As an example, I will perform the calculations for a 
vertical beam emittance EY: 

(2.18) 

Since the distribution function $ is found in the form of a series expansion, the 
vertical beam emittance Ey is also an expansion. The zeroth order term of this series 
is the unperturbed beam emittance cy. 

It is worth to mention also, that average value of both $1 and @2 over whole 
phase space is zero. This follows from the fact that there is no particle loss and the 
normalization of $J should be 1. On the other hand the normalization of $0 is also 1. 
Certainly the same can be found by a direct integration of $1 over VI in expression 
(2.15) and $2 over V in expression (2.16). 

Tedious but straightforward calculations show that both w and u’ are zeros by 
averaging over $1 and $2. 
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3. The First Order Approximation 

The linear part of the beam-beam force (2.11)’ (2.12) produces a focusing effect in 
both planes: it increases the machine tunes, changes the beta functions (this effect is 
referred to as dynamic beta) and consequently the space charge parameters (due to 
change of the beta functions). 

In effect all these changes produce also a change in the weak beam emittance. The 
last change will be found in Sec. 3.2 considering only the linear part of the beam-beam 
force as a perturbation. Then in Sec. 3.3 the beam emittance in the first approximation 
will be evaluated using the perturbed machine functions and only the nonlinear part 
of the beam-beam force as a perturbation. 

The result thus obtained in the first order is of course thesame as one obtained 
by using unperturbed machine parameters but at the same time using the full beam- 
beam force. The second order calculations though are more accurate if one uses the 
perturbed machine parameters. More on this subject can be found in Part II of the 
present work. 

,__3.1 PERTURBEDMACHINEPARAMETERS 

In the presence of the beam-beam interaction machine parameters for electrons 
and positrons are generally different. In particular, for the weak-strong interaction 
the machine parameters for the strong beam remain unperturbed, while they change 

- for the weak beamg: 

cos2w = COS27rU~ - &o sin27ruo (34 

cos2nr = cos27r70 - cyO sin2wq-j (3.2) 

& sin2nu = pzO sin2nuo (3.3) 

py sin2nr = pyO sdn2n70 (3.4 

Here &u, tyu are unperturbed space charge parameters, 27ru~,27r~~ are unperturbed 
betatron phase advances between two adjacent interaction points, &, ,Byu are the 
values of the corresponding unperturbed beta functions at the interaction point. For 
considerably small value of &o, tyu and for vu, 70 being far from any integer formulae 
(3.1-3.4) yield the following approximate results: 

u=uo(l+&) (3.5) 
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7=,(1+g-) (3.6) 

P-7) 

Perturbed space charge parameters &, ty are defined by the same formula (2.13), 
(2.14) in which one should substitute the perturbed values of the beta function (3.7) 
(3.8). 

3.2 EMITTANCEFORTHEPERTURBEDMACHINE 

The change in the vertical emittance AElin of the weak beam due to change of 
the machine parameters can be found evaluating integral (2.18) to the first order in $. 
For the perturbation force in (2.15) one should take the linear part of the beam-beam 

Jorce (2.11) (2.12). 

Let us define the first order correction as: 

d% G(h,h,skm) 
WO WO 

Fz linm+Fy linm - 
Vo,m 

It is simpler to perform the space integrations first over VI and then over Vo. 

The integral of V! over VI is the second Green’s function moment P2 = po+p$$+ 
p$b2 + ‘,Zp3vov~, which has been evaluated in Appendix B of Part I’ [see formulae 
(B.12) through (B.15) for coefficients pi(B)]. Th e second Green’s function moment (of 
42K?2 = go + qit$ + qivb2 + 2q3vodo is found in Appendix B of Part II2 [see formulae 
(B.10) through (B.13) for coefficients qi(e)]. S ince neither P2, nor Q2 depend on ub, 
only the term containing Fy contributes to the integral over Vi. In addition to this, 
only terms in P2 and &2 which depend on wb contribute to the value of the integral. 
Moreover, since the unperturbed distribution function $0 (2.3) is symmetric in v;, only 
terms proportional to p3 and q3 contribute. We get: 

AE”in = -C (oym [ro,P3(t?m) + e] , 
cY m 

(3.10) 

. 
8 
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where <urn, 8 m are the unperturbed space charge parameter and the betatron phase 
advance from the first to the m-th sequential beam-beam kick (0 is defined in such 
a way that it is changed by 2a between interaction points, see Ref. 1 for definition). 
Using now the periodicity of the ring we rewrite the sum in (3.10) in the following way. 
We sum first over all homologous interaction kicks with the same cuym, mm. There 
is infinite number of such kicks spaced in betatron phase one from another by 27rB, 
where B is the number of interaction points on one turn. Then we sum over different 
interaction points:3 

AEF!in = 
cY 

-2 e SOyi E [TOiP3(eim) + q3~s~‘] 9 
i= 1 m=O 

(3.11) 

where 

8. :m =Oi,+2rB.m . (3.12) 

The expressions for the coefficients p3, q3 and for the sum over m in (3.11) can be 
-found in Appendix C of Part II. The result we get is 

‘E(,‘!in 2 B tOyi =-- 

cY B c 
i=l 4n70i 

(3.13) 

The minus sign in (3.13) is related to the focusing effect of the beam-beam force. 
(1) - The perturbed emittance of the weak beam Ey lin = cy + AE,, 1s now: 

E y lin 2 B tOyi -=1-C -. 
cY i=l 4w70i 

(3.14) 

3.3 EMITTANCE CHANGE DUE TO BEAM-BEAM INTERACTION 

We consider now the storage ring, parameters of which are modified by the linear 
part of the beam-beam force. The rest of this force, i.e., its nonlinear part, will also 
change the vertical emittance in the first order approximation. We use now the same 
formula (3.9) to find the change in the vertical emittance. The forces F, lin and Fy lin 
in it should be replaced by the following expressions for the nonlinear part of the force: 

1 
F -AZu dq 

I 
(e-Q - 1) 

2 n.1. = 
o [P + !I(1 - P)13’2 

(3.15) 



Fy n.1. = 

1 
(e-Q - 1) 

IP+90-Pv’2 * 

Repeating now the calculations done in Sec. 3.2 we get: 

AEf ’ 1 B %NbiPyi -= -- 
Elin B c i= 14~7ulPyri 

D(P) 9 

(3.16) 

(3.17) 

where 

D(p)= i dq , ( 
0 [P+9(1-PP)11 2 (q + 1)W ;, - 4 * t3*18) 

Integrals of this type are evaluated in Appendix C of this note. In this particular 
case we get: 

D(p)= [ 

2 1 2 
d2-pP@ - &-=j+1- 1 l+d$ . 

(3.19) 

-- 
For p << 1 

D(P) = -I+ Jir . (3.20) 

Hence, in this case 

AE(‘) 1 B 
CF 

i -m- -. 
Elin B ic14n7i 

(3.21) 

Substitute here Ey lin by (3.14), neglect the higher order terms in c and obtain: 

(3.22) 

This result can also be obtained directly from formula (3.9) if one uses unperturbed 
machine parameters and the full beam-beam force. Notice, that the nonlinear part of 
the force compensates for half of the emittance reduction due to the linear part of it 
(c.f. (3.22) and (3.14)’ respectively). 
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4. The Second Order Approximation 

To obtain the second order (in the space charge parameter) correction to the ver- 
tical beam emittance one should use formula (2.16) for the second order correction to 
the distribution function: 

As it is discussed above I use the perturbed machine functions and the nonlinear 
part of the beam-beam force (3.15) (3.16) including the linear part of it (2.11), (2.12) 
into the machine lattice. Here and further on I omit the subscript U?. for the nonlinear 
force Fz,Y. 

In (4.1) again it is easier to perform integration starting from the outer integral 
,and working in into the internal ones. The integration over dV yields: 

i\Et2) 
1 

/ 
4Il 

I 
= * [P + q1P - PW2 

x c Ayk / dh(pd&)u: + ~dWh(e-~ - 1) 
k 

K, = Ql 
24P + a(1 - PII ’ 

K -% 
v - 2Ey * 

Denote 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

---.el, 



then 

4,2(&) = / dqdv\vf eBKuvf G,(q, vi, vo, I& em) 

1 
AEf’ 

J 
da 

= o [P + q1P - P)1’/2 

x Id&T ,*[ A P2@k) (~o(Kd~vv&) - ~o(O)&,r(O)) G (4-g) 

(4.7) 

P-8) 

+ P3(Ok) C(IO(Kd1u2(Kv) - ~0(0)&(0))](& 2 + f-y $9, 
m Om 

Integrals IO, I,,, and Iv2 to be found in Appendix A. 

--- Substitute now expressions for F,, F’ and $0, then: 

-- 1 
aEt2) 

Y 7 o ip + ql(l _ pj11/2 k J da 
@ ‘2(ek) c( m glk + g3k) + P3(ek) G(g2k + g4k) 1 7 (4.10) 

where 

1 

glk = Al J dQ2 
o [p + q2(1 _ p)13,2 (dlh 42) - @l(O, 42) - WIl, 0) + %P! 011 PW 

1 

g2k = A2 J dQ2 
o [p + q2(l _ p)13,2 [@2h 42) - @P,(OY 42) - @2h 0) + @2(0,0)] (4.12) 

1 

g3k = A3 

1 

!?4k = 4 J 472 
o [p + q2(l _ p)1’,2 b4(n, 42) - @4(0, q22) - @4(41,0) + @4P7 011 (4.W 
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In these expressions I used the following notations: 

4 =- 

A2 = - 

A3 = 

, (4.16) 

(4.17) 

(4.18) 

wql, 42) = $ J dzdz’dydf/ IoIv,+xx’ ezp(-(L,+1)z2-2/2-(Lv+l)y2--5/2), (4.19) 
-- 

I +2(q1,&) = $ Jdxdx’dydy’ Id,pxd exp(-(L,+1)x2-x’2-((L,+l)y2-y’2), (4.20) 

%(ql, 42) = 5 J dxdx’dydy’ I&+y3/ exp(-(Lu+1)x2-x’2-(Lv+l)y2-y’2) , (4.21) 

*4h 42) = f J dxdx’dydd h-&yy’ exp(-(L,+ 1)x2-x’2-(Lv+l)y2-~2) , (4.22) 

where 

L 42 
u = p + qe(l -P) ’ 

(4.23) 

L v=q2 * (4.24) 

Integrals <p1,2,3,4 can be expressed as combinations of integrals fmn which are tabulated 
in Appendix B. 
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The result of tedious but straightforward calculations is: 

~l(Ql7 42) =[P + Ql(l - P)11’21P + qeo - P)13’2 

x 4142 e -2a+26e sin2u$h sin278 
s3/2s3/2 

1 2 

(4.25) 

@2(41,42) ‘[P + a(1 - Pv’21P + q2(1 - P)13’2 

x ql(l + q2 - q2 e-268 cos2d) eB2@ sin2v$ 
s3/2s3/2 

1 2 

(4.26) 

@3(Ql, 42) =[P + a(1 - P,11’2[P + q2(1- PC2 

(1 i- Q1)( 1 + q2) CO8278 - fjlfJ2 C-2be COS2?e( 1 + 8h2d) c2’* (4-27) 
X > 

sl/2s5/2 
1 2 

@4(Ql, 42) =[P + Al - PV21P + !laP - PC2 

{ 
(2 - ql)(l + 42) + qlq2 e-26e ~08~~0 

> 
e-2be sin278 

X s1/2s5/2 7 
1 2 

where 

Sl = [P + q1(2 - P)] [P + q2(2 - PM - QlQ2 e-2ab cos2d 

s2 = (1+ q1)( 1+ 42) - 4142 fC2’* Cf-18~7$ 

(4.28) 

(4.29) 

(4.30) 

In all above formulae for the sake of abbreviation, 4 and 8 denote q!Jk-4m and &-em. 

From now on I will restrict the calculations to the case of a flat beam, aspect ratio 
of which is small: 

&i=%iKl. 
Qx 

(4.31) 

-- 
This case is the most common one for large storage rings and allows one to simplify 

substantially the integrations in (4.10). Since there is no exponential factors involved 
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anymore, one should not expect the loss of accuracy while expanding the expressions 
in (4.10) in the power series in parameter Jir. The corresponding integrals can be 
found in Appendix C. 

The final result for the vertical beam blowup, i.e., the ratio of the rms value for 
the perturbed beam C, to the rms value of the unperturbed beam ay is: 

CY EY -= -. 
n- 

& 
UY EY PYO 

(4.32) 

where 

+ f iyj {&B $( iyj+i-1 wlj,j+i-l + izj+i-1 w2j,j+i-l) (4.33) 
j=l - 

A 
Y”‘-’ ’ w3j,j+i-l + tzj+i-1 w4j,j+i-l 7 

-- 

where 

(4.35) 

are the zeroth order terms of the expansion of the space charge parameters of the 
perturbed machine in the power series in fi. The factors W have the following 
meaning 

t3( I. + COSZ’TiO) - 
1 -co82rie 4 

4=5 1 -Gfi CO82di (4.36) 

w2j, j+i-1 = 
_ d5 E ,-26e-2a4 $ sin2riB 8iTl%li(b 

e=o z1 

w3j, j+i-1 = E e-26e 8in2@ 
e=o 

(4.37) 

(4.38) 



co 
w4j,j+i-l = c ew2@ 8in2Ui$b 1 

e=o 
(2-$+ ~p”-Q$-;]] . (4.39) 

Here 

21 = 4 - C-2a’ COS2Ui$6 , (4.40) 

22 = 1 - e-26e cos2qS , (4.41) 

(4.42) 

and (i,j= 1,2...B) 

0 z Boj,j+i-l + 2nBt , (4.43) 

4 E $Oj,j+i-1 + 2nBe ) (4.44) 
a - 

where Buj,j+;-1 and 4Oj, j+i-1 are initial vertical and horizontal betatron phases of 
the i-th interaction point if the j-th interaction point is considered to be a starting 
one. The prime on the sum sign in (4.36) means that the value of the zeroth term in 

.--it should be taken with the weight l/2. 

The summation procedure leading from formula (4.10) to formula (4.33) is devel- 
oped in Part III3 for summing the sextupole perturbations. I refer reader to work3 for 
more details. 
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5. Discussion and Numerical Illustration 

There are several interesting points which are worth being mentioned here. 

1. Apart from damping each term in the infinite sums (4.36) through (4.39) de- 
pends on 0 and 4 only through the functions sin278 or CO8278 and sin2u$ or 
CO82U4 correspondingly. This is a consequence of the antisymmetric beam-beam 
force, which is assumed in the present work. 

2. The nonlinear character of the dependence of the terms in the sums W on sines 
and/or cosines, produces all kinds of the nonlinear resonance enhancements in 
the beam blowup. The condition for nonlinear resonance of the (m+lc)th order 
for an imperfect ring is as follows: 

2uBm + 2TBk = e (5-l) 

where m, k, and e are any positive or negative integers. An infinite number of 
these resonances are positioned on each of the resonance lines (5.1). The sums 
W represent the result of simultaneous action of all such resonances. 

*- 3. An ideal symmetric lattice with B identical superperiods and B interaction 
pointsdoes not differ from a lattice built out of one superperiod and with only 
one interaction point. Hence for the symmetric ring without errors formula 
(4.33) should be (and indeed is) invariant under the following transformation: 

u, a, r, 6, B) = (5.2) 

4. Due to the damping of the oscillations, the blowup appears to be finite even 
when the perturbed tunes u and r are exactly on one of the resonance lines (5.1). 
Still the magnitude of the blowup at such a point should not be considered to 
be strictly correct since here breaks the validity of the perturbation theory. 

5. Formula (4.33) explicitly depends on the damping rates a! and 6, but its con- 
struction (especially the form of the sums WI and W2) is such that the result 
for tunes away from any resonance (at least for an ideal ring) does not depend 
on the values of cy and 6 separately (but only on their ratio a/S). The reason 
for this is the following. Summations in formulae (4.36) through (4.39) result 
effectively in the appearance of resonant denominators, in which the damping 
constants enter as quadratic terms. Away from any resonance such terms are 
negligibly small in comparison to the term depending on the distance to the 
resonance, since we assume that 6 << r and Q << u. These inequalities are 
usually well fulfilled. 
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Since the zeroth term in (4.36) is taken with the weighting factor l/2, the sums 
WI and W2 are proportional to 6. A more detailed discussion of such behavior 
of the sums like (4.36) can be found in Part II of this work.2 In regions around 
the resonance lines (5.1), where the approximation is not valid anyway, the 
magnitude of the blowup does depend on the damping rates. 

The dependence of the beam blowup, not on the damping rates o and 6 sep- 
arately but only on their ratio, can be very effectively used to decrease the 
computation time” needed to perform summations in (4.36) through (4.39). 

6. Formula (5.1) once more implies the importance of the machine imperfections 
in the problem of the beam-beam instability - the fact understood as the result 
of computational studies. l1 Indeed, the resonant structure of the beam-beam 
blowup is richer for the machine with imperfections. Expression (4.33) allows 
one to take into account several causes of the breaking of the symmetry of 
the storage ring: differences in betatron phase advances per superperiod, ,& 
asymmetries and asymmetries in bunch currents. 

To give an idea of the results which might be obtained by application of the derived 
--formula, I present here (as an illustration only) the results of calculation for the current 

PEP configuration. Since no imperfections of the machine are included, the results 
cannot be compared to an experiment. 

Table I 

The unperturbed nominal PEP parameters used in 
the numerical example, presented in Figs. l-7. 

Particle energy 
Full beam current (strong beam) 
Value of the amplitude function at interaction point 

horizontal plane 
vertical plane 

Coupling factor (the ratio of vertical to horizontal emittances) 
Number of interaction points 
Horizontal tune per superperiod 
Vertical tune per superperiod 

14.5 GeV 
24.0 ma 

3.0 m 
0.11 m 
0.01 
6 
3.545 
3.032 
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Let us first look on the tune dependence at given values of all other machine pa- 
rameters, in particular of the strong beam current. Figures 1 through 4 present the 
beam blowup (i.e., the ratio of the vertical rms size of the bunch perturbed by the 
beam-beam interaction to the unperturbed rms size) in function of the unperturbed 
vertical tune for several different values of the unperturbed horizontal tune. One can 
clearly see the resonant regions where the blowup actually occurs. Several main res- 
onances are identified with the help of the horizontal and vertical perturbed tunes, 
dependence of which on the unperturbed values are presented in Figs. 5 and 6, cor- 
respondingly. Remember though, that the beam blowup at each point is the result of 
the simultaneous action of the infinite number of resonances which appear at the same 
place. 

Next, Fig. 7 illustrates the dependence of the beam blowup on the beam current for 
one particular point of the tune diagram. The rising branch of the curve is a natural 
one and it is easy to understand. The falling branch needs an explanation since it is 
never observed in real life. One can attribute absence of the the decrease in the blowup 
magnitude with the current increase to several reasons. The most obvious one is the 
negligence of the coherent beam-beam instability. 12-14 It produces two main effects: 

z‘H) creates additional unstable regions for the tune values, depending in particular on 
the number of bunches and b) offsets the bunches at the interaction points breaking 
thus the assumption of the head-on collision. The machine imperfections neglected 
here should produce much more dense mash of the resonances, especially close to the 

” half-integer to where the tune is shifted with the increase of the current. That also 
can eliminate the falling branch of the blowup. 

At last it is not excluded that the decrease in the blowup might be connected to the 
failure of the perturbation treatment used in present work. Indeed, both space charge 
parameters grow with the increasing current. This point deserves serious attention 
and additional study. 

In conclusion it might be said that the derived approach presents the first quanti- 
tative treatment of the beam-beam interaction, at least for the case of not too large 
current. 
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APPENDIX A 

Integrals of the Green’s Function 
Weighted by a Gaussian Exponent 

In this Appendix I present the results of evaluation for the integrals of the type: 

co 

Imn(q7 u, u’, 0) = JJ dvdv’wm(v’)n e- QV2 G(v, Y’, u, u’, e) , (A-1) 
-co 

where m, n are integers, q is a constant and G(v, u’, U, u’, 0) is the Green’s function of 
the Fokker-Planck equation1 representation of which one can find in Appendix A of 
Part I. Since G is proportional to exponent of a polinomial of the second order (both 
in V, V’ and U, u’), the integral (A.l) is easy to evaluate for any m and n. I tabulate 
here in terms of Green’s function coefficients Ai(i = 1,. . . , 10) three integrals of the 
type of (A.l) which are used in the present note. Let us define: 

exp( -Rlu2 - R2( u’)~ - 2R3uuI) 
-=- Irnn(q, u,u’, 0) = 

$GzG 

x (60 + ~$21~ + S,(U’)~ + 263~~‘) 

-where - 

here 

-- 

_- 

R1 = Q A; 
1+!l/A 4A; ' 

R2 = Q Ai 
l+qlAl 4Aq ’ 

R3 = Q A7;is 
1+&h z$ ’ 

Al 
4 =Al-- 
4A2 ’ 

A7 
2A3A9 =A7-- 

4A2 ’ 

(A-2) 

1 

(A-3) 

(A-4) 

(A.5) 

(A-6) 

(A.7) 

---.aQ 
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(A-8) 

Expressions for Ai(i = 1, . . . , 10) to be found in Appendix A of Part I. Expressions 
for 6i(i = 0, . . . , 3) are tabulated in Table A. 

m 0 = 

n=O 

m 2 = 

n =o 
2. - 

m 1 = 

n 1 = 

Table A 

Coefficients 6 in the integral Imn. 

60 = -A3/4.42 Al (1 + q/ &I 

tjl =Ag~7/QA2~l(1+q/AI)-A3~~/8A2A~(1+q/A1)2 

6, =Alo;la/4AzA1(1+q/Al)-~~~/8A2;1’4(l+q/A1)2 

& =Ag&/8A2&(1+q/&)+Alo&/8Az&(1+q/Jil) 

-A3 A7 &J /8A2 aq (1 + q/ AI)~ 



APPENDIX B 

Table of Several Useful Integrals 

Here are tabulated some integrals which are used to evaluate integrals @ i(i = 
1 l"', 4) (see Sec. 4). Let us define: 

frnn(a, P, 7) = JT dudu’um(u’)n exp(-cm2 - Pi - 2yuu’) (B-1) 

and 

7 
n 

,-m 

-0 

1 

2 

3 

4 

,,. 
0 

0 

7r/3/2A3 

0 

31rp2/4A5 

Table B 
Integrals fmn(a, P, 7) 

1 

0 

--s7/2A3 

0 

-37@7/4A5 

0 

2 

m/2A3 

0 

+p + 2r2)/4A5 

0 

-3?r@(a@ + 4q2)/8A7 

3 

0 

-3m y/4A5 

0 

-3wa(cr~ + 4r2)/8A7 

0 
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APPENDIX C 

Evaluation of Some Integrals With Algebraic Functions 
in the Limit &I < 1 

The calculation of the weak beam blowup by a strong gaussian beam involves 
several integrals with algebraic functions with ,/@  = ay/crz as a parameter (see Sec. 
4). Here I collect relevant integrals. 

Let us define: 

1 

I(A, B, a, 6) = J dq2 

o (A + Bd2(a + bzd’/2 ’ 

where 

A = p2 + ~(2 - p)ql 

2- B = ~(2 - p) + (2 - P)~ q1 - q1 e-2a’ COf~~v4 

a =1+q1 

6 = 1+ q1( 1 - e-26e COS2d) . 

Integral I is tabulated inr5: 

Differentiation by a yields: 

dI 1 I 1 1 

~=&G%(,/~+,/~)-fi(~+~) (C-7) 
Differentiate this equation once more by 6 and expand in the power series in ,/jj. The 
lowest order term is: 

iPI 1 
dbda= 2z1/2q;‘2a( a + 6)3/2 ’ 

V8) 

(C.1) 

(C-2) 

(C-3) 

(C.4) 

VW 

W.6) 

26 
‘--.d 



where 

Zl = 4 - e-258 cos2d . 

Expansion of 81/&z itself yields: 

Similarly, 

and 

2?L l (I-2E) 
aAaa - 2,q qf12a312 @j 

1 

- 2zy2*y2 dG&fb + &T3)2 ’ 

W.9) 

(C.10) 

(C.11) 

(C.12) 

The second integration over dql in all the terms is reduced to the integrals collected 
in Table C. The following identity is helpful at certain places of calculation: 

1 da+b fi 

2Ja+b(J&+&T6)2=~-2a(a+b) 
(C.14) 

& 1 --- 
a2 2(a+b)(/b+Ja) ’ 
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Table C 

Some integrals with algebraic functions 
I(4 = Jo’ f(x, qM?- 

.-- 

(q + x)+ 

(q + x)-3/2 

q-‘P(q + x)-W 

(q + x)-5/2 

Q -‘P(q + x)-W 

q-‘/2( 1+ q)-‘(q + x)-112 
fi 

arctan s d- 

q-l/2( 1+ q)-‘(q + x)-312 

Q -l/2( 1+ q)-2(q + x)+ 

&p a~&zn J- 
2 

isi - (z-l)z(z+l) 

b-2) 
05/2 arctan&$$+@j 

-- 
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Figure Captions 

Ratio of the perturbed rms vertical size of the bunch C, to the unperturbed 
one uY versus the unperturbed vertical tune ru per one superperiod of PEP. The 
unperturbed tune is 3.528 (= 21.17/6). The strongest resonances are identified 
by the lowest order integers for perturbed vertical r and horizontal u tunes 
(for example, 2u - 27 = 1 represents all resonances m(2v - 27) = n?, where 
m is any integer). The widths of the resonance curves represent the estimate 
for the upper boundary, i.e., the step size in the increment of the independent 
viariable. The actual resonance curve might be narrower. 

The same as Fig. 1, but the unperturbed horizontal tune in 3.537 (= 21.22/6). 

The same as Fig. 1, but the unperturbed horizontal tune is 3.545 (= 21.27/6). 

The same as Fig. 1, but the unperturbed horizontal tune is 3.553 (= 21.32/6). 

The dependence of the perturbed tune (curve 1) and the space charge parameter 
(curve 2) on the unperturbed tune for the horizontal plane. 

The dependence of the perturbed tune (curve 1) and space charge parameter 
(curve 2) on the unperturbed tune for the vertical plane. 

The beam blowup Cy/oY as a function of the full strong beam current I in amp. 
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