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ABSTRACT 

The evolution of six-quark color-singlet state distribution amplitudes is for- 

mulated as an application of perturbative quantum chromodynamics to nuclear 

wave functions. We derive and solve a set of coupled evolution equations for 

the deuteron S-wave amplitude. The solution of the evolution equations leads to 

a general matrix representation of anomalous dimensions which can be used to 

analyze the deuteron wavefunction at short distances. 
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1. Introduction 

In the past few years a number of new applications of perturbative quantum 

chromodynamics to nuclear physics have been explored’ including a qualitative 

description of the nuclear force in terms of quark exchange, and detailed predic- 

tions for the electromagnetic interactions of nuclei at large momentum transfer. 

Since the basic scale of QCD, Am, is phenomenologically of order of a few hun- 

dred MeV or less, QCD predicts a transition from the traditional meson and 

nucleon degrees of freedom of nuclear physics to quark and gluon degrees of 

freedom at internucleon separations of a fermi or less. In addition, because of 

asymptotic freedom, perturbative QCD calculations should become relevant at 
c- momentum transfer scales of order of 1 GeV or even less.2 

Recently, we have presented detailed QCD predictions for the asymptotic 

high-Q2 behavior of the deuteron form factor which are, in principle, exact dy- 

namical predictions of nuclear physics. 3 One of the most convenient and physical 

formalisms for analyzing exclusive processes with large transverse momenta is 

the QCD evolution formalism, based on a reformulation of the Bethe-Salpeter 

equation at equal light-cone time. In this paper, we present a detailed deriva- 

tion of a set of six-quark evolution equations for the deuteron S-wave amplitude 

and a convenient way to solve the derived equations. We then construct a gen- 

eral matrix representation of the anomalous dimensions from explicit solutions of 

the evolution equations in order to analyze the deuteron wavefunction at short 

distances. 

The evolution of the amplitude for simpler hadrons such as quark-antiquark 

meson415 and three quark baryon4 systems have already been formulated and 

solved. While these conventional hadrons have only one color singlet representa- 
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tion, the six-quark systems considered here have five independent color singlet 

representations. The formulation of the evolution equation for totally antisym- 

metric six-quark states is not trivial even though it is a natural extension of the 

three-quark case. 4 We have presented a general method for solving the QCD evo- 

lution equations which govern relativistic multi-quark wave functions.6 We have 

also applied it to a four-quark toy system in SU(2)c and derived some constraints 

on the effective force between two baryons. 7 However, since the antisymmetric 

representation of a multi-quark wave function must be constructed explicitly, it 

is hard in practice to solve the multi-quark evolution equation. In this paper 

we avoid this problem by exploiting the permutation symmetry of the evolution 

a- kernel. 

In Sec. 2, a completely antisymmetric six-quark wave function is constructed 

and an example of an explicit representation is presented. In Sec. 3, we de- 

rive a set of evolution equations for the deuteron S-wave amplitude through a 

generalized kernel equation for a completely antisymmetric six-quark wave func- 

tion. A convenient way to solve these coupled evolution equations is presented 

in Sec. 4. In Sec. 5, the general matrix representation for the anomalous di- 

mension is obtained. Results for the leading anomalous dimension are given in 

detail. Discussions and conclusions are followed in Sec. 6. In Appendix A we 

describe a general method determining color singlet representations and explain 

the methods leading to the explicit representations given in Sec. 2. In Appendix 

B we present the color factor calculations and the detailed expressions for the 

orthogonal kernels which have specific permutation symmetries. 



2. Six-Quark States 

Six-quark states can be classified by their symmetries under SU(3)c(color), 

SU(2)~(isospin), SU(2)s(spin), and spatial symmetry. Since the physical states 

are color singlets, the Young symmetry of the color singlet states of six-quark 

system is fc = (222) or H. In th e six-quark system, there are five independent 

color singlet states corresponding to five different Yamanouchi labels’ of (222) 

symmetry. The explicit representations of the five independent color singlet states 

and their correspondence to Yamanouchi labels is given in Appendix A. 

a- 
The completely antisymmetric six-quark representation ] (16) [654321] >fT,fcsO 

-’ which has Young symmetries for isospin (Sum) labelled by fT is given bylo 

1 (16j[6543211 >f~,fc.so = & c ??T IfT YT >fT I.?T ?T >fcso , 

T YT 
(24 

where YT is the allowed Yamanouchi label of fT (fT symmetry has NT different 

Yamanouchi labels) and the phase VT = f 1 = (-l)yT depends on whether YT 

is obtained from the Yamanouchi label with the indices in natural order by an 

even or odd number of transpositions. The dual symmetry states in the CSO 

space (represented by wavy lines) are used to construct the overall antisymmet- 

ric representations. It is convenient to construct a basis of completely antisym- 

metric six-quark representations from the combined color-spin symmetry. We 

thus introduce color-spin as an intermediate representation. For example, the 

specific projection of the the completely antisymmetric six-quark representation 

I (16> i654321l ‘fT,fCS,fO g which has Young symmetries for color-spin (SU(G)cs), 
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and orbital symmetry labelled by fCS, and f0 respectively, is represented bylo 

I (16)[6543211 ‘fT,fCS,fO = $ c c c VT < fCS yCS, f0 yO 1 fTFT > 
T YT YCS YO 

XI fTfi>I fCSyCS>I fOyO=- , 

P-2) 

where Yes, and Yo are the allowed Yamanouchi labels of fCS, and f0, and 

< fcsYcs, f0 Yo ] &YT > are Clebsch - Gordon coefficients of the permutation 

group SC. Now we decompose further fCS into fC and fS using Clebsch - Gordon 

coefficients < fcYc, fsYs ] fcsYcs > so that Eq. (2.1) becomes 

a- 
I (16)[s543211 ‘fT,fC,fS,fO = & c c c c c(-l)yT 

T YT YCS YO YC YS 

x < fCSyCS, f0 yOlfT?T >< fCyC,fSyS)fCSyCS > 

x IfTyT > IfcYc > lfs’s > Ifo y. ’ * 
P-3) 

Since our purpose is to formulate and solve a generalized evolution equation, it is 

useful to project Eq. (2.1) onto the light-cone momentum space of six-quarks, each 

carrying light-cone longitudinal momentum fraction zi = (qk +q$ /(PO + P3) of the 

deuteron’s momentum Pp (5 xi = 1) and transverse momentum ql(e q1 = 0). 
i=l i=l 

The corresponding light-cone wave function of six-quark system Xl?d(zi, q1) is 

defined by 

KPd(xi,qy)) =< xi,qy’ 1 (16)[654321] >fT fcs f. , 2 

= -& ygl ypl y~lC-llyT < fcsYcs, foY0 I ~T?T > (24 
T cs- 0 

x $‘&i,&))lfTfi >I fCSyCS > , 
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where the orbital wave function is given by 

@O( > Xi,@ =< Xi,QY) I foY0 > . P-5) 

The remaining SU(2)T and SU(6)cs symmetries (I fTYT > and 1 fcsYc.y > ) are 

given by specific tensor representations. 

a- The probability amplitude for the constituents with light-cone momentum 

-fraction Zi to combine into the hadron with relative transverse momentum up to 

the scale Q2 is given by the distribution amplitude <pd(zi, Q) defined by 

Qd(xi, Q) E lfI (3) 165~~6~ (Cqt’) QiQ’ (xi,qy)) 7 
i=l i 

P-6) 

where the & dependence of QiQ’ comes from the renormalization of the quark 

fields.ll 

As an explicit example of a six-quark representation, we give a specific repre- 

sentation for fT = (33), fcs = (222)~ x (6)s, and fo = (6) (T = 0, S = Sz = 3, 

and S-wave) ; 
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-EijkElmn CadcbeEcf + EaeEbdEcf + EadEbfEce + EafEbdEce > 

+ cijlckmn (caccbecdf + Eaccbf Ede + EaeEbcEdf + Eaf Ebcede) 

- ( Eijmckln + cijncklm ) (~ac~bd~ef + cadebccef) 

+ (‘%kmEjln + EiknEjlm + Ejkmciln + fjkncilm > Eabccdcef 

-( ‘%klcjmn + Ejklcimn ) (cabcceedf + cab’%fede)] 

-70 

.2- x x1x2xQx4x5x6 , 

P-7) 

where the indices ;, j, . . . , n and a, b, . . . , f are the color (r, y, b) and isospin 

- - - (u, d) indices, respectively. The Eijk'S and cab’s are the completely antisymmetric 

Cartesian tensors of SU(3) c and Su(2)T. The coefficient a0 is the normalization 

of the orbital distribution amplitude (see Sec. 5). The leading anomalous dimen- 

sion is 70. A  detailed calculation of 70 for the various six-quark states and the 

tensor representations in Eq. (2.7) will be given in Sec. 5 and the Appendix A, 

respectively. 

In the following section, we will derive a set of evolution equations for the 

deuteron S-wave distribution amplitude. Since the deuteron is an isospin singlet 

and the S-wave is a symmetric orbital, the Young symmetry in each quantum 

space is given by fT = (33)T, fcs = (222)cs, and fo = (6)o. Thus, an example 

-- 
of the ground-state S-wave of the deuteron distribution amplitude is represented 

by 
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1(16) >D= $xX VT1 m&‘> 1 @kS > 1 - [llllll]~ > , (2.8) 
YT YCS 

where (6)o has only one Yamanouchi label [llllll]~ [the Clebsch-Gordon coef- 

ficient in Eq. (2.2) . t 1s rivially given by 11. We will concentrate on the the leading 

term in the high Q2 limit. It is an eigensolution of the evolution equation which 

will be derived in the next section. The leading term is the lowest power term 

of xi-dependent polynomials i.e. x1 52 x3 x4 x5 x6. For example, we can see 

that the basis element given by Eq. (2.7) is an eigensolution because only the 

symmetric tableau is allowed for the spin in Sz = 3 case. However, in general, 

and specifically for the deuteron, the eigensolutions will be given by mixing of 
a- 

basis elements in spin space. 

3. Evolution Equations for the Deuteron 

Each eigensolution of a six-quark state satisfies a kernel equation of the form 

KI(16)(654321] >e= e\(16)[654321] >e , P-1) 

-- 

where ](16)[654321] >e is an eigensolution with the eigenvalue e given by a linear 

combination of completely antisymmetric representations (basis elements). The 

kernel K  is calculated to leading order in as(Q2) from one-gluon-exchange by 

using light-cone perturbation theory. It is given explicitly in Sec. 5. The pairwise 

one-gluon exchange diagrams are shown in Fig. 1. Since the isospin representation 

does not change through gluon exchange, the Su(2)T symmetry has no mixing 

and is fixed. For example, fT = (33) in the deuteron case. Also, the six- 

quark states are always color-singlet states i.e. fc = (222). Thus, in general, the 
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evolution equation has the following form in the basis of Eq. (2.3); 

c c c c x c cc;:js < fcYc, fswk7ycs > 
fcs fs fo Yes Yc Ys Yo 

x < fcsks, fo YoIh% > KlfcYc > lfsys > lfoyo > 

= ec c c c cc c cgys < f&c, fsYs I fcsYcs > 
fcs fs fo Yes YG Ys Yo 

x < fcsKTs, foYoIM% > I fcYc > Ifs% > IfoYo > * 
(34 

The unknown coefficients C;zTs and the eigenvalue I e are obtained by solving 

Eq. (3.2). In Eq. (3.2), the possible Young-tableaus fcs and fo in the sums 

a- are determined by the Clebsch-Gordan series of Se to produce the CSO Young- 

-tableau f~. Likewise, the possible Young-tableaus fs are determined to produce 

fcs after combining with fc. Each possible combination of fs, fcs and fo gives 

an equation (3.2). Th e combinations of fs, fcs and fo are given by coefficients 

-- 

of Cixys and has a corresponding eigenvalue e. 

In general there are many possible combinations of fs, fcs and fo contribut- 

ing to Eq.(3.2), since only fT and fc are fixed and mixed Young symmetries are 

allowed. However, if we constrain ourselves to some special cases then only a few 

equations actually need to be solved. For example, the leading term in high Q2 

limit of the Sz = 3 and 2” = 0 amplitude has only one possible combination of 

fs, fcs and fo (i.e. fz- = (33), fc = (22% fs = (6)) fcs = (22% fo = (6)) 

and only one equation needs be constructed for this special case. Therefore, we 

can easily see that the explicit representation given by Eq. (2.7) is an eigensolu- 

tion itself as we already mentioned in Sec. 2. 

In any case, the unknown coefficients C:z;s and eigenvalue e in Eq. (3.2) 

_-, 
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can be determined after a given set of equations (corresponding to the number 

of possible combinations of fs, fcs and fo) are solved. 

In this paper, we will concentrate on analyzing the asymptotic amplitude 

which dominates exclusive processes at large transverse momenta such as the 

asymptotic high-Q2 behavior of the deuteron form factor. However, the general 

equation is given by Eq. (3.2), and the method which we present in the rest of this 

section can be applied to arbitrary cases. Since a deuteron is isospin singlet and 

the dominant degree of freedom in high-Q2 limit is S-wave, the eigensolutions 

which we are considering have fT = (33) and fo = (6). In the Sz = 1 case, one 

has mixing between fs = (6)s and fs = (42)s. 

.a - For the fT = (33)T, fo = (6)o case, Eq. (3.2) becomes 

c c c CE < (222)&c, fsYs I (222)csYcs > 
fs Yo Ys 

=eIEcc q:;;; < (222)cYc , fs~sI(222)csycs > 
fs Yc Ys 

x 1(222)&c > 1 f&s > 1 (6)o [llllll]o > 3 

where fcs = & = ($3) = (222) and Y cs = YT because < fcsYcs, (6)o [llllll]~ 
- I 

Since we know from the Clebsch-Gordon series of Se that the possible values 

of fs are (6) and (42), (222) we have two unknown coefficients C(,)(,l and C[~~~~, which 

must satisfy the normalization condition, 
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Because of the normalization condition (3.4), one can define two eigensolu- 

tions in terms of one mixing angle 0. The corresponding eigenvalues are: 

(222) - e = el when Cc61(61 - cos 8 , C(222) - sin 0 
(6)(42) - 

P-5) 
(222) - e = e2 when Cc61(61 - - sin 8 , c(222) - cos 8 (6)(42) - * 

Furthermore, the kernel K has the factorized color factor corresponding to one 

gluon exchange 

(3.6) 

--where each term represent the kernel given by the interaction between the jth 

and jth quark and each component of the eight dimensional vector x’ is the Gell- 

Mann matrix of the SU(3)c group. If we sandwich Eq. (3.5) between two color 

states which have Yc = a and Yc = ,L3 respectively, we can define a 5 x 5 matrix 

representation of K whose elements are given by 

K~P -< (222)cal K I(222)cP > = 2 C,,(i,j) Vii 3 (3.7) 
i#i 

where 

C,,(i,j) = < (222)ca $? (222)& > . 

-- 
The most important observation in this formulation is that the kernel K is 

a linear combination of the operators Ofy in color space each of which has a 
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definite Young symmetry f with Yamanouchi labels Y; 

K = c KfyOfy. 
fY 

Therefore the kernel element K,p can be rewritten in terms of the kernel Kfy 

Kap =< (222)c4 c Kfr@fyI(222)cP > 
fY 

(3-g) 

= cc < (222)~~~ fYI(222)cP > Kjr 
f y 

a- 

‘where the possible f which gives the non-zero Clebsch-Gordon coefficient 

< (222)cq fY /(222)cp > is only (6) or (42). One can rewrite Kfy in terms of 

color factors C,, (i, j) and VLj; 

K(6)[111111] = ; (3.10) 
ff i#j 

K(42)y = ; c c < (222)@, (42)Y1(222)cp > c,p(i,j)vij, 
a P 

(Y = 1,...,9). (3.11) 

-- 

In appendix B, we present details of the derivation of Eq- (3.10) and (3.11) 

and the color factors of Eq. (3.8). Note there are five possible labels Yes in 

correspondence with the labels /? = 1, . . . . 5 of Yc. If we project Eq. (3.3) with 

YCS = p by a color singlet state YC = cx then we get a set of two equations using 

13 ‘-..rl) 
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Eqs. (3.5) through (3.11). One of them is given by 

cos e ~a~K(6)[111111] + c < (222)ccu, (42) yl(222bsP ’ K(42)Y 
Y > 

x ](6)s[llllll]s > ](6)0 [llllll]~ > 

‘% (42)s ysI(222bsP ’ K(6)[111111] 

+ 

a- 

-X 

+ 

c cc < (~%YY, (42)sYs~(222)csP >< (222)ca, (42)Y((222)~7 > K(42)y 
Ys Y 7 

](42)sYs > ](6)0[111111]0 > = er cos86,p](6)s[111111]s > ](6)o[llllll]o > 

sine C < (222h (42)~yiMWd > ](42)sYs > ](6)o[lll111]o > , 
Ys ) 

(3.12) 

and another one is given by substitutions 8 + 8 + 5 and el + ep in Eq. (3.12). 

Combining the two equations and using properties of Clebsch-Gordon coeffi- 

cients we get the following set of evolution equations (we drop the trivial orbital 

factor ](6)0[111111]o >): 

K(6)[l11111] I&$9 [llllllls ’ = ( er COST 8 + e2sin2 0) ](6)~[111111]~ > (3.13) 

1 
c K(42)y I K(42)s 

9Y 
Y > = (er - e2)cos~sin8](6)s[llllll]s > (3.14) 

K(42)y](6)s[llllll]s > = (er - e2)cosBsin81(42)sY > (3.15) 

14 ‘--.rl, 



q6)[111111]Iw)sy ’ + p ccc c c < W2M www%s~ ’ 
a p 7 y.9 YK  

x < (222)c7, (42)a I (222)csP > 

X C (222)~~~ (42)yK)(222)c7 > K(42)YKl(42)~y~ > 

= (el sin2 8 + e2 cos2 B) [(42)sY > . 
(3.16) 

Since the operator order of the Kfy is irrelevant, [K(6)[111111~, K(42)y] = 0, we 

can see from Eqs. (3.13) and (3.15) 

K(6)[111111] i(42)sy ‘= ( el cos2 6 + e2 sin2 0) ](42)sY > . (3.17) 

-Furthermore, we can prove the following property of Clebsch Gordon coefficients; 

C C C < (wd3, (42)m222) CSa X (222)c7, (42)sYsl(222)csp > 

Q P 7 

x < (222)ca, (42)Y’l(222)c7 >= 
5m 
108 < (42)ak (42)y~l(42)~y > 

(3.18) 

Thus, if we combine Eqs. (3.16) through (3.18), then we get 

(3.19) 

= (el - e2)(sin2 8 - cos2 8)](42)sY > . 

Eqs. (3.13), (3.14), (3.15), and (3.19) appear to be independent. However, 

we can see that only three combinations of er, e2 and 8 can be determined in the 

above equations. So we need to solve three equations (for example, Eqs. (3.13), 

(3.15), and (3.19)) and the other equation Eq. (3.14) can be used to check the 
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results. We will describe a convenient way to solve these equations in the next 

section. 

4. Symmetry of Kernel Equations 

The symmetry of the left and right hand sides of any of the equations derived 

in the last section should be conserved. This can be easily checked since each 

kernel and eigenstate has definite symmetry. If the kernel is symmetric, then 

the states of left and right hand side have the same symmetry. For the simple 

case where the si-dependence of the orbital distribution amplitude is given by 

the lowest power, such as the example we presented in the last section, all the 
a- 

equations become an eigenvalue equation where the eigenvalue is determined - 

‘by Sz . This explains why Eqs. (3.13) and (3.17) have the same eigenvalue 

el cos2 8 + e2 sin2 6. For the symmetric kernel case, we can fix the color factor 

as -CF/S (see Eq. (3.10)). W e can generalize this procedure for any spin-orbit 

state and find the general matrix representation of the kernel in the basis of 

polynomials. This will be done in the next section. 

However, the eigensolution of the symmetric kernel equation (3.13) is not a 

true solution of the whole system in general because there could be mixing i.e. 

0 # 0 in our example. We need to use other mixed symmetric kernel equations 

and find more constraints to determine el, e2 and 8. In our example, we can find 

relations between three combinations of el, e2 and 19 by counting spin annihila- 

tion or surviving terms. [In the general case one must consider the xi-dependent 

orbital distribution functions and their integration. One can find relations be- 

tween combinations of eigenvalues and mixing angles case by case by counting the 

number of terms which are surviving or annihilated after the kernel operation. 
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The equation which we need to solve actually is the symmetric kernel equation 

presented in the next section.] 

By counting spin terms, we find the following results for the leading anoma- 

lous dimension. If the symmetric kernel equation is given by 

~(6)[111111]l(6)5[111111]s >= 71(6)s[llllll]s > , (4.1) 

then 

K(6)[l11111] 1(42)sy ’ = 71(42)sy ’ ’ (4.2) 

~(42)~)(f3)5[111111]s > = 1,-rj(42)s[llllll]s > , (4.3) 

3q42)Y l(42)sY ’ = 
3d ,-rl(6)s[llllll]s > , (4.4 

and 

< (42)&s, (42)&1(42)sY > K (42)~,#2)SyS >= $1(42)sy > . 
(4.5) 

Comparing with Eqs. (3.13), (3.14), (3.15), (3.17), and (3.19), we can solve er,e2, 

and 8 in terms of 7. W e  find two solutions; 

4  25 5 
el = ~7, e2 = 87, tan8= fi 

2  
P-6) 

ii) 11 7 
el = ~7, e2 = ygr, 

fi tanB= --3-. 

-- 
However, if 7  > 0 then only a) solution is valid. The value of 7  will be determined 

in the next section. 

17 _-, 



5. Symmetric Kernel Equation and Solution 

The evolution equation with the symmetric kernel has the same spin-orbital 

symmetry fso and Yso in the left and right hand sides of the equation: 

K(6)[llllll] lfsoysO >= rlfsoyso > , F-1) 

where I is the eigenvalue of the symmetric kernel equation. In order to give 

a more explicit expression of Eq (5.1)) we project both sides of Eq (5.1) to the 

light-cone momentum space of six-quarks as illustrated in Sec. 2. We then obtain 

a kernel equation for the spin-orbital wave function $JSO(Z~, qy), 

?$bs&,q>) = Cd [dy] [d2kl] < xi,q: 
J J 

where Cd = -c~/5, and 

1 
r c Vkt 

k#e 

: yi,k: > llrso (~4:) 

(5.2) 

[d2kl] = % (3) 16n3ti2 (Fk:) . 

Thus lclso (xi, q:) is a linear combination of some orbital wave functions 40 (zi, qi) 

(see Eq. (2.5)) with some coefficients of spin tensor representations. By calculat- 

ing the leading order diagrams shown in Fig. 1, one obtains an explicit expression 

of < xi, qll$ c YkeIyi, ki > for the spin-orbital wave function $J (x;, q1) (the 

spin-orbit index SO is dropped here since each possible fso and Yso satisfies 
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the same equation): 

4rTQ.9 ( (qg2) 6 
‘/’ (xid:) = -2cd c 

i#j 
( ; )” 

Q.l 
n Sk ljdy] fi(yi - xi> 
k=l 

‘hi5 1 
+- 

Xi + Xj Yi - xi 

X 

(5.4 

where CX~ ( (4y)2) [E (47dP) (en (k)” /A2)-l] is the QCD running coupling con- 

a- 
stant (p = 11 - 2/3nf, nf is the effective number of flavors) and &,.h, = l(0) 

-when theconstituents’ {i, j} helicities are antiparallel (parallel). Eq. (5.4) has an 

infrared singularity at xi = yi. Thus, in order to obtain a well defined evolution 

equation of the six-quark system, we consider the quark distribution amplitude 

r$(xi, Q) which is the amplitude for finding constituents with longitudinal mo- 

menta xi in the deuteron which are collinear up to the scale Q2: 

This definition is the same as Eq. (2.6) except that the only spin-orbital wave 

function $JQ) is integrated instead of the total wave function @d 

By differentiating both sides of Eq. (5.5) with respect to Q2, and combining with 

Eq. (5.4), we obtain the evolution equation of the six-quark system: 

6 

rI [ 
a+ 

xk a( 
71 &xi, 9) = - y jld#+wi)d(v.. 9) , (5.6) 

k=l 0 

_-, 19 



where we use the definition r&x;, Q) as 

4(x;, Q) = fi xk&% &) 3 
k=l 

and the variable 

[(Q2) = :I2 $ as(k2) w ln( 3) , 

QZi A2 

P-7) 

(5.8) 

and V(xi, yi) is given by 

.z- 
.i v(xi, Yi) = 2 fj xk 2 fl(!/; - xi) fI b(xe - &) ; 

k=l i#j C#i,j 

S,iLj A 
X 

Xi + Xj 
+- 

Yi - xi > 
= V(YiJi) * 

By definition the factor A in Eq. (5.9) means 

A&y;, Q) = i(yi, Q) - &xi, Q> 7 (5.10) 

so we can see that the infrared singularity in Eq. (5.4) at x; = yi is completely 

cancelled by that in Eq. (5.5). W e notice that this cancellation happens only when 

the correct value of deuteron color factor, Cd = -CF/~, so that this is a good 

check of the correctness of Cd. We calculated Cd explicitly from the definition in 

the Appendix B. 

Since the six-quark evolution equation (5.6) has a similar form to that of the 

three quark evolution equation,4 we can solve this equation following the similar 
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methods to the three quark case. First, we separate the variables of 4(x;, Q) such 

as 

&x;, Q) = $(x;)em7’ 

(5.11) 

and substitute into Eq. (5.6) so that Eq. (5.6) becomes [note that Cd = -CF/~] 

(5.12) 

CF =-VI&> , 
- 5P 

e- 
-where the equation is simply redefined by the quantum mechanical notation 

‘VI4 > and V(x;,y;) is given by Eq. (5.9). Next we expand 4(x;) in terms of 

eigenfunctions & (xi), so that the general solution of 4(x;, Q) is of the form 

&xi, Q) = 2 anin (ln$) -'rz 3 
n=O 

(5.13) 

where an are the coefficients and eigenvalues 7n are corresponding to the anoma- 

lous dimensions of six-quark system. Since V (x;, y;) is both real and symmetric 

[V(xi, y;) = V(y;,x;)], the 7n are real. The {~n(x;)}~~o are orthogonal with 

weight W(X;) = zlzzzsz4zsz6 , 

1 

/ 
[dx]w(x;)J~(x;)Jm(x;) = Kn&m 3 

0 

(5.14) 

where Kn are the normalizations. Since the {~n(x;)}~!.O form a completely 
00 5 

ortonomal basis , where C rni = n , we expand V on 
ml,m2,...,m5=0 i=l 
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this polynomial basis. After some calculation, we obtain the following results:12 

+ ‘hhr?i, 
1 

m4+m5+2 1 

t?! 

(t - k$.jk)! kg (jk!) 
a i 

xmk+jk 
k 

+ 6 T (7;; “=1; (m; +;T;; + 2)) xyi-e + 
i=4 .k?=l i 

(4 - ksejk)! kg (jk!) 
a i 

+~x; Xj T&-t? mj+L m;(mj - 1) s.. (m; - .4! + 1) 

L=l 
L(mj+2)(mj+3)**-(mj+t+l) 1 k#i,j 

-- 
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+~‘hiL~me+~ +2 X zx; Wli+Lx~j-L mj(mj - 1) . * * (mj - !? + 1) 

i=4 j=l ’ j 3 !=l (m; + 2)(mj + 3) . . . (m; + .! + 1) 

+2x; 
mi-lx~j+~ m;(m; - 1) .=a (m; - .! + 1) 

' 1 fi mk 

L=l (mj+2)(mj+3)--*(mj+l+l) kZ.jxk 1, 
+ 6hdh5 m4+i5+2 x m5(m5 -l>*--(m5 -t+l) 

(m4+2)(m4+3)---(m4+!+1) 

+2x4 x5 m4-L m5-G m4(m4 - 1) - - - (m4 - .t + 1) 3 

.e=l (m5+2)(m5+3)---(m5+t+l) k!lxpk 1 
& xyi > u{ni}, {W&i} 3 .?- - {ni} k=l 

(5.15) 

where particles 1, 2, and 3 have helicity parallel to the hadron’s helicity h, and 

the particles 4, 5, and 6 have helicities h4, hg, and h6. The notation C 
tjkfil 

5 
means the summation over all possible integer jk(k # i) as long as C j, 2 .! is 

k#i 
satisfied. U{nil,{mil is a matrix representation of the linear operator w-lV on the 

5 5 
basis {xri}. Since U{nil,{mil = 0 when c n; > c m;, the eigenfunctions are 

i=l i=l 

polynomials of degree n = 5 m; = 0, 1,2, . . . . The corresponding eigenvalues are 
i=l 

obtained by diagonalizing the matrix U{nil,{mil with 5 n; = 5 m; = n. Several 
i=l i=l 

leading eigenvalues and the eigenfunctions are given in Table I. 

From Table I, we see the leading anomalous dimension obtained from the 

symmetric kernel equation is given by 

6 cF for Sz 0, 7 70 CF = = - - 
5 P 5 P 

for Sz = fl . (5.16) 
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Therefore, 70 > 0 and the true leading anomalous dimension is given by 

real-3 CFforsz=o 70 -4 p 2 ~fors~=*l 
’ 8P 

, (5.17) 

from the value of e2 in the ;) case of Eq. (4.6). 

6. Discussions and Conclusions 

HarveylO has classified the color singlet six-quark states in terms of a physical 

cluster decomposition. Using his classification, the physical deuteron state [i.e. 

a bound state of two color singlet clusters] is represented as a linear combination 

of several different kinds of totally anti-symmetric color singlet six-quark states. 

.:.. *- For example, the two well separated nucleons INN > is given by lo 

INN >= 
\I 

; /[6]{33} > + 
$ 

; 1[42]{33} > -$ 1[42]{51} > , (6-l) 

where the brackets [ ] and { } represent the orbital and spin-isospin symmetry 

[i.e, fo and fTs in our notations] and color symmetry (222) is abbreviated. 

However, this classification by itself does not include the dynamics of strong 

interactions between the constituents. In other words, the dynamics between the 

quarks inside the deuteron is not included. 

Thus far, in this paper, we have formulated the dynamical evolution equa- 

tion of six-quark systems and solved it to give the general form of the quark 

distribution amplitude 4d(zj, Q) : 

d’d(xi,Q) = ( CTS )4(x;,&) , 6-w 

where (CTS) is tensor representation obtained from the Young symmetry of 

SU(~)C, su(2)T and SU(~>S [ one example is given by Eq. (2.7)], and the orbital 
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distribution amplitude 4(x;, Q) is given by 

4(xi,Q> = x1x2x3x4x5x6 2 an$n(xj) (tn p> -7n . 
n=O 

P-3) 

We project Eq. (6.1) to momentum space: 

- [42]{51}(% Q> * 
In the limit Q + 00, the dependence of Q is determined by the leading anoma- 

lous dimension; all other terms which have non-leading anomalous dimensions 

.?- are suppressed by logarithmic damping factors. However, as we can see from Ta- 

.ble I, the orbital symmetry of the eigensolution which has the leading anomalous 

dimension cannot be [42] but is [6]. Th’ is means only the first term of Eq. (6.4) 

survives at the large Q limit. The NN amplitude itself is not sufficient. One can 

show that an 80 percent hidden-color state is necessary to saturate the normal- 

ization of six-quark amplitude when six quarks approach the same position in 

impact space bl + 0. We have called this new degree of freedom an anomalous 

state since it does not correspond to the usual nucleonic degrees of freedom of 

the nucleus. The physical implication of the anomalous state is discussed in our 

toy model analysis.7 

The asymptotic behavior of the deuteron distribution amplitude is given by 

40(x;,&) = ,.,.,~3~4~5.,(~;~o~~2)-70 (6.5) 

where 70 = $9 for Sz = 0 deuteron. The QCD predictions for high-Q2 behavior 

of deuteron form factor and the form of the deuteron distribution amplitude at 
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short distances are given in Ref. 3. The fact that the six-quark state is 80 percent 

hidden color at small transverse separation implies that the deuteron form factors 

cannot be described at large Q2 by meson-nucleon degrees of freedom alone, and 

that the nucleon-nucleon potential is repulsive at short distances.3~7~13 
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Appendix A 

In this appendix we describe a general method for finding the color singlet 

representations for multihadron systems. This leads to the explicit representation 

of Eq. (2.7). 

Group theoretically, color states of every quark and/or antiquark systems are 

represented by the multiple outer products: 

(3)P x (3*)Q (A-1) 

for the system of p quarks and q anti-quarks. The reducible tensor represen- 
.?- 

-tations of (A.l) is decomposed into irreducible tensor representations and the 

‘resulting singlet representations provide the physical quark system. 

Since the color singlet is invariant under SU(3) transformation, the only ten- 

sor representations14 which are invariant under SU(3) transformation are the 

Kronecker delta and the completely antisymmetric Cartesian tensors: 

bj, %jk 9 
,$jk 

, (A.4 

where the lower (upper) indices correspond to 3(3*) representations. This comes 

from the fact that only operations of contraction and anti-symmetrization com- 

mute with the SU(3) t ransformations on the mixed tensors. Thus, every color 

singlet representation can be represented by the products of the three tensors 

(A.2). 

From this observation, we describe the rules to construct the color singlet ten- 

sor representations for arbitrary quark and/or antiquark systems such as (A.l): 
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1. Give each index to every 3 and 3* representations. For example, p lower 

indices and q upper indices will be given to (A.l). 

2. Assemble one possible product of Kronecker deltas and completely anti- 

symmetric Cartesian tensors to use up all indices considered in rule 1. For 

example, the p = 6 and q = 0 case needs the product of two antisymmetric 

Cartesian tensors. 

3. Permute the upper and lower indices separately. For example, p = 6 and q 

= 0 case will give 10 possible different representations. However, note that 

they are not all independent. 

i 
.s- 

4. To construct all the independent (orthogonal) representations follow the 

method of Schmidt’s orthogonalization, where the inner product is defined 

as contraction. For example, in the p = 6 and q = 0 case, five independent 

representations are obtained: 

+klrnn = --!-- 
12fi (%km~jCn + Eikn Ejtrn + cjkm %Ln + cjkn Eitm > ’ 

(A-3) 

where &!?$klmn((Y = 1, 2, . . . , 5) are the five independent color singlet represen- 

tations. 
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The correspondence between Eq. (A.3) and the five different Young tableau 

(or Yamanouchi labels) is as follows: If we denote i = 1, j = 2,. . . , n = 6, then 

the corresponding Young tableau with Eq. (A.3) are following: 

a! = 1 , 2 , 3, 4, 5. 

A similar method can be applied to construct the isospin singlet representa- 

tions in SU(2). The five independent isospin singlet tensors corresponding to the 

dual of the color singlet Young tableau shown in (A.3) are represented by 

-I- 
1 

= - EabEcdEef 3 
243 

Eabhecdf + Eab%f cde) 3 (A.4 

124 El 356 caccbecdf + caccbf cde + faeebccdf + caf fbccde) 3 

-- 

123 El4 1( 456 =6 cadEbe%f + Eaecbf Ecd + caf cbd‘%e) 3 

where the cab’s are the antisymmetric Cartesian tensors of su(2)T and the Young 

tableau are denoted by a = 1, b = 2, ... , f = 6. If we multiply the color and 

isospin singlet tensors given by Eqs. (A.3) and (A.4), respectively, taking care of 

the phase factor* r]T for the Yamanouchi labels, we get the special case of the 

asymptotic deuteron representation, Eq. (2.7). 
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Appendix B 

The color factor defined in Eq. (3.8) can be explicitly expressed in terms of 

tensor notation, since we know the tensor representation for the multiplication 

of Gell-Mann matrices in Eq. (3.8) as l4 

(B4 

where the indices i and i’ designate the color it i’th quark before and after a 

gluon exchange. Using the notation Eq. (A.3), the generalized color matrices 

-I- (5 x 5) g iven by Eq. (3.8) can be obtained by 

’ v 
'&,(',ai) ='.?i...j... f 5 ‘.~.i,...j,... 3 

0 0 i’ ‘I 3 

and Eq. (B.l). Th ere are 15 such matrices and they are given by 

C(1,2) = 

C(1,3) = 

-- 

_- 

‘l 0 0 0 0’ 3 
o-go 0 0 

oo$o 0 

0 0 0 -g 0 

0 0 0 0 -g 

5 -- 

-$A -9 0 0 0 0 0 0 

0 0 -i”z -q 0 

0 0 0 0 -$ 
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C(1,4) = 

--i”z $ 0 - 0 0 
G&o 0 0 
0 -5 0 -& $T 
O O -& -K -& 

-O O $7) -& O- 
5 

-- 12 0 0 
1 

-- 4 
0 -- 5 -- 1 

-+ 

C(l,5) = 0 -y -; 
-$ y 

-- 
243 2d5 

1 1 -- -- 1 A-. 
4 M 26 

-A 
645 

1 -- 1 -I 1 
- 245 245 245 645 

0 

- 5 
-- 0 1 0 a 

1 
12 245 

0 -- 5 1 1 
a 

-1 
2x5 2d5 

C(1,6) = 0 ;" -$ $ -& 
1 
a 

1 1 
2x4 1-h 243 643 

1 -1 -1 1 -24 245 w5 64 0 

1 - -&q 0 0 0 1 
G&o 00 

C(2,3) = 0 0 -A $ 0 

ooq&o 

0 0 0 0 -5 

C(2,4) = 

- 5 -q -- 

-G&o 0 0 0 

o- 

0 

0 0 -A 1 
4& 

-& 

0 O $ -A -& 

0 0 -* -& O - 
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C(2,5) = 

C(2,6) = 

C(3,4) = 

C(395) = 

5 0 0 1 -- -- 
12 4 -i$z 

0 5 1 -- 
12 -a 

0 1 5 -- -- -- 
4 12 26 24 

1 -- 
4 

1 -1 -h 1 
w3 245 643 

1 1 -- -- 1 1 
24 26 245 66 

0 

‘l 0 0 0 0 3 
o-$0 0 0 

0 0 -5 0 0 

0 0 0 -iq 

000~0 

5 -- 12 0 -9 0 o- 

0 -- 5 0 1 -1 
4d 

-q 0’” iT 1 0 od 

0 1 0 -- 7 -- 1 
46 12 34 

0 -- ;B O -- 1 3fi 0 _ 

- 5 -- 12 0 q 0 0 
5 

-- 0 -& $2 

C(3,6) = ; 0’” & 0 0 

0 -& O -6 -& 

-O $75 O-i& O- 

-- 
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C(5,6) = 

0 $0 l E 0 

0 0 0 0 -5 

3% 0 -q 0 0 

C(4,6) = 

0 0 0 0 -f 

$00 0 0 

o;o 0 0 

00-g 0 0 

0 0 0 -i 0 

00 0 0 -f 

NW 

Using the results (B.3) and the formula (3.10) and (3.11), we can find expressions 

for the kernels in terms of Vii. Since C,,(;, j) is independent of i and j and given 

by 

C,,(i,j) = -f x 3 + ; x 2 = -cF , VW 

the symmetric kernel is given by 

K(6)[111111] = Cd C Vi,j 3 (B-5) 
i#j 

where Cd = -CF/~. 

-- 
The other kernels can also be obtained by using the Clebsch-Gordon coeffi- 
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cients of & and (B.3). The results are given by 

Kfy = Nfy C AijVij 3 
i#j 

where Nfy and Aij are summarized in the Table II. 
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.z- 
9. [654321] is the Yamanouchi label of (16) symmetry; See Ref. 8. . 

10. M. Harvey, Nucl. Phys. A352, 301 (1981); 326 (1981); Nucl. Phys. A424, 

428 (1984). 

11. 

12. 

Detailed calculations and the origin of the logarithmic Q dependence are 

given in Ref. 4. 

In Eq. (5.15), we use a more compact form for the coefficient of zi m;+-!z~j-l 

3 
than that given in Ref. 4, since we can prove that 

Also we correct typographical error in Appendix D of Ref. 4: 
m - i + 1 + bhh2h 

i(m + 2) 

should read 
m-i-l-1 ‘h& 
i(m+l) + (m+l)(m+2) . 

13. Qualitative QCD-based arguments for a repulsive N-N potential at short 

distances are given in C. Detar, HU-TFT-82-6 (1982); M. Harvey (Ref. 10); 
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TABLE I 

Solutions of the evolution equation Eq. (5.12) for total helicity 13h+ h4 + hg + 
h61 = 0 (q$tttlll ) ,1 (~ttttll, qgttm, btttllt) ,2 (4tttllt, q$tttt1t, +tttltt) , 

and 3 (qStttttt) cases. The procedure for the systematic derivation of the & 
is given in Sec. 5. 

(pttt111 6 
5 

ll! 

13 
5 

13! 
4 

1 -1 

13 13! 
1 1 -2 

5 12 

13 
5 

13! 
4 

1 -1 

2 -2 -2 -2 -3 -3 

1 -2 -2 -2 

13 13! 
5 12 

14 13! 
5 12 

(.$tttt11 

(ptt1t1 

(gtt11t 

7 
5 

ll! 
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I  ‘Y  

T A B L E  .II, 

T h e  c o e fficie n ts A ij fo r  al l  (i, j) p  a i rs a n d  th e  normal iza t ion  factor  Nfy d e fin e d  in  E q . ( B .6 ) . S ince co lor  s y m m e try is fixe d  by  
( 2 2 2 ) , th e  poss ib le  s y m m e try o f th e  kerne l  is f =  (6 )  o r  (42 ) . 

K fY  N fY  (56 )  (46 )  (45 )  (36 )  (35 )  (26 )  1 ( 2 5 )  (16 )  (15 )  (23 )  ( 2 4  ( 3 4  (14 )  (13 )  (12 )  
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Figure Captions 

Fig. 1. The leading order contributions to the kernel of the six quark wave func- 

tion in light cone perturbation theory. The longitudinal momentum of particle 

i (i = 1,2,--s ,6) before and after the interactions is y; and xi respectively; the 

i and j particles interact with transverse momenum transfer of order Q. Fifteen 

diagrams are included by summation over i and j with i # j. The Feynman rules 

of light cone perturbation theory in light-cone gauge are summarized in Ref. 4. 

.? - 
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