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We perform an analytic study of some quantities relevant to 
the plasma beat-wave accelerator (PBWA) concept. We obtain 
analytic expressions for the plasma frequency, longitudinal Alec- 
tron velocity, plasma density and longitudinal plasma electric 
field of a nonlinear longitudinal electron plasma oscillation with 
amplitude less than the wave-breaking limit and phase velocity 
approaching the speed of light. We also estimate the luminosity 
of a single-pass c+e- linear PBWA collider assuming the energy 
and collision beamstrahlung are fixed parameters. 
Introduction Since the original proposal by Tajima and 
Dawson,’ the plasma beat-wave accelerator (PBWA) has received 
increased attention as a possible ultra-high energy particle ac- 
celerator because of the very high gradients thought to be pos- 
sible. In the PBWA, longitudinal electron plasma oscillations 
with phase velocities near the speed of light trap and accelerate 
charged particles to high energies. The electron plasma oscilla- 
tions are resonantly excited by two collinear beating lasers whose 
frequency difference is the electron plasma frequency. Gradients 
of 1 GeV/cm seem possible in a plasma of density 1018 cmw3. 

In this paper we obtain analytic expressions for various quan- 
tities relevant to the PBWA. The fluid theory of plasmas is used 
with the plasma assumed to be cold and collisionless and the ions 
formi?@ a stationary, neutralizing background. Finite plasma 
effects are-omitted here_ by taking the plasma as infinite. We 
will be concerned with the steady-state properties of the elec- 
tron plasma oscillation and not its generation. 
Nonlinear Waves in Plasmas The equations describing 
nonlinear waves in a cold, collisionless relativistic plasma have 
been previously given by Akhiezer et aL2p3 The fluid equations 
for the electron velocity O, electron density n, and the fields 6 
and fI are (barred symbols represent &vectors) 

a? ,,+(O.v)p=-CE-12(SXB) 
1 aB 

V*E=Ilne(ng-n), 0 XE==-c B1 (1) 

v.B=o, vxB= 1 aE -f++- - e at 
where p is the electron momentum 

and no is the equilibrium electron density. 

(4) 

(5) 

(6) 

where 

/-jp*+! ,,=t-; ,w;+!?. . (7) 
P 

Longitudinal Plasma Oscillations Equation (6) with uz = 
“Y = 0 describes longitudinal nonlinear waves in a cold, co& 
sionless relativistic plasma, 

where u = uz and p = pz. Rewriting this in terms of the 
velocity u alone yields 

d2 1 -@phU w;a;h” 
Pm=-’ Bph-" 

with corresponding first integral 

(Q) 

where C is an integration constant. Setting C = (1 -u&)-~/~ it 
is clear that u oscillates in the range --urn 5 u < u,,,, where urn 
is the amplitude of the longitudinal electron oscillation velocity. 

For a longitudinal oscillation, E = Ei and B = 0. From 
Eq. (3) the electron density is given by 

(2) The electric field is found from the first of Eqs. (1) to be 

(12) 

The wave motion is a function of the single variable i+-upht, 
where r’ is a constant unit vector in the direction of propagation, 

Using Eq. (lo), this can be rewritten as 

and uph is the phase velocity. Taking the vector i along the z axis 112 
and defining p = p fmc and D = O/C, Akhiezer et a1.3 obtain the * (13) following equations for the electron density and electron motion 

E(r)=&Jiy -- 
[ d&g J&y J 

from Eqs. (l), 

nOBph fl=- ) 
bps - "2 

Equations (11) and (13) give the density and electric field once 
u(r) is known. In the wave-breaking limit u,,, + BP,,, the density 

(3) develops a singularity. Physically the electric field wave steepens 
and breaks at this point, leading to turbulence. 
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The solution of Eq. (10) for arbitrary pph has been reduced 
to quadrature by Akhiezer and Polovin* and Cavaliere.’ For the 
PBWA we are interested in the limiting cme ppk 4 1. In this 
limit, u(r) can be calculated exactly and expressed in terms of 
the inverse of the elliptic integral of the second kind. For aph -+ 
1, Eq. (9) becomes 

0.6 - 
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0.2 - 
(14) 

Introducing the new variable 
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Fig. 1. The oscillation frequency ratio w/wp m a function of the 
longitudinal electron velocity amplitude um. 

We will denote the amplitude $J of E(+,k) by E”, the in- 
verse of the elliptic integral of the second kind. Equation (20) 
can be inverted for z(r) to yield 

l-u 
== 1+u ’ J- (15) 

Equation (14) transforms to 

(1’3) 

z(r) +y2 - [(p=r’2 - ()1’2] 
. sin2[E-‘((&J!!!)l”y ,/z)] 

(23) The first integral of this equation is 

where r = t - t/C (Up,, 4 c). From Eq. (15) the electron 
oscillation velocity is found to be corresponding to Eq. (10) with /I,h -, 1. 

Thevariable z oscillates in the range a 2 2 2 b, where 
dr) u(r) = c = l- z2(r) 

l+z2(r) * (24) 

The electron density is from Eq. (11) 
Integrating Eq. (17) yields 

n(r) = 2% 
1 - u(r) =gl+&) ’ (25) 

iwpr = (a - .;(z - b) dz ’ w 
and the longitudinal electric field is from Eq. (13) 

Choosing the initial conditions such that z = a at r = r, = 0, 
Eq. (19) becomes6 E(r)=&fiF 

where E < 0 for 0 < r < x/w and E > 0 for r/w < r < 
2x/w. 

The velocity u, normalized density n/no and normalized 
electric field -eE/mwpc are shown in Figs. 2, 3 and 4, respec- 
tively, for the case urn = 0.6. This case corresponds to the 
numerical simulations shown in Figs. 7 and 12 of Sullivan and 
Godfrey.6 Comparison indicates reasonable agreement between 
the analytical and numerical results. 
Luminosi* One Bgure of merit for any high-energy accel- 
eration technique ls luminosity. Here we estimate the luminosity 
of a singlepass e+e- linear PBWA collider assuming the energy 
E and collision beamstrahlung Q/E are fixed parameters. 

Neglecting the pinch effect, the luminosity for round Gaus- 
sian beams is given by 

where E(+,k) is the incomplete elliptic integral of the second 
kind and 

ti = sin-’ a-2 
d- 

b, p+!=$!+ . 
U- (21) m 

This choice of initial conditions corresponds to u = -urn with 
E = 0 and dE/dr < 0 at r = 0. 

From Eq. (20) the plasma frequency (tn/period) is 

x l-um 
( > 

114 WP -- 
w=2 1+um Q/w1 ’ 

(22) 

Lo = N2 //4x8’ , (27) where E(k) is the complete elliptic integral of the second kind, 
.-and wp is defined by Eq. (7). In Fig. 1 the ratio w/wp is shown 

as a function of the longitudinal electron velocity amplitude urn. where N is the number of particles per bunch, f is the colli- 
sion frequency of the bunches, and u* is the beam width at the 
collision point. 
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In the PBWA a bunch consists optimally of N particles in 
each plasma wavelength 1,. If the length of the string of bunches 
being accelerated by the plasma wave is I, then the total number 
of bunches is C/X,. Denoting the repetition rate of the lasers 
exciting the plasma wave by /c the collision frequency in Eq. 
(27) is 

/ = ft. w, . (28) 

Here we are assuming that one bunch from one beam in- 
teracts with only one bunch of the opposing beam and is then 
disrupted. If this does not occur, one might achieve an enhance 
ment in the luminosity due to multiple collisions of successive 
bunches. This effect is not considered here. 
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Fig. 2&bngitudinal electron velocity u = Q/C as a function of 
wr/$n, where w is given by Eq. (22) and r = t - r/e (a,h = l), 
for the case”,,, = 0.6. - 
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Fig. 3. Normalized electron density n/no as a function of wr/2r, 
where no is the equilibrium electron density, for the case um = 
0.6. 

When two bunches collide, the resulting electromagnetic fields 
deflect the particle trajectories causing the particles to emit syn- 
chrotron radiation. This ‘beamstrahlung” increases the energy 
spread in the beam, which the experimentalist would like kept 
to some minimum for the purpose of interpreting his results. 
For round Gaussian beams of energy E = ymc2, the fractional 
energy loss resulting from the collision is’ 

CE -=0.3252 2 , 
E (29) 1 

where r c = e2/mc2 is the classical electron radius, and ue is the 
bunch length. 

-- In terms of UE/E the luminosity is 
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Fig. 4. Normalized longitudinal electric field -eE/mwpc as a 
function of wr/2r for the case urn = 0.6. 
For the PBWA, uZ N X,/2 and / is given by Eq. (28). The 
luminosity is then 

Lo(P13WA) = -!- 3 @E ft *t - - . 
0.325 %i$ E 7 (31) 

The luminosity is seen to be independent of laser and plasma 
wavelength for fixed 7 and Q/E. 

If f4 is expressed in eec-l and t in cm, then numerically 

Lo(P13WA) = 8.2 x 103’ % y emB2twv1 . (32) 

For a 2 TeV CM. e+c- collider with a q/E of 10% and strings 
of accelerated bunches of length 3 cm driven by lasers pulsed 
once per second, Lo N 1030 cmw2 set-l. 
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