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ABSTRACT 

_ Some ofthe intriguing physical characteristics of the self-dual field of Leutwyler 

are simply understood in terms of classical physics and some simple analogue quantum 

mechanical systems. The field’s stability properties are clearly illustrated. Also, a sur- 

prising 0( 4) y s mmetry exists at the classical level, but is broken quantum mechanically 

via the same physical mechanism as the Bohm-Aharonov effect. 
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1. Introduction 

Solutions to the classical equations of motion for non-Abelian gauge field theories 

are potentially of great interest for determining the structure of the physical vacuum. 

To be of relevance, these solutions should have lower energy density than the trivial 

perturbative ground state of vanishing field strength, and they should also be stable 

against quantum fluctuations corresponding to local deformations of the vacuum field. 

A particularly interesting field configuration which satisfies these criteria has been 

investigated by several authors [I] for an SU(2) gauge theory in Euclidean space. It 

consists of a constant self-dual Abelian gauge field given by the vector potential 

A;(x) =-f F,,Yxyba3 

with Fpy a constant matrix. The condition of self-duality, eq. (lb), fixes the field 

- strengths to consist of uniform parallel chromomagnetic and chromoelectric fields. 

Some of the intriguing physical characteristics of this self-dual field can be very 

easily understood in terms of classical physics, with some straightforward comparisons 

to simple analogue quantum mechanical systems. In particular, it can be seen why 

the field configuration of parallel chromomagnetic and chromoelectric fields is stable, 

while either one alone is unstable. Also, this field will be shown to have a surprising 

O(4) symmetry at the classical level, which is broken quantum mechanically via the 

same physical mechanism as the Elohm-Aharonov effect [2]. 
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2. Classical Particle Motion in the Background Field 

The Lagrangian density for the pure SU(2) theory in Euclidean space is given by 

L 

Fa P” =~+,A;-&AQ,-~E~*~A;A; . 

The classical equations of motion generated from f are 

D;* F,& =0 , 

D;* = bab a,, - grab’ A; . 

(2) 

As stated in the introduction, the background field configuration of interest that sat- 
*- 

is&es eq. (3) is given by 

-a 
A, 

=-- ; E,, xy tia3 

with F,, a constant matrix. 

Rather than impose the condition of self-duality on E,, at this point, first the 

most general form for the field strength will be employed. When self-duality is later 

imposed, it can be clearly observed how the interesting properties previously mentioned 

arise. The most general constant field strength depends only upon the two invariants 

7 = (l/4) f& ppv and 5 = (l/8) +aa E Icy E,,. An O(4) rotation can always be 

made to transform the field strength tensor to the form 

E,, = J7 

0 0 0 Jlli+cr‘ 

0 0 dTT5 0 

0 --&-a 0 0 

-Jixi 0 0 0 . 
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Note that 0 5 o 5 1, and the self-dual configuration has Q = 0. 

To investigate the classical dynamics generated by this constant field, the La- 

grangian density in background gauge [3] is expanded about the solution of eq. (4) 

using AQL = A; + bf , yielding 

f = - ; E,, E,,, + f 6; ( bpv(& &)ac - 2gcdc &) 6; + O(b3) . (6) 

Using a technique analogous to Schwinger’s proper time method [4], the quantum 

fluctuations, b:, will be temporarily viewed as “classical particles” with trajectories 

governed by the effective Lagrangian of eq. (6). In this way, physical intuition can 

be used to understand the dynamics of the quantum fluctuations which determine 

stability and symmetry properties of the classical background field, E,,. The proper 

“time method corresponds to introducing a time parameter to go along with the four 

Euclidean “spatial” dimensions implicit in eq. (6). The operator from the quadratic 

term in eq. (6) is then the proper time Hamiltonian, and can be used to generate 

the proper time evolution for the coordinates of the “classical particle,” 6:. The 

Hamiltonian is defined by the equation 

Hb, = (6& a7) - 2ig(T3) EIIY) bv 

where (7’3)ac = -dcsac. For the background field given by eqs. (4) and (5) it is easily 

seen that 6; corresponds to a free particle. However, b: and bz satisfy the following 

equations for the coordinates, conjugate momenta rlc = iD,, and “color” coupling 

T3: 

%J = i[H, x/,1 = 29 , 

+, = i[H, n/d= QdT’) p,o ~0 , 

k3 = i[H, T3] = 0 . 
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Note that a constant E,, in this proper time formalism corresponds to a magnetostatic 

field in 4+l dimensions, since F5,, = 0. This is evidenced by the simple generalization 

to 4+l dimensions of the Lorentz force law for a particle moving in a magnetic field, 

as given by eq. (8b). Further note that, as expected, d(rrPrP)/dr = 0. 

For the arbitrary field strength of eq. (5) the solution of eq. (8) is immediate: 

=0 = A COS(W+T + 6+) q = B cos(w.-J + CL) 
(9) 

n3 = T A sin(w+r + 6+) 7~ = TB sin(w-r + S-) 

w* E 29 J3( 1 f Q) 

where A, B, 6* are constants determined by the initial velocity of the particle, and 

,-the (F) in front of 7~2 and 7r3 depends upon the color charge of the particle, (T3) = fl. 

me The physical picture of the dynamics is now very simple. There exist two dynam- 

ically independent two dimensional subspaces of the 4-d Euclidean space. Each of 

the two planes has an independent chromomagnetic field in an orthogonal direction, 

which gives uniform circular particle trajectories. For the above chorce of F,,, the 

two independent planes are the O-3 and 1-2 planes as in fig. 1. 

3. Stabi& of the Field 

The known stability of the self-dual field configuration [I] can now be understood 

in this physical picture. The condition for stability under local fluctuations at one 

loop level is that the eigenvalues of the quadratic operator in eq. (6) be 2 0, i.e. that 

all fluctuations change the energy by an amount > 0 and are thus damped. This 

corresponds in our picture to the condition that the particle bt have total energy 2 0. 

The particle Hamiltonian of eq. (7) has two parts - the first is proportional to 

VW D, D, and generates the center-of-mass motion of the particle as explained in sect. 
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2, and the second is an interaction energy between the spin chromomagnetic moment 

of the particle and the background field proportional to 2gE,,. The spin interaction 

has the following energy eigenvalues 

E spin =*2g\/70, k2g~qcq . (10) 

Obviously, the spin projection corresponding to an energy eigenvalue of -29 d3( 1+ a) 

has the most destabilizing influence and must somehow be compensated by the con- 

tribution from the first term in H which generates the center-of-mass motion. This 

contribution can be simply determined from our physical picture. The components 

of the trajectory of the particle in the O-3 plane respond to an orthogonal chromo- 

magnetic field of strength 2g d3(1+ a), g enerating a circular path. As shown in any 

elementary quantum mechanics text [5], a particle in a magnetic field has a zero point 

“energy, which in this case would be g \/3(1+ a). (The zero point energy arises from 

localizing the particle trajectories in circular orbits.) Similarly for the l-2 plane, a 

zero point enegy of g \/3( l- (Y) is generated. The sum of the stabilizing zero point 

energies is compared with the destabilizing spin interaction energy in fig. 2. 

It is clear that only the configuration with Q = dm = 0 has non- 

negative energy and is stable, which just corresponds to the self-dual case. The 

apparent paradox of why the configuration with both “chromomagnetic” (Fl2 # 0) 

and “chromoelectric” (Fo3 # 0) fields is stable while either alone is not can now be 

easily explained. Consider the situation where only Fl2 # 0. The destabilizing spin 

interaction exists, as does a zero point energy from localization in only the 1-2 plane. 

However, the field Fo3 in the dynamically decoupled O-3 plane can be turned on up 

to the strength of Fl2 without affecting the magnitude of the spin interaction. This 

adds a contribution to the zero point energy from localization in the O-3 plane. In the 

optimum situation of Fo3 = Fl2, the zero point energy is just enough to cancel the t , 

negative spin energy. 
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4. Classical O(4) Symmetry 

Any candidate vacuum field should have the property of rotational symmetry. 

At the classical level, this means that it should not be possible to single out any 

direction in space as unique by observing classical particle trajectories. For example, 

in a region of space with zero field strength, a particle with an initial velocity will 

continue in a straight line regardless of direction, and all trajectories are connected 

by a simple rotation - this is a rotationally symmetric situation. An example of a 

non-symmetric situation is an ordinary magnetic field in three-space where a circular 

particle trajectory in the transverse plane is not connected by a simple rotation to an 

unbounded particle trajectory along the magnetic field. 

The classical trajectories of particles moving in the self-dual field configuration 

“of sect. 2 exhibit an O(4) symmetry. This is easily illustrated by the coordinate 

trajectories which come from the equations of notion (8a,b,c) and eq. (9): 

2A 2B 
x0 = w sin(wr + 6+) x1= - 

W  
sin(wr + f!L) 

z3 = *y cos(w7+b+) 22 = *; cos(w7 + L) ) 
(11) 

where an irrelevant coordinate origin is suppressed, (A, B, Sk) are constants determined 

by the initial velocity in the 4+1 dimensions, and w = 2g fi. A global O(4) rotation 

can be made on this general trajectory, bringing it to the form 

x0 = r sin(w7) Xl =o 
(12) 

x3 = fr cos(wT) x2 = 0 

VW 

where r = 2 d-2/w is just the magnitude of the initial velocity. Thus, two par- 

ticles with initial velocities of the same magnitude but arbitrarily different directions 

follow trajectories which are O(4) rotations of one another. Stated another way, a 

classical particle with an initial velocity in any direction will follow a circular path 
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with a radius dependent only upon the magnitude of the velocity, and period 27r/w. 

This is a most remarkable property for the self-dual field configuration. Now it must 

be determined if this rotational symmetry remains beyond the classical level. 

5. Quantum Mechanics and the Breaking of O(4) Symmetry 

The symmetry properties of the self-dual field are investigated beyond the classi- 

cal level by computing correlation functions of color singlet field operators using the 

quantum propagators. To facilitate the illustration of the physics of how the classical 

O(4) invariance is broken quantum mechanically, the spin degrees of freedom of the 

“particle” bi will be suppressed, and the color degrees of freedom will be restricted to 

the fundamental representation of SU(2). The propagator for bO becomes [6] 

c- 
(T(b”wc(Y))) = (+jgY) 

= /((x - y)2,39 expf-03gF;p xayp)ac ) (13) 

with f (fx _ y)2, 3l/2) = exPl-931’2(x - Y12/‘l 
41r2( 2 - yp 

. 

Note that the propagator is rotationally symmetric except for the phase factor which 

depends upon pap za ya. The phase factor is essentially a gauge string which origi- 

nates from the phase information the particle gathers as it passes through the back- 

ground field. It is apparent that the O(4) rotational symmetry will be broken if there 

exist color singlet correlation functions sensitive to this phase information. 

We first investigate the correlation function of the simple operator : ba(z)ba(x) : 

giving 

(T(: ~=(w(4 : : bC(YPC(Y) :)) - (+awc(Y))) (+c~YP’(z)) 

- [f ((x - Y12, 319]2 * 



This is O(4) invariant. The origin of the rotational invariance here is the same as 

that for the classical trajectory calculations of the previous section, i.e. neither is 

sensitive to the quantum mechanical phase information. The physical process which 

corresponds to the correlation function of eq. (14) is illustrated in fig. 3(a). A point 

source emits particles which pass through a magnetic field and are recorded on a screen. 

Although each particle’s wave function, $, carries a phase factor of exp(i lp A - dt), 

this information is lost when the probability $*$J is computed. 

In order to find a correlation function that could sample this phase information 

and break the classical O(4) symmetry, an appeal can be made to a simple well-known 

physical system. This system is illustrated in fig. 3(b) where two separated coherent 

sources (a “double slit” configuration) emit particles which pass through a magnetic 

*field and are recorded on a screen. The wave function at the screen has the form 

+ - f exp(i 1 A-de)+: exp(i/ A.dP) . 
A+Pt p2 

For small Ap, the probability function is 

. I  

Prob. = $J*+ N l- (BdA)2 
4 ( 15b) 

where B is the strength of the magnetic field and dA is the transverse area enclosed 

by (A + PI + P2). In this case, quantum mechanical phase information makes a 

physical contribution to the interference pattern, via the Bohm-Aharonov effect [2]. 

This physical effect suggests the types of analogue correlation functions that could be 

expected to sample phase information, and thus break the O(4) symmetry. Rather 

than the bilinear function : ba(x)ba(x) : investigated previously, the source must be 

point-split (recall the two slit experiment) in a gauge invariant way. This is easily done 

by inserting the operator of infinitesimal translations, D,, into the bilinear function. 
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A short calculation yields the form 

u 
T : by 5) qy F(x) : : bd(Y) q? be(Y) :)) - (x - Y)p (x - Y)v fl(CX - Yj2, 39 

+ &m (x - Y)a c.g? (x - Y)p fi((X - Yj2, 39 * 

(16) 

The first term is obviously O(4) invariant, while for the oriented field E,,, the second 

is not. To complete the connection with the physical process of fig. 3(b), if eq. (16) 

is contracted with an infinitesimal displacement vector AP, the O(4)-breaking second 

term is N (B dA)2 where dA is the transverse surface area formed by A,, and (x - yh,. 

Thus, while the self-dual field E,, has an intriguing and (initially) surprising clas- 

sical O(4) symmetry, the full quantum mechanical theory is not O(4) invariant. It 

+-originates in the fact that the rotational non-invariance resides in a phase factor in 

the quantum propagator, and this phase information is only relevant for true quantum 

processes. 

6. Summary and Conclusions 

The interesting properties of the self-dual field described in sect. 1 have been un- 

derstood using a simple physical picture. First, the classical equations of motion for the 

quantum fluctuations showed explicitly how stability for the background field arises. 

The fluctuations are localized in all four Euclidean dimensions giving a zero point 

energy large enough to cancel the destabilizing coupling of the spin chromomagnetic 

moment to the background field. Secondly, it is shown that there exists a surprising 

O(4) symmetry for classical particle motion in the background field. This symmetry 

however is broken at the quantum mechanical level via gauge field phase information 

that does not share in the O(4) symmetry. 
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This analysis allows an intuitive understanding of the relevant dynamics of the 

self-dual field. While illustrating the interesting features, it also explicitly shows why 

this configuration in its simple form must be rejected as a candidate physical vacuum 

field due to its lack of O(4) symmetry. 
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FIGURE CAPTIONS 

1. Dynamically independent O-3 and l-2 planes with orthogonal chromomag- 

netic fields. 

2. - zero point energy in units of 2g 0. - - - destabilizing spin energy 

in units of -29 J7. 

3. (a) Particle traversing transverse Bfield and being recorded. (b) Coherent 

sources producing particles traversing B-field and being recorded. 
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