
SLAGPUB 

June 1983 

T 

NOSONOMY OF AN UPSIDE DOWN HIERARCHY MODEL -II* 

VADIM KAPLUNOVSKY t 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 04305 

a- ABSTRACT 

We study supersymmetry breaking in the spectrum of ordinary-energy par- 

ticles induced by the inverse hierarchy mechanism. General techniques for com- 

puting non-supersymmetric interaction and mass terms are developed and illus- 

trated on a toy model example. Application of these techniques to the upside 

down hierarchy model leads to the conclusion that the so-called “sliding singlet” 

mechanism does not work. 

Submitted to Nuclear Physics B 

* Work supported by NSF grant PHYLA-26847, Al-3. 
# Address after September 1983: Physica Department, Princeton University, 

Princeton N. J. 08544. 

---.* 



1. Introduction. 

In our previous paperI’ we described several serious difficulties which arise 

when one attempts to build a realistic grand unified model based on Witten’s 

upside down hierarchy I21 idea. The difficulties are primarily connected with the 

necessity of including a light (mass - 1OTeV) color octet superfield in the model 

in order to make the inverse hierarchy work. This changes the renormalization of 

the color coupling in a way that destroys many standard GUT predictions. The 

original purpose of the present paper was to describe another difficulty with the 

model which has to do with the breaking of the Glashow-Weinberg-Salam [GWS] 

symmetry by radiative corrections. We will show that although the GWS scale 

of - 100 GeV is naturally generated by the model, actual SU(2) @3 U( 1) breaking 

requires a fine tuning of parameters to accuracy of nine significant digits. 

In the (rather long) period that it has taken us to prepare this paper for pub- 
*- lication the inverse hierarchy mechanism has (justifiably) lost whatever appeal 

it originally had. However, the general idea of heaving large scale ( > 1OOTeV) 

supersymmetry breaking in a sector which is almost decoupled from presently 

obser.vable physics has been incorporated into a variety of other models. Gen- 

erally the coupling between the hidden sector and the ordinary world is non- 

renormalizable; in some models it comes through exchange of superheavy par- 

ticles while in others it is supergravitational. In all such theories there will be 

radiative corrections to the effective Lagrangian of the light fields which depend 

logarithmically on the large ratios of energy scales in the model. The techniques 

that we have developed to sum these logarithmic effects in upside down hierar- 

chy models are applicable (with small modifications) to this more general class 

of models. 

Section 2 of this paper contains a general formalism for computing the ra- 

diatively induced supersymmetry breaking mass terms for light fields in inverse 

hierarchy scenario. In particular we show that scalar fields that are massless at 

the tree level develop radiative mass2 terms only starting at the two-loop level. 

Nevertheless, we develop techniques that allows for summing all the leading-log 
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radiative corrections while using the one-loop renormalization group equations. 

In section 3 we apply our general formalism to a supersymmetric SU(5) GUT 

in which SU(2) @  U( 1) is unbroken at the tree level. We show that for the range 

of parameters in the original Lagrangian, the correct pattern of SU(2) @  U(1) 

breaking arises as a radiative correction. The model involves two Lagrangian- 

level scales - scale of an explicit supersymmetry scale and the Grand Unified 

Scale - which are both put in by hand despite a large ratio between them. 

There is also an “ordinary” fine tuning that makes the SU(2) -doublet Higgses 

massless at the tree level. Although both the scale hierarchy and the fine tuning 

are stable against radiative corrections, they are artificial and we do not propose 

the model as an answer to all the problems in the world.* 

Section 4 is devoted to the inverse hierarchy model. Although this model 

naturally produces a range of widely different mass scales, we show that the 

correct pattern of SU(2) @I U(1) breaking can only be obtained by fine tuning -I- 
which must be corrected in each order of perturbation theory. We also calculate 

-the radiative masses of scalar quarks and leptons; the results add yet another 

disease to the model’s nosonomy. 

The nervous reader can now jump to the conclusion. 

* It might however arise as an effective low energy approximation to one of the 
more ambitious models described above. 

3 



2. General Analysis. 

In this section we will give a general discussion of supersymmetry breaking 

terms of dimensions 2 and 3 in the effective Lagrangian for the light sector of an 

inverse hierarchy model. We have shown in our previous paper that these models 

have four well separated energy scales: 

l a Lagrangian scale M which we expect to be about 101o-lO1l GeV (this is 

also the primary supersymmetry breaking scale of the model); 

l a Grand Unified scale y - 1016-1018 GeV; 

l a “mirror” light scale M2/y - 1OTeV at which supersymmetry breaking 

manifests itself in the particle mass spectrum; 

l and finally the GWS scale crM2/y - 100GeV. 

The latter is the characteristic scale of radiatively induced mass terms for 

*- fields that happen to be exactly massless at the tree level. It is these supersym- 

metry breaking effects that we wish to calculate. 

We will work in the superfield formalism. 13-‘1 Since we are interested in the 

light sector we would like to integrate out all the heavy fields in the model. The 

resulting effective theory is described by an effective superspace Lagrangian that 

is generally is given by 

qa,, a)+, V) = K(cP, *+, V) + w(a) - s2(e) + W(d) - 62(e) ) P-1) 

where K is some &local function of superfields 0, @t and V and their covariant 

derivatives. By the famous non-renormalization theorem15~31 the superpotential 

W does not differ from its tree-level value 

At the tree level 

(2.2) 

Ko = at e2VoT Cp + Tr ew2’ Da e2’ ) D2 ( e-2v Dae2v) + ~.c.] (2.3) 
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which is just the gauge invariant kinetic term. In a renormalizable theory K 

absorbs the wave function renormalization. Its gauge-kinetic part becomes 

Kkin = cpt zs e2V.T Q, 

(2.4 
zv 

+TrEiGe [ ( -29ae2v)D2(,-2V Da e2’ ) + HX.] , 

where the wave-function renormalization matrices Zs and Zv commute with the 

gauge group. 

In the superfield formalism spontaneous supersymmetry breaking is taken 

into account by giving an expectation value to the auxiliary superpartner of the 

Goldstone fermion. The correspondent superfield therefore has a d-dependent 

VEV. For the Witten-O’Raifeartaigh mechanism of supersymmetry breaking 

Goldstino belongs to the chiral supermultiplet Y whose scalar component has 

ir 
-I- GUT-breaking VEV y. 

The wave-function renormalization factors 2 that appear in (2.4) are gen- 

erally complicated non-local functionals of Q, and V. However, we are interested 

only in momenta << y so that Z-factors are simply functions of Cp. On the other 

hand, Z-factors depend not only on the light fields a’, but on the large VEVs as 

well; in particular, they depend on the VEV of Y. Since the expectation value 

<Y>= y + F,&? is e-dependent, Z-factors also become e-dependent. It is 
this e-dependence of Z-factors that accounts for supersymmetry breaking in the 

effective Lagrangian for the light fields. 

Let us now compute the explicit e-dependence of the Z-factors. Hermiticity 

of the Lagrangian of the chiral superfields + requires Zs to be a hermitian matrix, 

therefore 

z,(e) = zs azs - 
=O + f3Y o=o -0 -F;: 88 

(2.5) ’ 

+ 
CV2Zs 

t aYc3Yt EO 
- IFgj2 eeee . 
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On the other hand, gauge invariance of the action for the vector superfields 

requires Zv to be chiral,161 therefore 

z,(e) = z,l 
B-0 

.Fy 88 . 
b=O 

( 2.5)v 

From now on we will omit the specification I, ==O 
in component decompositions 

and z-space expressions. 

Let us now return to the effective action for the light sector. In order to 

understand the supersymmetry breaking effects one would.like to have a conven- 

tional z-space Lagrangian. The latter can be obtained by substituting (2.2) and 

(2.4) into (2.1) , expanding various superfields into components* and integrating 

over the fermionic coordinates 0 and 8. The [rather cumbersome] result of such 

an integration can be found in appendix A. 
.2- 

-i 

The next step involves renormalization A I-+ Zi'12A , q I+ Zi1j2 JI , 

H eZv -l/2 v -l/2 
Y x-f& x and elimination of the auxiliary fields F and 

D. This leads us to a canonical Lagrangian 

_ - 

L = Lq + L3 + L2 ) P-6) 

where Ld collects terms of dimension d. L4 is supersymmetric; it includes all 

kinetic terms and all gauge, Yukawa and 4-scalar interactions. The renormalized 

coupling constants are given by 

e’ = eZF112 , XFjk = XijkZ;‘/2ZJY1/2Zi1/2 . (2.7) 

(Here we have diagonalized [the c-number components of] the Z-matrices.) 

On the other hand, L3 and LB are not supersymmetric; generally they are given 

* Z-matrices are considered as explicit soft supersymmetry breaking parameters 
and are expanded according to (2.5) . 
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bY 

L3= 2 
[ 

’ M’ IIri@j + MLtXFjkA!AjAk ij + H.c. 1 
+ :Mj XX + hijk(mi + mj + mk)AiAjAk 

[ 
+ H.c. 1 (24 

L:! = - (M:iMLj + 6ijMs) AiAj - M&(Ei +mj)AiAj + H.c. 1 
where 

(2.9) 

Eli 
alnZi Far = -.A 

.2- aY 2 * 

Here we have assumed that Z-matrices can be diagonalized together with their 

derivatives; when this is not the case, equations (2.8) and (2.9) become very 

complicated. We will return to the non-diagonal case in section 4. 

Equations (2.9) may be further simplified when the scalar expectation value 

y is hierarchically large, as in inverse hierarchy models. In such theories Z(y) = 

Z(ln y) + O(M/y) . Systematically neglecting higher terms in (M/y), we will 

consider only the logarithmic part. Then 

Ma = 
alnZ, Fy 
alnY ‘2y 

tlli 
3lnZi Fy = -.- 
3lnY 2y ’ 

l-l F!l 
2 

Y 

(2.10) 

Before proceding to a renormalization group analysis one should carefully 

separate In y from In y t . The renormalization factor Zv is complex ( Zv( 0) is 



chiral) and depends on In y only. On the other hand, Zi are hermitian and 

depend on lnlyl = ’ In 2( y + In yt ). Renormalization group equations involve as 

an independent variable 

7~ Ink! 
A 

1 In wt 
=2 p 

where A is an arbitrary mass scale. Reexpressed in 

become 

(2.11) 

terms of r, equations (2.10) 

J+-$ .E.!$ I P 
4/ WZVI MS = -. 
2y a7 

(2.12) 

Fy alnZi mi = -‘- . 
2y ar 

-*- Since in perturbation theory the I-loop contribution to Z or to 1nZ is an I-degree 

polynomial in $ln # = $(r-ln M/X ) , Mp and zi are of order 0 (3) while 

iif = o((g$). In particular, there are no one-loop contributions to 
Mf . .We see that all supersymmetry breaking terms in f 3 + f 2 belong to the 

same scale 0 ($$) that should be therefore identified with the GWS scale. 

Let us now apply the renormalization group techniques to calculating the 

Z-factors. The absence of renormalization of W makes it convenient to perform 

the renormalization group analysis using bare coupling constants and running Z- 

factors as renormalization parameters. This is especially convenient when there 

are non-diagonal Z-matrix elements leading to field mixing. From now on we 

will drop matrix notations and denote by Za different non-trivial elements of 

Z-matrices (both Zs and Zv). In this formalism the renormalization group 

equations become 

dZa(P) - = rd{z,>,) , dlnp 
(2.13) 

where p is the renormalization scale at which Za are evaluated; Ia are of mag- 

nitude O((Y/?~). 
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At the GUT scale O(]y]) , the theory has a threshold. Generally the effective 

theories above and below the threshold look quite different. There are different 

sets of fields, different coupling constants, different renormalization factors (Zt 

above the threshold and Zf below it) and different I-functions (I’+ ({ Zj” }j) 

above and I’: ({ Zf }b) below). At the threshold scale y* broken and unbroken 

theories match each other and ZB become expressable in terms of ZA : 

z,B(P = Y) = FG({zt(P=Y)}i) * (2.14) 

These matching conditions are perturbative. At the lowest order most of them 

are trivial, i.e. ZfCY) = Zta)(y). At higher orders they become polynomials in 

CK/?T but they do not involve large logarithms. Higher order corrections depend 

also on the choice of a renormalization scheme, but we need not worry about 

that in the leading-log approximation. 
-2 - 

Before we to solve equations (2.13) AJ3 we have to establish boundary con- 

-ditions. For the unbroken theory above y they may be fixed at an arbitrary scale 

A > y . Obviously these conditions do not depend on y. Hence for any fixed scale 

p > y, Zt(c() do not depend on y. On the other hand, boundary conditions for 

the broken theory below y (given by equations (2.14) ) do depend on y. Thus for 

any fixed scale p < y, Zf(p; y) depend on both p and y. It is this y-dependence 

of ZB at fixed p that will give us radiative supersymmetry breaking. 

In most cases we cannot solve equations (2.13) analytically. Although one 

can always do it numerically, obtaining the second derivative of the numerical 

solution with respect to a parameter [r] is a rather hopeless procedure. Instead 

we will obtain g and g at a scale p just below y and write down renormaliza- 

tion group equations for these derivatives. Those equations may now be solved 

numerically. 

t Actually the threshold scale is C. ]y] where the coefficient C depends on the 
renormalization scheme. For notational simplicity we will denote it by y from 
now on. 
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Let us start with the renormalization group equations. Equation (2.13) B : 
q = rf({ zf}b) (t G In /I/A) holds for any value of 7. Differentiating 

it with respect to r and interchanging $ with & one obtains 

Similarly 

(2.15) 

(2.16) 

Having the renormalization group equations for ZB , s and $$! we 

need now boundary conditions for them. Equation (2.14) Zf(t; r) It=r = 

-Fa ({ Z:(i) }i) holds for all 7, t = 7. This allows us to take its full deriva- 

tives with respect to r . The left hand side gives 

$I,=, +rf({z,B(t= 7))b) , 
while the right hand side gives 

Equating the left hand side with the right hand side we obtain 

(2.17) 

where IA II and F I2 are functions of ZA(r), and IB II are functions of 

ZB(t = r) given by (2.14) . In a similar way one may derive the boundary 
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conditions for 3%: 

.rArA + aFa arf .rA 
i j izpq j 

(2.18) 

Let us now reexamine our initial conditions for the unbroken theory. We 

had to keep A fixed above y to derive equations (2.17) and (2.18) . After we 

have evaluated g and q and derived their renormalization group equations 

(2.15) and (2.16) , we no longer need to keep r as a variable parameter. On the 

other hand, with y fixed, solving the equation (2.13) A for the unbroken theory 

becomes totally redundant. Since A is an arbitrary fixed scale we may simply set 

A = y and set the parameters of the unbroken theory just above the threshold. 

-=- If we now set Z-factors equal to their canonical values at this scale, then this is 

equivalent to defining our bare couplings as equal to their renormalized (running) 

values at the Grand Unified scale. 

We may now formulate our recipe for obtaining radiative masses to a relative 
order n in a given model. 

1. Describe both unbroken and broken theories ( their sets of fields, couplings 

and relevant Z-factors ). 

2. Choose the renormalization scheme (for n > 0). Fix the parameters of 

the unbroken theory at the threshold scale* . 

3. Calculate the renormalization group I-functions for both unbroken and 

broken theories to (n + l)-loop order. 

4. Derive the matching conditions (2.14) to order nt . 

J See the footnote on page 8. 
7 One should integrate out the heavy fields of the broken theory. For n = 0 this 

integrating out is mostly trivial (unless there is a field mixing), but it would 
not be trivial for n > 0. 
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5. Obtain ZB, @$ and s at t = r for the broken theory from equations 

(2.14) , (2.17) and (2.18) . 

6. Solve the renormalization group equations (2.13)B , (2.15) and (2.16) 

and obtain ZB , g and g at t = r at the low-energy scale. 

7. Obtain radiative mass terms and 3-scalar couplings from equations (2.8) 

and (2.12) ; running renormalizable couplings (supersymmetric) at the 

low-energy scale are given by equation (2.7) . 

In the next section we are going to apply the formalism derived here to 

a simple toy model. The treatment of an actual inverse~hierarchy model is 

postponed to section 4. We would like to finish this section with two comments: 

1. 

2. - 

2. 

The formalism we have derived here is easily generalized to the case of 

several thresholds (we will use it in section 4). The only necessary condition 

is that all tree-level supersymmetry breaking has to originate from a single 

O’Raifeartaigh mechanism. 

Our formalism can be extended to models with local supersymmetry bro- 

ken by the O’Raifeartaigh mechanism. In such theories both the Goldstone 

superfield and the chiral compensator of supergravity17i are chiral super- 

fields. We may use a linear combination of them for our Y field. Our 

formulae (2.14) , (2.17) and (2.18) should now be replaced by ap- 

propriate supergravity formulae, but the renormalization group equations 

(2.13)B, (2.15) and (2.16) are still applicable. 
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3. Toy Model. 

The renormalization group equations for Witten’s inverse hierarchy model are 

exceedingly complicated and there is no limit in which they become analytically 

tractable. Rather than simply present the results of a numerical investigation of 

these equations, we have decided to illustrate our formalism with a toy model. 

Our toy model involves explicit soft supersymmetry breaking that mimics in- 

verse hierarchy and fine tuning of the “Set it and forget it" type,I*l but its 

phenomenology bears closer resemblance to the real world than that of the up- 

side down hierarchy model. We do not present it as a viable model of particle 

physics but rather as an illustration of the mechanisms which determine scalar 

masses and SU(2) @ U(1) breaking in SuSy GUTS. 

The model has SU(5) gauge symmetry and the following set of chiral super- 

multiplets: 

l 3 generations of matter (i.e. quarks and leptons) $J [ each (10 + 5) under 

SUl5) 1. 

l N pairs of [Weinberg-Salam] Higgs superfields (Hi + 77;) [ each (5 + 5) 

- under sU(5) 1. 

l SU(S)-breaking Higgs B [ 24 under SU(5) 1. 

0 SU(5) singlet &. 

Its superpotential is given by 

w= ;X1(Tt@+YTrB2)+;X2Q3 

+ C Gil’ Hi (B + ViY)Hi + C G\:’ Hi HjQ 
i ij 

+ Higgs-matter couplings . 

(3-l) 

Y is a non-dynamical superfield whose [constant] value Y = y + FM is an 

explicit supersymmetry breaking parameter. In a more realistic theory Y would 

be dynamical. For phenomenological reasons y - 1016GeV and m E a,, . 

13 
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(F/y) - 100 GeV, so F - (10" GeV)2. Since we want some SU(2)-doublet 

Higgs to remain massless we should tune one of the Vi to be 

v=2+ 
3F 

4ox1y2 4 (3.2) 

This fine tuning (Sv - lo-l4 ) , however unwanted, is technically natural in the 

sense that once established it will survive radiative corrections to all orders of 

perturbation theory (there is no renormalization of u). 

For the supersymmetric theory (for F = 0) there would be 3 degenerate 

vacua. When the supersymmetry is broken (i.e. F # 0) the degeneracy splits. 

The true vacuum (the one of the lowest energy) has 

<B>=R. 
0 0 0 -2 0 2. - 
0 0 0 0 -2 

(3.3) 

Many of the fields in the theory get masses - M. The surviving light 

superfields are: 

l SU(3) @  SU(2) @I U( 1) gauge superfields; 

l Matter superfields T+!J ; 

l Q; 

l SU(2)-doublet parts of some (H + H) pair which we should denote by 

(Hz + H2 ) ; we suppose that only one such pair survives at low energies. 

Their superpotential is 

WB = 4x2 Q3 + g2 Q H2 H2 + H-$ couplings . (3-4 

and they do not feel supersymmetry breaking at this stage of the approximation. 

Our first goal will be to calculate the masses of scalar quarks and leptons. The 

non-gauge couplings of the corresponding superfields are very weak. Indeed, even 
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for a t-quark of mass N 35 GeV the one-loop effect of its Yukawa coupling to H 

would be comparable to the two-loop effects of the gauge couplings. This allows 

us to neglect H-$J couplings entirely, so we are left with the gauge couplings 

only. In this approximation the one-loop renormalization group equations are 

exactly soluble. 

The renormalization group functions for the unbroken SU(5) theory are 

rA 
e2 

e5 = s-t lo-N-2G) 

r$ = 
e2 

g-$ - z?j c5w z;l 

while the broken SU(3) @J SU(2) @  U(1) theory has 

rB 
e3 

= &-(Q-2G) 

rB = e2 
e2 &2’( 5-2G) 

rt = -$.(G-2G) 

(3.5)A 

(3.5)B 

The matching equation (2.14) trivializes now to 

zf =z$, z; =zt =z; =zt . 

Here $ is the bare gauge coupling constant while the running gauge couplings 

are given by ai = $. ZG’ . C5 , C3 , C2 and Cl are SU( S), SU( 3), SU( 2) 

and U(1) quadratic Casimirs. Their values for different matter fields are given in 

15 
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Table 1 below. 

Table 1. 

Let us fix boundary conditions Ze5(A) = Z$(A) = 1 at some scale A > y . 

Equations (3.5) then give us 

Ze5(y) = l+$.(lO-N--2G) 

Z,(P) = I+$&-N)+$(S-2G) 

Zq(p)= I~+$*(F-N)+$.(-~-~G) 

(3.6) 

for the gauge renormalization factors and 

lnZ&d = 
c5wd 

lo-N-2G - ln &5(Y) ; 

(3.7) 

ln Z,(P) = 
c5w C3W) C2W) cl(+) 

lo-N-2G - ~ - ~ - Q-2G 5-2G -;-2G 1 - ln Ze5(Y) 

c3wd c2w 
+ me1nze3tp) + 5 2G*1nzt&) + 

Cd?4 
- - 4-2G * ln Zel(lL) . 
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for the renormalization factors of the matter fields. Here /.J is the low energy 

scale, t E lnp/A, and r EE In y/A (t < 7 5 0). Differentiating In Z@(p) with 

respect to r becomes now straightforward. Reexpressing the result with the help 

of the equation (2.12) we obtain mass2 terms for scalar quarks and leptons.* 

M$ +$I’.{[ C5(q!4 - (10 - N - 2G) + C3($) - (2G + 2N - 11) 

+ C2($4. (2G + 2N - 15) + Cl($). (2G + 2N - y)] 

+ In y/p -. 
2n 

%@) ’ hdd + %b)) . C3($) . (1 _ N)2 

&5(Y) 
(3.8) 

+ a2(4 - (a2(!4 + &5(Y)) . C,( $,) . (5 _ N)2 

(y5(Y) 
+ 44 * km) + a5(Y)) 

&5(Y) 
*clt~HpJ)2]} - 

We would like to remark that only the term in the first square bracket in (3.8) 

could have been obtained perturbatively (by a tedious 2-100~ calculation). The 

terms in the second square bracket are the leading-log corrections; they are not 

small compared to the 2-100~ term. The masses of the gauge fermions can be 

obtained from equations (2.12) and (3.6) : 

Me3 = -$~3W--N) 9 

Me2 = &*oz(e)*(5-N) 7 

Mei = & * d4 * g - N) * 

(3.9) 

* We have neglected contributions to L2 due to Mr. This approximation is 
justified for scalars that are much heavier than their fermionic partners, i.e. 
for all scalar quarks and leptons except t-quark. 

17 



Although the derivation of equation (3.9) was straightforward, its interpre- 

tation is not. Me2 and Me, are Majorana masses of the W-ino and B-ino in a 

theory with mas.sle.ss W and B. When the Glashow-Weinberg-Salam SU(2) @I 

U( 1) theory is spontaneously broken down to U(l),, gauge fermions mix with 

the Higgs fermions. Diagonalization of the gauge/Higgs fermion mass matrix 

requires knowledge of the pure I-Eggs masses which depend among other things 

on the accuracy with which (3.2) holds. As for the gluino mass, equation (3.9) 

gives us the current mass evaluated at the scale /.I = O(lOOGeV ) . Calculating 

of the corresponding constituent mass and relating it to the masses of various 

oddballst is a complicated &CD problem. 

To proceed with the evaluation of (3.8) and (3.9) , we note that our toy 

model has the same gauge coupling renormalization as the minimal SuSy GUT. 

With 3 generations of matter, o:(O) = 137 and AGcD N 100MeV as our input 

parameters we have a:(p) = 128 and cri’(p) N 9 in our “low”-energy world 
2- 

atp=i& N 160GeV. This requires the scale “y”= 2M, to be N 1016 GeV 

and o;‘(y) = 24.6, which in turn determines the low-energy values of ~1 and 

cr2. In particular sin2 e,(f.t) = 0.233. Thus our relevant couplings are: 

cr5(y) = l/24.6 ; 

~3(P) = l/Q ) 

~~(1”) = l/29.8 , 

(Y&J) = l/59 . 

(3.10) 

The Casimirs of quarks and leptons are given in table 1. Straightforward 

substitution of (3.10) into (3.8) and (3.9) gives us the masses of the scalar 

quarks and leptons and of the gauge fermions. Table 2 summarizes them for 

N= 1 and N = 2. 

t The name “oddballs” for the R-odd particles was suggested by S.Meshkov. 
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Q 1.03 1.18 

U 1.13 1.28 

D 0.78 1.11 

L 1.05 0.77 I Table 2. 

* All masses are given in terms of m S %mw . y 

Note that for N = 1 the gluino comes out massless. We may assume that 

the next-to-leading corrections would repair this defect, but they would give us 

% - 0.05 in our units which means a few GeV. The current lower limit on 

the gluino masslo is about 5 GeV, so our result is acceptable, but not entirely 

welcome. The obvious way out would be taking N > 1. Anyhow we would need 

an extra pair of (5 + 5) Higgses for cosmological baryogenesis. 

We have expressed the masses of R-odd fields in terms of m. In order to get 

an answer in GeV we must relate m to Mw. Indeed, we must first show that 

WWW(1) b rea in k g occurs so that Mw # 0. This requires us to evaluate the 

parameters of the effective Higgs potential at the low energy scale cr. If relation 

19 
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(3.2) holds exactly and the doublet Higgs mass vanishes exactly at the tree level, 

the Higgs potential becomes 

v = ep * i 
W12- lH12) + (pq2. pi2 _ . 2 

4 COG ow IH HI ,) 

+ sf - l&12( IHI2 + lH12) + IbQ2 - g&HI 
(3.11) 

+ SrbQ [ 
+2~&&77H + X,m+Q3 + H.c. 1 

+M&-(IH12 + lH12) + M$-IQI~ , 

where X, EE X~/ZHZ~‘~ , gr ZE g2/ZG’2 , ezr z e2/.&s are the renormalized 

couplings and masses MQ , MH , q and fzl, are given by equation (2.12) . If 

the tree-level doublet Higgs mass did not vanish exactly, but were of magnitude 

*- - lOOGeV, the mass terms in (3.11) would become more complicated. We will 

not investigate this possibility here. 

The renormalization group equations for 2~ and ZQ are not solvable ana- 

lytically and we would have to use the general recipe developed in the previous 

section. Relevant Z-factors of the broken theory are 2~) ZQ, &s and Z,, . 

The “initial” values of these factors and their derivatives at t = r are given by 

equations (2.14) , (2.17) and (2.18) . Their actual values depend on the struc- 

ture of the coupling matrices G(l) and G(2) (we have defined Hi such that G(l) 
(1) is diagonal). Let us now make a simplifying assumption that Gi G gl and 

G(2) 
:.I E g2Sij ; it will not affect our conclusions. We would also like to assume 

that the Yukawa couplings of Higgses to matter are small enough compared to 

the other couplings and may be neglected in the lowest order.* Then at t = r 

we have: 

ZH = ZQ = zez = z,, = 1 ; (3.12)I 

r(r This assumption is valid unless t-quark is too heavy. 
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8X2 azH - = l3? 
; ,!2 

8n2 - azQ 
87 

= (2-5N)gi ; 

(3.12)11 

64a4 3 = (;+;N).e4 + (ggf -3g;)-e2 

+ (5N -2)-g; - 
( 

576 + 120N 
25 

g:! + g xf > 27: 
(3.12)I*I 

a2zQ 
64~~ d72 = 

60N - 39 SN-2 
5 e2 + 2 

A; - y (SN-4)gf 

- (SN-l)(SN-2)g+g; . 

Renormalization group equations for Zez and Z,, are solved analytically (see 

.-- (3.6) ). Th e renormalization group equations for ZH , ZQ and their derivatives 

with respect to r look quite formidable; we have displayed them in Appendix B. 

Th ese equations are supposed to be solved numerically with initial conditions 

given- by (3.12) . Instead of solving them numerically for general values of 

couplings, we restrict our attention to the analytically tractable region X2, g2 < 

e. In that limit everything can be worked out exactly and 

ML = h$ + (~~~~')2.~(~~.[(96+lON)(%~ + 21(;) - 981 , 

FQ~(Y) 24 91 2 
(3.13) 

rnw = m, - 4ay -5’ e ( > 9 

while Mb = O(gg/e2) . m2, V+ = O(g%/e2) . m with all couplings normalized 

at A = y. The minimal value of Ma is obtained for X1 + 0 and (gl/e)2 = 

9&m. ForN= 1 it becomes -1.03m2 while for N = 2 it is -l.36m2. Roth 

of them are negative. Corresponding values of m are 0.93m and 0.71m. 

For negative ML, e2r >> gr >> 1, and lM$l, I$ < lM$l, m: the p- 
tential (3.11) has its minimum at < H >=< Hf > (up to a phase) with 
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I< H >I2 = (m; - MS) . (l/gr)2. This gives us the Glashow-Weinberg- 

Salam breaking of SU(2) @  U(1) to U( l)em with 

This in turn determines m to be 

m = 95 GeV . (St/e,, ) for N = 2 . (3.14) 

Since we have assumed g2 << e, this probably means. the scalar quark and 

lepton masses will come out small (0( 10-20 GeV) ). However, one should not 

take too seriously the case X2 << 92, XI < e , gl/e N Jw ; it 

was introduced for analytical convenience only. There is clearly a finite region 

of the parameter space in which our toy model gives the right qualitative low 

energy physics. It is a straightforward numerical exercise to map out the extent .3 - 
of this region and find the corresponding range of masses of the scalar quarks 

-and leptons as well as the gaugini. However, since we are not advertising our 

toy model as a true picture of the origin of SU(2) @  U(1) breaking, we will not 

burden the reader with a set of numbers to compare with experiment. 
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4. Upside Down Hierarchy Model. 

In the previous section we have illustrated our techniques on a simple toy 

model. Now comes the time to apply them to a complete inverse hierarchy 

model and to add some new diseases to its already long nosonomy. We will make 

it in three steps, therefore three subsections of this section. The first subsection 

serves to describe our model and to explain how it presumably works. The second 

one is devoted to renormalization group analysis of the gauge couplings and to 

computing masses of the scalar quarks and leptons. The last subsection deals 

with the sliding singlet mechanism and its troubles. 

4.1 DESIGN OF THE MODEL. 

Except for notational changes, our choice of a particular inverse hierarchy 

model is the same as in our previous papers. lr”Jl Its superpotential is given by 

.a- W = xzyx-82) + X’X’.(Tr(B2) -M2) 

-I- g HBH + ~QHH (4.1) 
+ Higgs-Mat ter couplings , 

where chiral superfields B and X belong to 24 of SU(5) , X’ and Q are SU(5) 

singlets and (H + H) form (5 + 5) Higgs pairs. Since the fields X and X’ couple 

only to B, the inverse hierarchy mechanism works exactly as described in [l]. 
The SU(5) d p y an su ers mmetry breaking VEVs are given at the tree level by 

20000 

X’M 02000 

<B>=-- 00200 x 0 0 O-30 00004 
<x1>=;. <Y> 

20000 

x’ 02000 

<x>=-.<y>. 00200 
x 

l 1 
0 0 O-30 

0000-3 

(4.2) 
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where 

<Y> = Y + Fy ee , 

XX’M2 
Fy= x 

, 

(4.3) 

while y is undetermined at the tree level, but is provided with a huge value 

(>> A4 ) by the inverse hierarchy mechanism. 

Let us take a moment to explain our reasons for introducing the “sliding 

singlet” Q . SU(5) is broken primarily by the large ( O(y) - 1018 GeV) vacuum 

expectation value of the X field; the expectation value of the B field points in the 

same direction in the group space but has much smaller magnitude ( O(M) - 

-~- 1O’l GeV). However it is the expectation value of B that determines the mass 

splitting between the SU(2)-doublet Higgses and their SU(3)-triplet partners. 

-The role of Q is to provide a common offset for these Higgs masses, so they 

become 

MH2 =d<Q> -=g<B> , 
d:O 

(4.4) 
MH3 =d<Q> +&g<B> . 

If Q was a parameter, then it could be fine tuned to exactly cancel the mass MH~ 

of the Weinberg-Salam doublets and thus allow them to develop SU(2)-breaking 

VEVs. Note that this would not be a “set it and forget it” type of fine tuning. 

The desired value Q2 of Q is determined in terms of an expectation value <B > 

which is corrected in each order of perturbation theory. 

Instead of keeping Q as a [fine tunable] parameter, we chose it to be a dy- 

namical scalar superfield whose expectation value is indetermined at the tree 

level. If for some reasons < Q > is close to Q2, then MH~ is small and the 
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doublet Higgses may be considered as light fields. In such case we may apply the 

techniques of section 2 to obtain their effective potential: 

VH = “22 - (IH,l;o;2’;‘z) + ( lH12. lHl2 - lH-H12) 
W  

+ d2-j~~12(j~12 + 1~1~) + d2jH-Hf (4.5) 

+ khcH -AQHH + H.c.] + M&(IH12 + lH12) , 

where A& G Q - Q2 and H denotes the doublet part of the Higgs multiplet. 

For g’ < e2 the minimum of VH occurs at H = Ht (up tb a phase) and VH 

reduces to: 

-a- where A’& = Q - Q2 EE Q- 92 -(m, /g’) . If M& - lgHj2 is negative, then 

for A’Q small enough H develops a non-zero VEV and breaks the low-energy 

gauge symmetry SU(3) @  SU(2) @  U(1) down to SU(3), @I U(l),, . 

The range of < Q > permitting further symmetry breaking is finite, but 

quite narrow: its width ( - m/g’) compared to the natural scale O(M) of Q 

is very small. Why should the VEV of Q fall into this narrow margin? To 

explain such a lucky choice one has to remember that the tree-level potential 

for Q is completely flat. For large A’Q VH is positive definite, vanishes at 

its minimum, and thus is also indifferent to Q. However, when Q comes within 

the narrow margin around Qi, which realizes SU(2) breaking, VH is no longer 

positive definite. VH reaches it absolute minimum for Q = Qb that allows the 

maximal VEV of H. So the vast plateau of the effective potential develops a dip 

centered at precisely the right point. The dip is narrow ( - m/g’) and shallow 

( - m4/ g’2 ) , but as long as it remains the only topographical feature of V(Q) 

the VEV of Q has no choice but to fall into it. 

One should note, however, that exactly the same mechanism can produce 

a second dip for Q near Q3 which corresponds to color breaking. With two 
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dips separated by a flat terrain, the choice becomes twofold, and the actual 

outcome seems to resemble Russian roulette, which we would rather avoid. Since 

the existence of each dip is determined by the sign of ( Mi - Im,I ) for the 

corresponding parts of H, we would like to have negative ( M2 - m2) for doublet 

Higgses while keeping the corresponding value for triplet ones safely positive. We 

have seen in section 3 (and will see again in the next subsection) that scalar quarks 

tend to be somewhat heavier than scalar leptons, so one might expect to have 

only the “right” dip for certain values of parameters. 

This mechanism was invented independently by several authors,llO~lll most 

of whom have also realized that it does not work. The prbblem is that equation 

(4.6) is incomplete: In addition to VH , radiative corrections induce a curvature 

for the effective potential for Q itself. While this curvature is comparable to that 

at the dips, VQ has a much larger range. Hence its characteristic magnitude is 

of order O(M2m2) as opposed to the O(m4/ g’2) magnitude of the dips. The 

*- true value of < Q > depends mainly on the detailed shape of VQ, much more 

so than on the radiative corrections to VH ! 

This disaster will be avoided only if VQ happens to have it minimum precisely 

at Q2 f 0( 100 GeV).* We will argue that this can be achieved by a fine tuning 

of parameters (with Q-digit accuracy) which must be corrected at each order of 

perturbation theory. Clearly this model does not solve the hierarchy problem! 

However, since we have already done the calculations, we will not allow this 

minor problem to prevent us from presenting our results. 

4.2 GAUGE COUPLINGS ANDTHEIREFFECTS. 

In section 2 we have developed the techniques allowing us to calculate the 

radiative masses of scalars and gauge fermions. We have illustrated these tech- 

niques on a toy model example and promised to deal with the real inverse hier- 

archy model later. The goal of the present section is to repay this debt. 

* This is the overly optimistic assumption we have made in our cosmological 
paper.l’Ol 
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Unlike the toy model of section 3, the inverse hierarchy model has not one 

but three thresholds, and it causes additional complications. The highest of the 

threshc?ds is associated with the dynamically produced scale y which we would 

like to be ‘Y-I lOI - 1018 GeV. In the SU(5) model the Grand Unified symmetry 

is b&err at this scale all the way down to SU(3) @  SU(2) @  U(1) ; in bigger 

models (like SU(6), SO( lo), &, etc. ) one might expect to have a somewhat 

bigger symmetry group surviving until the next threshold. The second threshold 

in the inverse hierarchy theories is associated with the original (Lagrangian) scale 

M - lOlo- 1O’l GeV. Even if this threshold does not affect the gauge group 

itself (as it does not in the SU(5) model), it does affect the Higgs multiplets and 

thus affects the ,&functions of the gauge couplings. 

The third threshold at the “mirror” scale WT f 9 N 1OTeV is due to 

light components of the X multiplet. The only mass terms available for the 

components of X and X’ are the Dirac (i.e. off-diagonal) masses- M between 
.z- them and the superheavy components of B. The resulting mass matrix looks like 

Y M H-~ M 0 

with eigenvalues y and M2/y N WT that correspond to B and X superfields. 

(For more details see [l].) 

The unbroken theory has SU(5) gauge superfields and its set of non-singlet 

chiral superfields consists of: two superfields (X and B) in the adjoint represen- 

tation (24), G (10 + 5) generations of matter and N (5 + 5) Higgs pairs. 

All broken theories have the same set of gauge superfields - that of SU(3) @  

SUP) @  UP) - since the gauge symmetry is not broken at the second or at the 

third threshold. The non-singlet chiral superfields relevant in the energy range 

M to y are: X8 and X3 which together constitute the adjoint representation 

of SU(3) @  SU(2), and all matter and Higgs superfields. In the energy range 

WT to M we still have X8, X3 and all matter superfields, but only one pair of 

((1,2, +1/2) + (1,2, -l/2)) Higgs superfields survives below the second thresh- 

old. Finally at the third threshold we lose the X superfields, and the effective 
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theory in the 100 GeV to 10 TeV range has only matter superfields and one pair 

of Higgs doublets. 

The above information is sufficient to compute the gauge r-functions in each 

intermediate energy domain. (We use here the notations of section 2 in order 

to simplify the calculation of the radiative masses later in this section.) Since 
the computation is straightforward we simply present the results in the Table 3 

below. 

TABLET 

r-functions of the gauge fields 

FIELD RANGE 

.?- group I?-function (Mw to WC) (WT to M) V-f to Y) 

UP) - r$=$x (+ 2G) (+ 2G) (0 -N - 2G) 

W( 2) r;=$x (5 - 2G) (3 - 2G) (4 - N - 2G) 
- - 

su(3) rz = & x (9 - 2G) (6 - 2G) (6 - N - 2G) 

Corresponding ,&functions are given by 

. 

A conventional next step of the renormalization group analysis of any GUT is 

computation of the GUT scale from the low-energy values of the gauge coupling 

constants. As we have already reported in [l], the results of such computa- 

tions are disastrous: with three generations of matter QCD loses its asymptotic 

freedom and becomes non-perturbative before the Grand Unification scale is 

achieved. Restricting the model to two generations only makes the perturbative 
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analysis valid, but the resulting GUT scale is 4 orders of magnitude above the 

Planck mass. 

Therefore, we are forced to give up the phenomenology and consider the 

model as a semirealistic prototype. The least painful deviation from reality is to 

give up aem = l/137. We have arbitrarily decided to set y N 1018 GeV while 

keeping AQ, N 1OOMeV. This choice leads to the following values of the gauge 

couplings at ~1 N 2Mw 

Q3b) = l/Q.5 9 

a2(j4 = l/25.4 , 

q(p) = l/49.3 ) 
(4.7) 

.? - 

which in turn imply crem(0) = l/114. 

We are now ready to compute the radiative masses of scalar matter fields 

and gauge fermions. The procedure we have now to follow is an exact copy of 

the one we have followed when exploring the toy model of section 3. All we need 

is to compute the renormalization factors Zx and Zv and to differentiate them 

with respect to r (7 dependence of WT - M2/y should be treated as explicit 
- that accounts for supersymmetry breaking in the spectrum of x3,8). After 

manipulating a few rather lengthy equations* we obtain the radiative masses of 

the gauge fermions 

(4.8) 

* Our intermediate results are similar to equations (3.6) and (3.7) , but the 
abundance of different scales and couplings makes them about three times 
longer. 
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and the scalar matter fields 

+ l$r ’ C ci(+) ’ { -@Y;(y) + D+;(m) 
i 

(4-Q) 
+ lny/M -. 

27r [ ay(M) tQ5(Y) + &Am)) 

+ ai (4(Y) + Q3m))]a(Dr)2 

+ 1nWP 
27r ’ ai(P)ai(m) tai(PL) + ai( *(OH + @)‘} - 

Here the index i runs over the set { 1,2,3} and 

e- 
DH(l,2,3) = (5,1,-l) 7 
+(1,2,3) = (0,2,3) . 

Note that masses of the gauge fermions do not depend on the number of 

Higgs pairs N or even the number of generations G. On the other hand, masses 

of the scalar quarks and leptons depend on N and G both explicitly (via the 
coefficient in the first term in (4.9) ) and implicitly, since the values of the gauge 

couplings at different scales depend on the numbers of generations and of Higgses. 

The latter (implicit) dependence makes it hard to see directly from (4.9) the 

overall effect of changing N or G on the scalar masses. Therefore, we have simply 

evaluated this equation for several values of G and N. 

The results of this evaluation look disastrous. For G = 2 and N = 1 the 

superpartners of the right-handed leptons come out with negative mass:!. Obvi- 

ously one cannot allow non-zero vacuum expectation values for any electrically 

charged field, so we have to drop this case. Increasing N makes things even 

worse: not only the mass 2 of “right sleptons” becomes more negative, but the 

mass2 of the “left sleptons” (i.e. the superpartners of the left-handed leptons) 
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becomes negative as well. For sufficiently large N even scalar quarks get negative 

mass2, although this may be questionable since in this case &,5(y) is too large to 

trust the lowest-order perturbation theory. 

There appear to be only two ways to avert the disaster: one has to set either 

N =OorG= 1. The first choice is an obvious nonsense - one cannot make 

a light pair of Higgs doublets out of nothing. Therefore we have to deviate one 

step further from low-energy reality and give up the second generation of matter 

as well as the third. Table 4 below summarizes the masses of scalar matter and 

gauge fermions for G = 1 and N = 1 or 2. 

I Masses of R-odd fields 

Table 4. 

* All masses are given in terms of m f f%wI(O)Fv y . 

The troubles we have encountered in this section appear to have a common 

source with the renormalization diseases we have reported in [l]. A supersymmet- 

ric theory burdened with the X multiplet above the GUT scale and its remnants 

X3 and X8 below, does not have enough asymptotic freedom. Although we could 

not prove the connection between asymptotic freedom and the scalar masses, the 
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conjecture is tempting. The coefficient in the first term in (4.9) is proportional 

to the (-) p-f unction of SU(5). Addition of extra Higgs fields or extra gener- 

ations affects all scalar mass2 terms in the same direction - it reduces them. 

Scalar quarks are always (in our model) heavier than scalar leptons. It might be 

that all of the above is a sheer accident, but most likely a model with enough 

asymptotic freedom to reproduce the phenomenological values of the gauge cou- 

plings would have positive mass2 terms for the scalar matter fields. Of course 

the test of this conjecture will have to wait for a better model than SU(5). 

4.3 SLIDING DISASTER. 

.e- 
The original idea of the automatic adjustment of < Q > to allow for the 

GWS symmetry breaking was based upon a [wrong] assumption that the effec- 

tive potential for the sliding singlet Q is dominated by (4.6) . Unfortunately, 
- - that equation is incomplete since radiative corrections to the renormalization 

factor ZQ also contribute to the effective potential VQ. One may expect from 

equation (2.8) the magnitude of VQ to be O(m2Q2) (m was defined in section 

3 as am(0)FY/y and we use the same definition here) while (4.6) amounts to 

O(m2M,$) only. Since < Q >- M >> Mw , we may neglect (4.6) entirely and 

compute VQ in accordance with the general recipe of section 2. 

Let us begin our analysis with the description of the effective theories in dif- 

ferent energy domains. The effective theory for energies above the highest thresh- 

old y has unbroken SU(5) as its gauge group while its superpotential is given by 

equation (4.1) in which we may neglect M and Higgs-matter couplings.* The 

* Since we have given up the third and even the second generation of matter, 
we are left with Higgs-matter couplings of order O(10B5) only. 
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effective theory below y has the gauge group SU(3) @SU(2)QbU( I). For energies 

ranging from M to just below y the effective superpotential is given by 

W = & S.(Bf - iif2) - F-Y 

(4.10) 

B1.(2H3H3 - 3H2H2) + dQ-(H3& + H&z) , 

where our notations follow those of the previous sections. Matter superfields 

along with X3 and X8 do not appear in the superpotential-although they con- 

tinue to interact via SU(3) @  SU(2) @I U( 1) gauge couplings. At the energy scale 

M the superfields B1, S, and (H3 + H3) become massive. Superfields H2 and 

H2 will also become massive unless the expectation value of Q obeys 

.z- 
:; 
., ! 

= m s’ < Q ’ = 3 f o(1o-g) u- s<Bl> (4.11) 

Whether this happens or not is exactly the question we are interested in. 

Naturally we would like first to satisfy equation (4.11) at least approximately 

at the scale M. Only after we succeed we will be able to discuss lower energies, 

since the very field content of the effective theory below M depends on equation 

(4.11) . Therefore, let us begin with a close examination of the fields relevant at 

energy scales between M and y. There are two SU(3) @  SU(2) @  U(1) singlet 

superfields that couple to Higgses, namely Q and B1. Once SU(5) is broken, 

there is no conserved quantum number that can distinguish between them. Any 

symmetry, discrete or continuous, under which Q and B1 transform differently, 

would not be a symmetry of the superpotential (4.10) (this includes the so called 

R-symmetries as well). Thus, the theory contains nothing that can prevent these 

fields from mixing. 
This field mixing could complicate significantly the effective renormalized su- 

perpotential. Fortunately the no-renormalization theorems allow one to work 

instead with the unrenormalized superpotential and non-canonical kinetic terms. 
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In this formalism condition (4.11) should be interpreted in terms of the bare cou- 

pling constants g and g’ and the unrenorma1jzed fields Q and B1, but otherwise 

remains as stated. In fact, it was precisely for this reason that the renormal- 

ization group analysis of section 2 was developed in such formalism. However, 

equations (2.8) and (2.12) were derived for renormalized and unmixed fields 
and we would like to rewrite them. An expression for the scalar potential in 

terms of the unrenormalized fields can be derived by eliminating auxiliary fields 

from the general Lagrangian of appendix A. Omitting the gauge-induced quartic 

interactions as irrelevant to the following discussion we obtain the effective scalar 

potential 

+ (gg z;l (Z) 

+ [ $ .(gfZ;l%A + H.c.] . 

(4.12) 

In a supersymmetric limit FY/y + 0 the vacuum state of our model has 

< Bl >= j@ while < Q > is arbitrary. Since the only field mixing in the model 

occurs between Q and Bl and the VEV of B1 does not break supersymmetry, 

only the first term in (4.12) depends on Q. Let us denote by U the two-by-two 

block of the matrix in the first square bracket in (4.12) that corresponds to B1 
and Q. Then the effective potential for Q is given by 

(4.13) 

Implications of equation (4.13) depend on the sign of UQQ , therefore there 

are two cases. For UQQ > 0 the potential (4.13) is unbounded from below. 

Since equation (4.13) breaks down for I&I >> M this unboundedness is only 
artificial. What it actually means is that the minimum of the total potential is 

achieved for < Q >- y. Obviously we should reject this case as unacceptable 

since it implies that all Higgs fields become superheavy. 
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We have not completed the renormalization group analysis of u or Higgs 

masses. In the case of our toy model we have filled a page (see appendix B) with 

the renormalization group equations for only two fields and their derivatives. 

In the present case, however, one has to deal with coupled equations for five 

different fields (Q, B1, S, H2 and H3 ) plus one field mixing parameter (2,~). 

The resulting set of equations looks really fearsome. We doubt that the MX 

program that was used in printing this thesis could handle such a monstrosity 

without exceeding the computer memory limitations. Even the initial point (t = 

7) values of some derivatives of Z’s were quite complicated due to non-trivial 

matching conditions for S. In contrast with the toy model the inverse hierarchy 

theory allows for no limit in which those horrible equations became simpler. 

The only exception was the case g = d = 0 in which Higgs multiplets became 

indistinguishable from leptons or quarks. On the other hand, even the complete 

set of equations could be easely solved by putting them on a computer. That we 

-~- have not done so reflects not only our laziness, but also our low opinion of the 

viability of the model. 

The conclusion of the analysis we have presented in this section is sad, but 

unavoidable: the idea of a sliding singlet is stillborn despite all its beauty. The 

fine tuning involved in such an “automatic” adjustment is much worse than that 

involved in adjustment by hand. The only remaining hope (within the framework 

of inverse hierarchy) rests on models of the Grinsteinl121 type. Unfortunately such 

models tend to involve huge representations that make the problem of insufficient 

asymptotic freedom even more acute. 
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On the other hand, for UQQ > 0 the potential (4.13) has a minimum at 

<Q>-<Bl>- M. This minimum leads to a finite value of u given by 

- 

u = d30 9’ b, ----. 
9 uQQ 

(4.14) 

The last equation, when combined with criterion (4.11) , spells the disaster: the 
sliding singlet “solves” the second hierarchy problem only if a ratio of 
two perturbatively calculated functions is tuned to g-digit accuracy. 
Indeed, UQQ and UBQ are both obtained by perturbative calculations. They 

both vanish at the tree level and their leading terms are firdportional to I$$/?. 

Their ratio (and therefore v ) depends on various couplings in the theory. 

Worse than that, u suffers from higher order corrections. Therefore, any 

attempt to tune parameters of the theory to achieve u = 3 will require at least 

six-loop calculations. 1 Such calculations are clearly impossible with presently .z- 
existing techniques, so we need not elaborate on the subtleties involved in the 

high-order renormalization group analysis. Fine tuning of this kind is no better 

than that occurring in non-supersymmetric theories. In any case this situation is 

much worse than the “set it and forget it” kind of fine tuning which is common 

in supersymmetric models. 

In order to show that the necessary fine tuning is at least possible we have 

made a crude calculation of U using our general formalism. The calculation is 

done at the scale y and does not take into account renormalization effects. In 

terms of bare parameters we find 

uQQ =(4~)-~.29’~.( 6e2 - 23g2) , 

&Q = (43-497g$/$( -e2 - is2 ) . 
(4.15) 

In particular, for g2/e2 = 3/14 we find UQQ > 0 and u = 3. It is interesting 

to note that if we had desired W(3) breaking (instead of SU(2) ) we would have 

been disappointed. 
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5. Conclusions. 

The upside down hierarchy model is severely and, probably, terminally ill. 

Its diseases can be classified into three major groups. 

1. Renormalization syndrome. 

The gauge couplings of the model are insufficiently asymptotically free 

because of the existence of the light (mass - 1OTeV) chiral superfields in 

the adjoint representation of SU(3) @I SU(2) @ U(1). This fundamental 

disorder leads to the following symptoms: 

(a) with three [or more] generations of matter QCD loses asymptotic free- 

dom and becomes strong before Grand Unification can be achieved; 

(b) realistic values of the low energy parameters cam , AQCD and sin2 8, 

cannot be achieved for a GUT scale 5 Mplanck ; 

.e- - (c) with more than one generation of matter scalar leptons are tachyonic. 

The problem appears to be rather general. For any SU(5) model, re- 

gardless of any particular choice of a set of O’Raifeartaigh fields (X, 

-Xl, etc.), the intermediate energy theory would always contain an in- 

complete [SU( 5)] multiplet of the type ( <complete SU(5) multiplet> 

-(3,2,+5/6) - (3,2,-5/6)) h w ose effect on the GUT scale is identical 

to the one of (X8 + X3) in our model. Since all possible Grand Unified 

groups contain SU(5) as a subgroup,* the same argument applies to any 

inverse hierarchy model whose gauge breaking from the GUT group down 

to SU(3) @ SU( 2) @$ U( 1) occurs at a single scale y. 

The general inverse hierarchy framework allows, however, for two-stage 

GUT breaking. At the highest threshold y the Grand Unified group G 

is broken to some intermediate group Gr , and the subsequent breaking 

of Gr to SU(3) @ SU( 2) @ U( 1) occurs at an intermediate threshold M. 

* There are semisimple exceptions to this rule, but none of them can be incor- 
porated into the inverse hierarchy scenario. 
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Fields participating in the second breaking need not be light. Therefore, 

fields with masses - 1OTeV form a complete multiplet of Gr of type 

(<complete multiplet of G > - < G/G1 >), whose effect on the conver- 

gence rate of the gauge couplings is equivalent to the adjoint representation 

of Gr . Unfortunately, we have not been able to use this loophole to build a 

healthy inverse hierarchy model. We have considered several SU(6), SU(7) 

and SO(10) models, but none of them fared any better than the original 

SU( 5) model. 

2. Supergrave complications 

(a) An inverse hierarchy model inevitably involves a supersymmetry break- 

ing scale which is on the borderline of Weinberg’s cosmological bounds 

(with the most optimistic assumptions about R-symmetry breaking). 

.e- - 

(b) Supergravitational effects on the inverse hierarchy mechanism are not 

negligible. The detailed consequences of these effects have not really 

-been studied. (However see ref.[13].) 

(c) Supergravitational effects on the low-energy effective Lagrangian lead 

to scalar mass terms (and also bscalar interactions) whose magnitude 

is controlled by the gravitino mass. For y > ‘YMplanck these effects 

are stronger than the radiative ones and our computations of the scalar 

masses lose their validity. 

On the other hand, the superfield effective Lagrangian for the light fields 

absorbs the effects of supergravity in exactly the same way it absorbs the 

radiative corrections. Hence equations (2.8) and (2.12) can be used 

to analyze their combined effect provided we identify the Y field with an 

appropriate combination of the O’Raifeartaigh fields and the chiral com- 

pensator of supergravity. Moreover, the renormalization group equations 

(2.13)*, (2.15) and (2.16) also remain valid, although their boundary 

conditions (2.17) and (2.18) has to be corrected. This formalism may 

even be applied to computing renormalization effects in supergravity mod- 

els without an inverse hierarchy. 
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3. The real hierarchy problem. 

Despite the fact that inverse hierarchy models naturally generate a wide 

range of scales ( 1018, lo”, lo4 and lOOGeV), they do not solve the true 

naturalness problem of the GWS theory. SU(2) breaking at 100 GeV can 

be only achieved by unnaturally fine tuning. We do not see how to solve 

this problem without a disastrous destruction of asymptotic freedom (as 

in ref.[l2]). 

As far as we are concerned, these problems effectively kill the upside down 

hierarchy model. Of the various ideas generated by the model, the one that seems 

most likely to survive is the notion that supersymmetry. can be an important 

constraint on the low energy particle physics even if it is spontaneously broken at 

a scale above lOlo GeV. Theories based on this idea resemble the real world much 

more than those based on low energy spontaneous supersymmetry breaking. We 

believe that the calculational techniques that we have developed in this paper 

*- will be useful in this wider class of models. 
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APPENDIX A 
. 

This appendix is to display the z-space effective Lagrangian for the light 

fields. At this stage no renormalization is performed and auxiliary fields are left 

as such. We have worked in the Wess-Zumino gauge. 

L = F+Z,F + iv Zs ,Dl’ - (&A)+ Zs (DmA) 

+ &A+Z&-T)!I’ + 6*(x-T&A + A+ZJ’A 

‘V 02 
+ $2’ ( - 4ix,Dx - FmnFmn + iFmn Fmn) + H.c. 

+ \ki\Irj zy;’ + xx g 2 + H-C*] 
[ i j 

.z- 
+ Ft. 

[ 

d W(Af) 
i?At 

+ (f&Fy)A] + H.c. 

+ At 
a2Z 

ara? 

We have omitted all unnecessary indexes. 
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APPENDIX B 

This appendix is to display the renormalization group equation for Z, , ZQ 

and their derivatives with respect to 7 (See section 3 for details). 

3e2 Z 
8r2;ZH c-H+-- - 3e2 ZH 1 

- 4 ZQ 20 zq ” ZHZQ 

8r2gZQ = -AT x2 2 1 

‘Q 

.? - 

e6 
-zH*64;;6 

‘-*.a, 
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