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Abstract 

We present results of a direct--calculation of leading power law 

corrections to the proton and pion structure functions at large x - to 

order l/Q4 for VW 2 
proton and l/Q2 for WLProton and to order l/Q2 

. 
for vW2p'on and WLPion. For vW2 we find large -(l-~)~ corrections to 

the leading -(l-x)~ behavior as x + 1 and substantial (~-x)~/Q~ 

..- _ 

corrections, a phenomenologically desirable form. We find a very 

large value for the coefficient of l/Q2 in (oL/oT)Proton. The l/Q2 

correction to VW p'on 2 is -of the form proposed by Bergqr and Brodsky 

but much smaller than their estimate after complete normalization 

constraints are imposed. In addition this correction is not purely 
." ._ 

^. 
longitudinal until (l-x) is very near zero. 
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Introduction 

While QCD is widely accepted as the theory of the strong 

. ._ interactions, detailed comparison with experiment is far from perfect. 

Even the deep inelastic structure function, which in principle 

provides one of the cleanest experimental tes<s,may have important 

power law corrections at various orders in l/Q2. Indeed it now seems 

clear that the leading asymptotic terms predicted by QCD do not 

explain the low to moderate Q2 structure function data nor the ratio, 

R = oL/ol [1][2]. In a previous letter we presented partial results 

of a direct calculation of the leading power law corrections to 

vw proton and 

2 
vw proton 

L at large x near 1 and large Q2 [3]. In the 

present paper we extend these calculations considerably. We calculate 

not only the leading -(l-x)/Q2 correction to the -(l-~)~ behavior 

-. . 

of W proton but also the N ' 2 (l-x)Q4, the ~(l-x)~/Q~ and scaling (1,~)~ 

corrections. We find that: 1) the (l-x)/Q2 correction is small with 

negative coefficient, as previously reported; 2, the (l&Q4 

correction is small and positive; 3) both the (l-x)/Q2 and 
(l&Q4 

corrections would vanish for a constant strong coupling constant - 

i:e., in a sense they derive from higher order corrections; 4) the " ._ 

(~-x)~/Q~ correction is positive and of substantial magnitude; and 5) 

the (l-~)~ correction is negative/positive for a proton/neutron target 

with large coefficient. Our asymptotic result for vWL proton,VW2proton 

is, as previously reported, very large and x independent as x + 1. 

(We note that the earlier calculations did not include helicity flip 



contributions whereas those discussed here include all contributions in a 

given order.) This result for vWLProton/vW2Proton suggests that very large 

Q2 is required before a meaningful asymptotic series for d /d can be . ._ L T 

developed. The size of all terms is fixed, in our approach, by the 

approximately known normalization of the leading (I-X)-~ tem,of vW2 proton . 

- In the present paper we have also "repeated" the calculations of 

Berger and Brodsky C41 for the -(l-x)* and "(l-x)'/Q* terms in vW2P'on and 

the (l-x)O term in vWLP'On. We have, however, included helicity flip and 

other quark mass effects. In addition all normalizations are fixed by that 

of the (l-x)O/Q* correction to vW2P'on -is much smaller than suggested in 

Ref. C41 and that it is not purely longitudinal until x is extremely near 1. 

We would like to emphasize that our purpose here is to perform a 

calculation within the context of the standard QCD picture of hadrons and 

not to give a detailed fit to data. At large x QCD predicts that the 

.valence Fock states must dominate the hadron structure function. Our results 

for the valence Fock state will thus be valid for x sufficiently near 1. 

At moderate x it is likely that higher Fock states will be important. -. 

It is quite possible that the very large higher twist effects that we 

obtajn for the valence states are also present for those higher Fock states. 
- ." ._ 

Our analysis will be based on the extension of the Brodsky-Lepage 

formalism C5l first employed by Berger and Brodsky C41 in their calculation 

of higher twist contributions for pion beams. We begin in Section I by 

giving kinematic preliminaries. In Section II we repeat the pion calculation 

using our techniques and discuss possible subtleties and difficulties in 

the Kginal results. In Section III we turn to the proton target. 
- 
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Section I 

. ._ 
We begin by giving a few kinematic preliminaries. The structure 

functions for deep inelastic scattering are defined through 

Wpv(P,4) = -[gl& - qP$v, 
w1 + CP, - qp y9’lP -- q;$%w, (1.1) 

V - - 

We use light cone notation; for general vectors v and u we define 

+ 
V =V 0 + v3 -; = 

T ( Vl' 9) 

V 0 =v -v 3 v2 = v+v- - ()y = v+v- - vg (1.2) 

A 
v = v1 + iv2 u-v = qu+v- 

- + 
+ u v - i% - Ml 

v = ~1 - iv2 
- 

Note that use of c and y for transverse momenta will simplify later Dirac 

algebra. 

In a frame defined by 

q = (q+, q-, ;T) with q+ = 0, q- = 2v/p+, q$ = Q2 

A - 

P = (P', P , aT> with P- = Mtarget/P+, v = p-q (1.3) 

-. . we have 

w2 = w++/p+2 

and the standard rat 
- .^ ._ 

io 0.f at/oT is given by 

- - -- 
WL = Q2 P+~ !$ 

4v 
(1.4) 

We will calculate W++ and W-- by computing the amplitudes, A+ or 

A-for absorption of a + or - component photon by the target, squaring 

- 
_- ~_ -. 
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the amplitude, and then integrating over final state phase space. In 

computing A+ or A- we begin by imagining a superposition of multi- 

particle Fock states c51 for the incoming target. In the frame of 

. ._ eqn. (1.3) we define the amplitude for finding n (on-mass-shell) 

quarks and gluons with spin projection Sz along the z direction and 
c - I 

momenta pi..as (See Fig. 1) 

Pi+ 

where, by momentum conservation, 

2 ffi 
n 

= 1;: 2 ;Ti = 0. -_ 

i=l i=l 

(1.6) 

(1.7) 

The si specify the spin projections of the constituents. For xBj + 1 

we will be concerned only with valence Fock states containing quarks 

or anti-quarks. For each fermion or antifermion constituent $s (n> 

Z 
multiplies the spin factor 

“(Fi > ‘(6.j > 
JPJ 

Jp+ or - Jp+. 
JP; 

. - 

The wave function is normalized according to 

2 . ._ 

167-t3 g(l-+) 62(2i;Ti) = 1. 

(1.8) 

Our spinor normalization is such that 2 u,(p);,(p) = $ + m. 
S 

5 



Similarly, the final-state created by the absorption of a + or - 

component photon will be specified by momenta and spinors 

‘(ki > ;(ki > 
Jk; 

JP+ or - JP+ 
dk; 

(See Fig. 1). In this normalization the phase >pace associated with 
_ 

an n-particle final state is (xi E ki/p+) 

(1.9) 

a(1 - ~‘i) ~ ‘C(P+q)- - 1 k:]. 
i 

*-. 1 
P 1 

Our procedure will be to calculate W++ or W-- by first computing the 

amplitude A+ or A- for a given quark in the initial state 

configuration specified by Qs to absorb a + or - component photon and 
Z 

yield a final state as specified above; this amplitude will include 

the integration over initial configurations 6Ti and ayi and a coherent 

sum over the 

obtain, for a 

initial quark spin states for the given Sz. We then 

given-struck quark 

W 
++, -- 11 

n dxi d2kTi 

= b'bz :I J- !, 2md3 
1 

16n3 62(t ;t .) i Ti 6(1 - 2 xi) (1.10) 
i 

% G[(p+q)- - 1 kf] 1 A+' -I2 
P i 

where A +'- depends on xi, TtkTi and s;. 

- 
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Finally we sums over th-e possible quarks which can be struck by 

the deep inelastic photon. We do not allow for interference terms in 

which the photon is absorbed on different quarks of the target. These 

. .- terms are suppressed by a factor of 

relative to the diagonal terms we retain. This is because the virtual 

photon momentum has to be routed through an explicit gluon exchange 

between the two interferring quarks (when visualizing the calculation 

as that of the imaginary part of-the forward Compton amplitude). 

Our normalization is such that for a 1 particle state VW* = b(l-xgj). 



Section II 

Calculational Framework 

._ and 

Application to Pion Structure Function 
r - e 

We now consider deep inelastic scattering on a pion target at 

large xBj. In the xBj + 1 limit the bound state quark struck by the 

virtual photon is required to carry most of the '+' - component of 

longitudinal momentum. The simplest diagrams allowing this 

configuration are ilTustrated in Fig. 2, where we consider the q 4 

Foek component (in the light-cone decomposition of Ref. [5]) - higher 

Fock components being suppressed by powers of (l-~,~)~. We will 

calculate the amplitude for virtual photon absorption in the x 
Bj 

+ 1 

limit and later square and provide phase space factors to obtain the 

structure functions, as discussed in Sec. I. 

In the frame of Eq. (1.3), the on-shell recoil momentum, p-k, of 

Figs. la-b is given by . 1 

(p-k)+ = (1-x)p+ 

.^ ._ m2+k2 
(p-k)- = T 

Cl-x>p+ 

(2.1) 

(pit), = -IiT 

.- .- 
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where m is the spectator quark mass and x = x 
Bj 

in leading order. From 
. ._ 

(2.1) we find that 

-(m2+kp) 
k2W - (lmx) 

c - - (2.2) 

is forced 

result al 

limit [S], [4]. 

In the procedure of Ref. [5] one notes that the transverse 

momenta of the initial quarks do not enter into the large off-shell 

(2.2). Thus one may evaluate the tree graphs of Fig. 2a, 2b 

linear on-shell initial quark and antiquark lines and incom ing 

momentum 

with co1 

spinors 

far off-shell in the x + 1 region. This purely kinematic 

lows us to apply the Brodsky-Lepage formalism in the x+1 

This tree graph result is then convoluted with the evolved wave 

function @(a, "Q2")- defined by (for simplicity we do not write the - - 

standard wave function renormalization factor) 

(I)(@, “Q2II) = 5is2 f’Q2” d2PTl d2PT2 

C16~“l’ 16n36($-1 + 6~2 > (2.3) 

$ (f3 , i3,, Sl’ 9) 661 + 9, 
z 1 

- 
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i 
where pi = op+, p; E (1-cy)p+ and we require a spin 0 qq Fock state for 

the pion. This "evolved" ._ wave function is thus the integral over 

initial transverse momenta of the Fock state wave function with upper 

limit "Q2" set by c - m 

_ 
II 2” 4 e-a k2(x). (2.4) 

This is the point beyond which the initial transverse momenta can no 

longer be neglected in calculating the tree graphs. It is the region 

below "Q2" which gives the leading log contribution in the x += 1 limit 

c51. -. 

_ In the limit of very large "Q2", $(a, "Q2") takes a particularly 

simple form [S] for a pion, 
II 21’- Q 

4h 
"Q2" ) N o(l-ff) * F (2.5) 

C 

where n = number of colors. 
C 

At more moderate "Q2" the wave function 

will not have reached its fully evolved form. In fact Berger and 

Brodsky [4] use the weak binding form 
-. 

ab "Q2") = 6(a - (2.6) 

.^ ._ We have chosen the normalization of @ so that the normalization of the 

large Q2 

(2.5) and 

Ref. [6]. 

for the p 

ion form factor, proportional to J cy ~ [S], is the same for 

(2.6). More sophisticated forms for 4 are considered in 

We do not, in this paper, wish to explore all possibilities 

on and so we will restrict our considerations to a $I of the 

form Eq. (2.6). We will employ fn = 130 MeV. 



The above wave function for momentum coordinates must be 

supplemented by the color wave function 

(2.6) ’ 

(a, b = quark, anti-quark colors respectively), and the pion spin wave 

function 
c - 6 

- 

k( I+, -> - 1 -, +>> (2.6)” 

both normalized to unity in the square. The + and - refer to infinite 

p+ helicity states, see Ref. [5]. 

The calculation will employ an axial gauge for the gluon - 

specified by 

rl .A gluon = 0, q = (0, q-, o,o>. (2.7) 

In this gauge the rules for the numerator of the gluon propagator, 

-QJ 
+ 

rlc, kv+rlvkp 
rl*k 

z PvV(k), are specified in Table I. 

We will also employ the Dirac algebra rules for matrix elements 

between on-shell spinors specified in Table II, adapted from Ref. 5 to 

our more convenient notation. We will employ "helicity" states where 

the helicity is that which a particle would have in the p+ + C=J limit, 

.^ ._ see Ref. [5]. We supplement these rules with the observation that the 

numerator structure of an off-shell spinor line may be written 

11 



(2.8) 

with a similar rule for anti-fermions. Graphically 

Here the spinors are on shell spinors. The k- componentis placed on 

shell and the y+ term of (2.8) compensates for this correction. Note 

that this trick combined with the axial gauge of Table I implies that 

only + and A or V matrix elements need ever be considered for W ++, for 

m m  

W a limited number 

One finds that 

A+ 

of - elements are required. 

the amplitudes have the form 

- a+(l-x) + b+/Q + c+/Q2/(1-X) 
. 

A- - a-Q 
(2.10) 

up to sub-leading terms in (l-x)-l. The numerator algebra for non-flip 

contributions appears in Table III. We, of course, only retain those 

contributions capable of contributing to the leading terms as x+1. The 

phase space 6 function has the expansion 

G(X-XBj) - 6' (X”Bj) 

- T x T  l ?T 
m2+k2 

Q2 - ” (‘-‘Bj) q27& 

ST l qT (4 *  

+ & 6”(X-xgj) Q .  

.  

(2.11) 

We square the amplitude, (2.10), multiply by the expansion, (Z.ll), and 

collect all terms of given powers in l/Q and 1/(1-x). (Observe that the 

derivatives of 6(x-xBj) lead to extra inverse powers of (l-x).) The 

resulting forms are 

VW 2 
xz1 (l-x)* +-constan-t /Q* 

_- 
(2.12) 

VW2 
x-+1 N constant 
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More generally (Appendix A) one can show that the leading terms for 

n-body fermion Fock states behave as C71 

x-+1 
VW 2 

- (l-x)2n-3+21MI 
(2.13) 

where Ah is the helicity of the initial target spin state minus the helicity 

of the quark (or antiquark) .probed 

rule for WL is 
x-+1 

VWL 
N (l-x)2n-4+2AT 

by the virtual photon. ,The corresponding _ 

(2.14) 

where ~~ is the helicity of the initial target spin state. 

We now discuss the details required to obtain the full result including 

);ormalization and spin-flip terms. The color wave function (2.6)' and 

coupling constants yield a factor of -ggCF. In addition we convolute with 

the initial wave function and sum over spin configurations, see (2.6)". 

We define 

(2.15) 

IB = j- 9 da = 21Aa 

where the rightmost equalities hold for the form of.the wave function 

given in (2.6). These are the only two independent wave function 

. . ._ weightings which appear once the symmetry under 01 - (1-a) of ~(a) 

is employed. Denoting, for example, A+-,+- as the amplitude for an 

initial +- helicity to absorb a photon and yield a final +- helicity 

state we define amplitudes for fixed final helicity states as 



A +- = $(A,_,+- - A..+,+_) 

A ++ = ;ZCA+-,++ - A-+ ++) , 

A _ ._ -+ = $A+-,-+ - A-+,-+) 

A i= $-$A, -,-- - A-+,-J 

(2.16) 

cwresponding to the coherent helicity 0 initial pion state. We 

obtain (taking the charge of the struck quark to be unity for the 

moment) 

X+-l 
A;- - ;Z(-CFas4n) $$$ [-(lA+l,) - 

T - 

+ - x+1 
A -+ - -(A;-)" 

v 

mk1 
;Z(-cfs4n$$&$ [(,z+,!)- 

T T 

A+- ‘2’ +(A;+)* (2.17) 

VA 
q:k I,-+ 
(mz+k;)l = -(Ar+)* 

. . v ._ 
x+1 

$-c&4n&) 
q m IA 

P 
I-(m’+k ) T 1 = + (A:-)*. 

Note that no terms of the form c+ in Eq. (2.10) appear. We next 

square and incorporate final state phase space, see (1.9) and (1.10). 

- 
. -. 
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We obtain, using the expansion (2.11), 

VW 2 
= i& J dr(‘) 

+2 

I  I  

” (2.18) 
P 

,-- - I 
x+1 

in 4C; J dk; c~f ((k2;mzIz 
T 

[(1,+1,> 
2, m2 

(k~+m~)(31~‘21A’B)1(1~x~j~2 

T 

and 
- 

VW ,- = $ & J dI-('I 1 p+A-1' 
V 

(2.19) 

XB j’l dk2 ci2 
4c: J ? .5 12. 

(mL+kf) A 

The simplified results of Berger and Brodsky Ref. [4], 

'Bj*' 2 
VW 2 2 dkT 2 2 - 

2 3’ CF 'A -ll~* ~ 's ~(‘-‘Bj) Oc bL+‘ST) 

I 

(2.20) 



'Bj" 
VW 4 'F 2 'A 2 Jm2 ~~dk; 2 

2 
- L 7 os Oc 9 4x 

Ki 
*L' 

are obtained by neglecting m2' s except as an integration cutoff and by 

- .- 
using IB = 21A as appropriate for the wave function (2.6). In this 

approximation the higher twist contribution tom vW2 (proportional to 
_ - I, 

l/Q2) is purely longitudinal. We will see that evaluation of the more - 

general expressions (2.18) and (2.19) does not yield this result until 

'Bj is very near 1 - the longitudinal content of the l/Q2 correction 

to vW2 is sensitive to the m2 scale and to the wave function through 

IA and Is. We evaluate the full expressions (2.18) and (2.19) for the 

approximate wave function (2.6), and-employ a moving coupling constant 

=a mom CI 
k$+m2 

S S co (l-x)) (2.21) 

with 01 = $ for (2.6); os is thus the two-loop momentum-subtracted 

moving coupling evaluated at the off-shell momentum carried by the 

gluon in the graphs of Fig. 2. This procedure possibly reduces [8] 

the higher order corrections to these graphs when they are evaluated 

in axial gauge. Note that the term in v-W2 proportional to 41i/Q2 . - - 

l/(k;+m2) is logarithmically divergent without the moving os whereas 

the additional higher twist terms with explicit numerator m2 powers 
-- ." ._ 

. converge. For xBj very near 1 this near divergence enhances the first 

term and leads to a purely longitudinal higher twist correction. 

However, for practical x 
Bj 

values, the results are very different. 

The numerical results are best expressed as a function of the 

variable 



x = A2 
m2 

mom('-'Bj) 
(2.22) 

where A2 mom is the QCD scale of crs in (2.21). 

Defining 

VW 
TI 'Bj+' 27X 1 LT 

- 2 (l-xBj) S2 + P T; 3 vW2 +vwlT _ e (2.23) 

Tc 
xgj+l 

VW L - sr 

(LT = leading twist, HT = higher twist) we note that the quantities 

m2$, ST, and T; are independent of m2 at fixed x. In Fig. 3 we plot,for 

unit quark charge, m*ST, TF/rr*ST, and <kfl/m2 where <k:) is defined with 

respect to the integrand of Eq. (2.18). 

The graph begins at x 1 10 where the perturbative calculation 

becomes valid. First it is necessary to comment on the normalization 

of s;. Data at large x 
Bj 

may be extracted from pion-nucleon Drell-Yan 

pair production using the deep inelastic determination of the nucleon 

cg1 structure function . This indirect extraction uses a K-factor of 2. 

LT 
The (l-~,~)~ fits to vW2 1 yield an approximate coefficient 

3 = (lDXBj)Z - 10 to 15 (2.24) 

" ._ 

From Fig. 3 (corrected for charge squared factor of 5/9) we see that 

an m2/Aiom value of roughly 

m2 
A2 = 1 (2.25) 

mom 

- 
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corresponding to x = 10 at x 
Bj 

= .9 is required to obtain (2.24). For 

A mom = .l GeV, in rough agreement with recent determinations Cl], [Z], 

[lo], we obtain m2 = 0.01 GeV2. 

._ To interpret this m2 value it is helpful to calculate the average 

transverse momentum squared of the struck quark, ckT>. It varies 

slowly with x 
Bj 

as shown in Fig. .3. For example - m 
- 

1.6 m2 
<k2> = 

T 
c 

x = 10 

3.3 m2 
(2.26) 

x = 400. 

Thus m2 = .Ol GeV2 corresponds to an intrinsic transverse momentum (at 

large x .) 
BJ 

of order 100-200 MeV, well within the conventional 

phenomenological range. We will discover that this same approximate 

m2- value also yields the correct normalization for the nucleon 

structure function. 

From Fig. 3 we see that the normalization of ~Wk~/(l-x,~)~ 

decreases slowly as x 
Bj 

+ 1 due to the effects of the moving coupling 

constant. On the other hand the l/Q2 "higher twist" component becomes 

potentially important in precisely this region. From Fig. 3 we see 

that the predicted-values for TG are quite small for m2 = .Ol GeV2. 

Nonetheless 

-  .” ._ 
vW;~ T; 'Bj = .99 

vT = Q2S;(l-xBj)2 = Oa5* 

Q2=10GeV2 

(2.27) 

At xBj values below .9 vWzHT becomes negative but is, in any case, 

negligible. 
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The longitudinal structure function, vfL, is predicted to be 

independent of x 
Bj 

in the limit xBj +l and will -thus also become 

increasingly important in this region. A useful guide is 

m2=.01 

i 

.2 xBj=. 9 
VW 

;* - (2.28) 
1 'Bj="5; _ _ 

Clearly- the larger xBj is the larger Q2 must be in order for these 

leading approximations to yield 

rzZ$i~+<l (2.29) 
T 

as required by positivity, see Eq. (3.5). 

Our results differ from those of Ref. [4]. First our explicit 

calculations when normalized by comparing to data constrain m2 to be 

in a range inconsistent with <ki>-1 GeV2 as chosen in the first 

article of Ref. [43. The small m2 value leads to a small higher 

twist coefficient. The exact form of the vWFT and WL calculations, 

including m2 numerator algebra contributions, is also more complicated 

than the Ref. C41 approximation and tends to prevent the higher twist - - 

contribution from being purely longitudinal. Indeed the "transverse" 

part of vWyT is generally negative in our calculation. Only for very 

small values of (l-XBj) will Eqs. (2.18) and (2.19) yield a purely 

longitudinal higher twist component in vW2, for it is only by a power of 

Il~(&-$l-l 

that the m2(kf+m2)-' contributions are suppressed relative to the 

(l++rn')-l terms in vW2 and vWL. HT 

- 
_- 
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The second work quoted in Ref. L-41, includes a rough estimate 

of w;. While their formula for WT is exactly the same as ours, they 

. ._ evaluate it by first relating it to the meson form factor, Fr(Q2), 

and then inputting the phenomenological form determined by low Q2 

experimental data for F Tr* In contrast, in the s&riet xB-j -f 1 limit, 

our Eq.-(2.19) is equivalent to employing the asymptotic QCD form 
+ 

for the meson form factor. Thus our result W; = .05 GeV2.$/Q2 

at XBj = .9 is approximately a factor of 4 below their estimate, 

which is probably appropriate at smaller x Bj' 

Regarding other possible meson-"targets" we note that 0 helicity 

vector mesons yield exactly the same results as for pions up to an 

overall normalization factor. Transversely polarized vector mesons 

exhibit some distinct qualitative differences: 

a> vWL behaves as (l-~)~ instead of (l-x>O. 

b) vwgT receives no matrix element contributions. For instance 

the diagram of Table III which is a leading matrix element 

higher twist 1 contribution . for the pion helicity 

configuration, is zero for a ++ + ++ helicity configuration. 

Thus -the higher twist contributions for transversely 

polarized vector mesons come entirely from the @function 

expansion (2.22) and will yield a negative coefficient. 

- 
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Section III 

The Proton Structure Function; Preliminaries 

The calculation of the proton structure function proceeds in 

close analogy to the pion case. However, the number of diagrams for - 

the proton valence three quark state is much larger. Our classifi- 

cation appears in Fig. 4. The kinematics are illustrated in the A 

diagram of Fig. 4. The vectors R and p-k-R are on shell and we define 

[in (+, -, T) notation] 

&'+rn' 
-. 

1 = (z(l-x>p+, T 

z(l-x)pf' aT) 

p-k-R = [(l-z)(l-x)p+, 
(1T+iCT)2+m2 

(l-z)(l-x)p+' 
-(JT+lTT)l 

(3.1) 

t, = 1, + iiT. 

In this case 

jf22,m2 
k'(x) '2' - z(;-X) - 

L2+m2 . 
(1-:)(1-x) (3.2) 

is again forced far off-shell and perturbative calculations based on 

the formalism of Ref. [5] are appropriate. In this region higher Fock 

states, beyond the valence, are suppressed by powers of l/k2(x> in the 

amplitude. We define an evolved wave function for the three quark 

state as 

- 
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$(a, /3, "Q2") = 2 

II 2" 

j- ' 

d2PTld2PT2 

s1s2s3 
(=“)’ *~z(~1~2$3s1s2s3) c3s3) 

6(s1 + s2 + s3 - sz) 
. .- 

wit.h "Q2" set by l/( 1-xBj) as in (2.4). At very large "Q2" the form 

of @ for a helicity + $ proton state, - - m 

(Zlu+u+d->-lu+u-d+>-ju-u+d+>) (3.4) 

+ symmetrization 

is (neglecting logarithmic structure) 

II 21'+.& Q 
$(a, f.3, "Q2") - Cap(l-a-p). (3.5) 

Our calculations, however, are to be compared with data at modest 'Q2' 

values; in this region Cp is unlikely to have attained its fully 

evolved form. Other possibilities include a simple weak binding form 

e = B 6(o - $6(B - $1. (3.6) 

A form for $ based on off-energy-shell dynamics, which leads to good 

agreement with moderate Q2 nucleon form factor data and '$ + pi; decay, 

has been proposed by Brodsky et al.[ll] 
_ . 

*3,(‘9 B, 6T.j) 
Pfl+m2 Pf2+m2 

= A exp C-b2 ((l-(y-p) + (y + 
Pf3+m2 

p 11, (3.7) 

.” ._ 

independent of spin. The corresponding $I is 

$(a, B) = A$ c@(l-a-p) exp(-b2m2(& + i + $)J (3.8) 

where the choices 

A$ = .35 GeV4 (3.9) 

(3.10) b2m2 = .012 
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yield their best fit. The -corresponding valence state probability is 

1 
5 4' Note that all choices of $ are symmetric under o( * 8 * l-a-8. 

Various integral weightings of @ will appear in our diagram 

. ._ evaluations. LT Those appearing in vW2 and vWL are 

c- - m ,  

(3.11) 

ID = s ‘$(a, p) da dB &. 
In comparing results for different wave functions we normalize B and C 

of- equations (3.5), (3.6) so that the IA values for these wave 

functions are the same as for (3.8). Since the IA weighting dominates 

the nucleon form factor calculation this will lead to the same form 

factor normalization for all three cases. 

As in the pion calculations the moving coupling constants will be 

evaluated at the momentum transfer carried by the associated gluon. 

The wave function momentum fractions o, 8.or y = CI + p appear in these 

arguments and are evaluated at their average values for the particular 

type of integral 
- " . . 

IA..:ID which weights a given contribution. We 

denote these average values by 

<ci> IA’ 9 <Y> IA’ IA etc. 

- 
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The color wave function for the proton is taken as (normalized to 

unity) 

(3.12) 

which yields a color factor of 

Color Factor = $ z.3 CF c - F (3.13) 
- 

for each amplitude diagram of Fig. 4. Note also that the tree graph 

involving the three-gluon vertex is zero for the color wave function 

of (3.12). 

We are now ready to discuss amplitude evaluations. For the 

moment we consider only terms with-leading x*1 behavior in a given 

order of l/Q. For vW2 we list those forms capable of yielding 

(l-x>3 

VW - 2 

L 

(l-x)/Q2 (3.14) 

l/Q4(l-x) 

while for VWL we will only keep terms contributing in order l/Q0 

(i.e., to oL/oT in order l/Q2> 

VW L - (l-x)? . (3.15) 

These are 

+x7+1 
+ 

- a (1-x) + E + 
+ + + 

A 
+ - 

Q [Q2;l-x)] + Q&x)~ + Q4b 

A - '2' a-(1-x)Q. (3.16) 

- 
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Final state phase space pr'ovides one power of (l-x) so that upon 

computing (1-x)IA12 we obtain 

VW 
2 

x$ a+2(l-x)3 + . . . (3.17) 

VW L 
x$ a-2(l-x)3 

in agreement with (2.13) and (2.14). 



Section IV 

VW 2 

. .- The results for Ai are easily summarized. First, the possible 

power suppres~sed corrections, with leading x .+l behavior listed in 
BJ 

(3.16), to the dominant a+ term. do not arise< i:e., b+=c+=d+=e+=O. 
- 

There are numerous terms contributing to Ai of order 

Ai non-leading 
x;tl (l-x) 1 

-' P" Q (4.1) 

but those are not as important in the strict xBj+l limit of vW2 as the 

various l/Q2 and l/Q4 corrections arising purely from the expansion of 
- 

the "-1' _ component momentum conservation phase space delta function. 

We-refer to this as the absence of leading higher twist "matrix 

element" contributions in the x .+l limit. 
BJ 

This absence is related to 

the extra power of (l-x) in A- relative to the pion calculation, 

compare (3.16) to (2.10), which in turn arises from the non-zero 

helicity of the incident photon. However, terms of the form (4.1) 

will be computed later and will be found to be phenomenologically more 

important than the terms we consider now.‘ 

In the gauge (2.7) only a very few diagrams contribute to the a+ 

" ._ term of Eq. (3.16). The Feynman graph numerator results for the 

non-zero y-matrix configurations are listed in Table V, for the 

non-flip helicity configuration +-+ + +-+. 

We have defined the variables 

Qff+m2 
T=- 

Lf+m2 

Z " = (l-z) 
S=U+T (4.2) 

- 
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Only diagrams ZA, 5A and -4A of Fig. 4 contribute as x+1. The 

corresponding denominator products are 

(dzA) = ‘ 
(l-x>4 

fe'J+fo"S3 

(dsA> = - 
(l-x>4 

arl(cr+B)TS" (4.3) 

(i-x)4 

F- - 

(d4A) = aB(l-B)UT%' 

The moving coupling constants appearing in the various diagrams are 

evaluated at the average off-shell momentum transfers carried by the 

two gluons. The absolute values of these momenta transfers are 

5A: m, $$ 
‘X (4.4) 

4A: ("1& (lmx)' JILL 

Combining Table V, Eqs. (3.11), (3.13), (4.3) and (4.4) and using CI - 

B symmetry of $, we obtain 

AV 

AI-+ +-+ xz1 
1 2 QL 

, 
-8Pi(lwx)(-jCF)(4~) z(l-z) 

-. 

[ZI,(W + y*, - IB -1 

AV . .- 
=-AQL. 

We have introduced the notation (defining y-ar+B) 

yAS E as[<o+B'I * S/(1-x)] 
A 

clBU G CI$GX> 
IB 

* "/(l-x)] 

(4.5) 

(4.6) 

- . 
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gcu z ap* l ~U/(l-x)-j 
C 

etc. 

. ._ 
At this point note that A vanishes if the weak binding wave 

function (3.6), which implies IB = 21A, is chosen and if the us's are 

taken to be constant. _ - m 

The teading helicity flip contributions are easily summarized. 

First, the upper line may not flip without losing a power of (l-x), 

see Eq. (2.13). Helicity flip for the middle line leads to the 

replacement in equation (4.5) of % by (-m). Helicity flip for the 

lower line leads to rm -, -m. Helicity flip for both lines results in a -. 

The results for initial helicity configuration ++- are obtained 

from the above by T-U, a=$, and I,--- IT interchange which leaves A in 

(4.5) unchanged. The initial -++ helicity configuration does not 

contribute to the leading x+1 behavior. 

For the spin wave function (3.4) we thus obtain the final state 

spin amplitudes: 

- . .- At- , 

_ - 
AI+- - $$c A~+-,++- + d A~~+,++_) = 8 Adf + dm2) ‘1 

T-T - $c- A~+-,+-+ + d AI-+ +-+I = & Ncm2 + diz) 
, 

A (4.7) 

A=_- - IL -@c A;+- ,+-- + d A~-+,+--) = $g Ab-mt - dmQ) 

AI++ - 1 *'c A=,-,+++ + d AI-+ +++I = g' Ad 
V 

- dmL) 
, 

- 
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leading to 

= A2 (c2+d2) 
6 (Re + m2)(L+ + m2). (4.8) 

For a proton, (3.4) implies that for each struck u quark (of + helicity) 

c = 2, d= -1 (4.9a) 

while for the struck d quark (of + helicity) 

c = -1, d = -1. (4.9b) 

The above does not include the charge squared factor. Using the 

weightings (4.9) we obtain (after including the charge factors) 

PI2 proton = IAl (;)(gT + m2)(Lf + m2). (4.10) 

'-=- For a neutron target the 7/9 is replaced by a (3/9) yielding the 

well-known 3/7 ratio for ~~~~~~~~~~~~~~~~~~~~~ proton c121. 

Note that the helicity flip terms in net, merely change the 

helicity-non-flip factor, Rf Lf, which would have appeared in (4.10) 

to ($+m2)(LT+m2). This is, of course, much simpler than what happens 

in the pion case. This simplicity is quickly traced to the fact that 

the line struck by the photon cannot flip helicity in the proton case 

(without extra (l-x) suppression) whereas it may in the pion case. 

The final state phase space factor for the proton 3-quark Fock 

state is dr(3) given in (1.9). We have 

,-J-(3) = 2 
d2RTd2LT(1-x)dzdx 

final [16T13]2 
2Tt6(2v - & - 

(XT+{T)2+m2 

X 
).(4.11) 

helicities 
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As before we will expand the 6 function, this time up to order 

1/Q4. Because the matrix element IM12 is even under both 2, + -2T and 
5 

-IT we can use the simplified form 

. ._ XB j'l 

drc3) w c 1 J- 
dxdz(l-x)ndLpd&f 

' final C=W 
helicity 

- states 

S 
ib(x-xBj) - Qz(l-x) 

LP"QF 1 s2 
"(x-xBj) + [T + 7 Q4(1,x) 216"(X-XBj) 

1 (L++q+4LTR;) 
('-'Bj> + 4 44 6 ""(x-xBj> 

- 
(4.12) 

We finally obtain vW2 as 

+2 
VW 2 

= & s d rc3) " I 
I I 

(4.13) 

P 

First let us examine the x integral. The important x dependence in 

(4.13) is a series of terms of the form 

5 c2 c3 c4 
‘(XBj) ' S dX(l-X)" ~s((l_x)) us 's(l-x) 's(l-X) (4.14) 

S 
('('-'Bj) - Q2(1-x) (j'(x-)( 

N 
) + IL;+e; + 

Q ~4(~~~)2lS"(~-~Bj) 
- _ .- 

(L2T+q>s 1 (LT+4L+JI;+Q;) 
- Q4(1,x> 6' "(x-xBj) ' 4( 44 6 ' ' ' ' (X-xBj)j. 

We note that for 

a 4TI 
a E (4.15) 

S 
in(k) 

;a= 2 
ll-3t-l F 



we have 

do 
(y' =s=- 

ff2 

S - dx a(lsx)' 
(4.16) 

The l/Q2 correction terms which involve J(~-x)~ G'(x-xBj) and J(~-x)~ 

6"(x-x -) 
BJ 

receive their leading contribution by differentiating the 

explicit (l-x) power the maximal number of -times. "Contributions 
- 

obtained by differentiating one of the ~15s are suppressed by a single 

ci s relative to these leading contributions. In contrast, the l/Q4 

correction terms involve integrals of the form 

J(l-x)61'(x-xBj); J(~-x)~~"'(x-x~~) or J(~-x)~ 6""(x-xBj) 

which would be zero- unless one of the 6 function derivatives is 

partially integrated against a moving coupling, os. Thus the leading 

l/Q4 term will involve an integral over 5 powers of os, versus four. 

Defining 

4 c. 4 c. 
~ocs=h&-), ncrs=nci (4, 

i=l i=l ' l-' 

Eq. (4.14) reduces to 

- 2S]rlffs 

"'Bj 

(4.17) 

(4.18) 

1 
+ aQ4(1-x 

S2 
.) 2 BJ 

[- - Z(L;+Q;)S + 
6(L++Q++4L;Q9 

4 Imp Q * 
“xgj 

- 
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Writing the leading power law contributions as 

X +1 
Bj 

VW - ‘2(l-‘B j > 3 
T2 

+ ~(l-'Bj) + “2 + 
2 Q4(‘-XBj) . . (4.19) 

. ._ 
We obtain the following explicit expression for S2 proton from (4.13), 

(4.5), (4.10) and (4.12): _ - v 

S;= 24(;)($F)2 J; dz J;2TdT J;, "d" 

I l-z 
(4.20) 

[21,(9&p + $p) - IB @&p%? 

The expression for T2 is easily obtained, following the procedure just 

outlined in (4.18) by-multiplying the integrand of (4.20) by 

[G(U(l-z) + Tz - 2m2) - ZS]. 

The expression for U2 is similarly obtained by following the procedure 

of (4.18). It is clear that U2 vanishes unless we employ moving 

coupling constants. That this is also true of T2 is less obvious; 

nonetheless it can be verified by analytic calculation that T2 is 

indeed identically zero for constants os. Thus both T2 and U2 are 

sensitive to the manner -in which we have approximated higher order 

corrections to our tree graphs through evaluating the moving,coupling 

constants as specified in Eq. (2.26). For constant os the leading 
" ._ 

power law corrections to vW2 behave as (~-x)~/Q~ and 1/Q4, thus 

establishing contact with the results of Ref. [13]; see Appendix B for 

further comparison. 

Our complete results are easily summarized. First we note that 

the ratios T2/S2 and U2/S2 are very insensitive to the wave function 



choice. Only the normalization of S2 exhibits any sensitivity. For a 

given choice of m the S2 normalization values of x=10-are in the ratio 

S2[Eq. (3.5)]: S2[Eq. (3.6)]: S2[Eq. (3.8)] = .147:.022:.051 (4.21) 

. - i.e., the normalization changes by a factor of 7 for different wave 

function choices. This sensitivity is due to the tendency for 

cancellation between the IA and. IB terms of (4.20). indeed for the 

wave function (3.6) S2 is identically zero for constant crs! We 

present results for the proton, with wave function choice (3.6), in 

Fig. 5. There we plot the m independent [at fixed x, see (2.22)] 

quantity m4 Sgroton as a function of x. The results for T2/S2 and 

U2/S2 show that they vary slowly with x Bj, i.e., with x. 

T2- 
x = 10 

- - -m 
s2 

x = 400 (4.22) 

70 x = 10 

24 x = 400. 

Results for a neutron target are easily summarized. We find Sg/Si = 

3/7 as obtained in [12] while T2/S2 and U2/S2 are target independent. 

The 3/7 ratio above is-,:of course, a direct consequence of the fact 

that only struck quarks with + helicity before and after photon 

absorption contribute to S2, See (4.7) - (4.9). 

In order to determine an approximate m2 value we (as in the pion 

case) look at the overall normalization of the leading twist contri- 

bution, 2 Sproton . Data at xBj >.9 is not available. We adopt the 

procedure of extrapolating the plots of Fig. 5 to small x and find 

that the approximate experimental result 
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-xgjz.7 
vWProton N 

2 .5(bXBj)3 (4.24) 

requires 

m2 5 .006 GeV2, (4.25) 

where A2 
mom = .Ol GeV2 has again been employed. We note that this is 

roughly the same size for m2 as required in thelion case, Eq. (2.24). 

In fact for future discussion we will employ m2 = .Ol GeV2. Once 

again we calculate ckp as a function of m2. For the proton we obtain 

2.8 m2 x = 10 
<k2> = 

T (4.26) 
3.9 m2 x = 400 

which, for m2 2 .Ol, yields a very reasonable intrinsic transverse 

momentum. 

It should be apparent from (4.22), (4.23) and (4.19) that none 

proton the leading corrections to vW2 are very sizeable for the value 

( .Ol determined from overall normalization. In a later section 

will discuss nonleading corrections to vW2 of the form given below 

V2 and X2: 

X +I .-. 

Bj 
VW2 - 

T2 
'z(l-'Bj) Q Bj 3 + +1-x > + "2 

Q4('-XBj > 
(4.27) 

+ 'z(l-'Bj) 4 
( l-XB .>2 

+ x2 --&- + . . . 
Q 

of 

m2 

we 

by 

These corrections receive contributions both from explicit matrix 

elements and from kinematical terms generated through 6 function and 

other expansion corrections to the leading S2 term. In addition 

neither V2 nor X2 vanishes for constant os. 

- 
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Section V 

VW L 

” .- 

First, however, let us turn to a discussion of the longitudinal 

structure function vW 
L' For spin l/2 quarks vWL scales. The deter- 

- 

mination of vWL requires computing the amplitude A-. In this case, as 

x .+l all three initial helicity configurations - +-+, ++- and -++ - 
BJ 

and all 8 final helicity configurations contribute to the behavior 

VW 
XB j'l 

L N sL(1-xBj)3' In addition diagram types lA, ZA, 3A, 4A, 5A - 

and 6A all make contributions in axial gauge and most receive contri- 

butions from several y-matrix configurations. (Note that in axial 

gauge B and C type photon attachments, see Fig. 4, do not contribute 

to the leading x .+l behavior.) 
BJ 

It is neither useful nor practical to 

tabulate in detail all the contributions. Instead we confine our- 

selves to writing out the amplitudes for +-+ + +-+, ++- + ++- and -++ 

+ -++, and then illustrate how to combine these to obtain vWL. We use - - 

the short-hand notation for the us's given in (4.6). 

The structures of the non-flip amplitudes for the three possible 

helicity states are 

VA VVAA 
A;-+ +-+ = AqQ+BqLQQ 

, (5.1) 

with A;+ -,++- obtained by I,+-+ IT, z - (l-z), CY - 8 from A+-+ +-+, and 
, 



AV A v 
A:++ -++ =&qQ+CqL. 

, 

We define 

(5.2) 

A = 4(1-x)(4n)2 [(lmz)E + L2H] 
p+ 2(1-z) T 

(5.3) 
B = 4(1-x>(4A>2 F 

p+ z(l-z) 
F- - 

and obtain (charge and color factors are omitted) 

E- - '-,l {:ic PC" yCS + 2 PA" yAS 

IC IB - 'sz PC" yCS + TU PBU clBT (5.4a) 

IB 21D - TS PBU uBT + TU PO" clDT 

+ 2 BAT yAS + $ BCT yCS + TS fiBT CYBU) IB 

F 
X+1 IC IA 

N 2 Ius W” YCS + w PA” W (5.4b) 

IA 
+ TSZ BAT W 

IB - TUS BBT crBU) 

- - 

X+-l 
H N 

IA -IC 
lrn PA" W - m PC" TCS 

” ._ 21A- IB 
- us2 PA" yAS - m crBT PBU 

IB IC 
+ UTS (YBT /3BU - TS2 @CT yCS 

21A IB - TSZ BAT yAS + STU BBT arB"j (5.4c) 
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For the -++ case we define 

A = 4(1-x)(4,)* [(lmz)F + L2Q] 

p+ z(l-z) T 

c = 4(1-xH47rJ2 LzG + R2 F] 
. ._ 

p+ z(l-z) T 

and obtain 

IA DC" yCS + su PA" yAS 

IC IB 
- p PC" yCS + TU PBU clBT 

IB 21D - TS 6s" CYBT + TU fiDU oDT 

- 2 @CT yCS + g DCT YCS 

IB 
+ TS oBU DBT] 

IC IB 'F = Iw PC" yCS + UTS BBU aBT 

IA IC 
+ m PAT W - m WT YCS 

(5.5) 

(5.6a) 

(5.6b) 

. - 
IB - Utz PBT arBU IB - UTS BBT 0tBU) 

- ” . . G = -E(T - U) (5.6~) 

i = -F;(T - U). (5.6d) 

The full result for vWL is obtained, in this helicity non-flip 

case, by combining the absolute squares of the amplitudes for the 

various helicity configurations and charge choices according to the 

me function weighting (3.4) and using (1.4) and (1.10) to obtain 



J dr(3+p+>2 hii* 
4n (5.7) 

XB j'l 

sL(1-xBj)3 

where, for SL, we keep only the leading term in dT (3) of Eq. (4.12). 

The result for vWL proton Obt ained by keeping only these helicity 

non-flip terms was given in Ref. [3] for the wave function (3.8). 

Helicity flip terms, which are explicitly proportional to the mass m, 

are important, however, for all x values we have considerd. They 

result in a moderate increase in the value of SF. For instance for 

the wave function (3.6) we obtain (in units of 6eV4) 

Non-Flip All 

3.3 lo-* 8.3 lo-* x = 10 

m2SP = 
L (5.8) 

3.7 lo-3 1.0 lo-* x = 400 

‘Our complete answer will include the helicity flip terms and 

employ the wave function (3.6). We have investigated the sensitivity 

of the ratio Sr/m2.$ to the wave function choice in the helicity 

non-flip approximation. We find only a mild sensitivity throughout 

the entire x range. For example 

Eq. (3.8) Eq. (3.6) 

SP 3.6 lo4 1.5 104 x = 10 
L PN 

m2S! 

(5.9) 

- 4.5 lo4 7.9 104 x = 400. 

The complexity of the full result for vWL (obtained by using 

REDUCE) [14] is apparent in the "invariant amplitude" expansions of 

the amplitudes A- for fixed final helicity states (the coherent sum 
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over initial helicity states having been performed). Each helicity 

amplitude contains terms proportional to various vector quantities 

such as 4, 1, f2, etc. as in (5.1) and (5.2). The coefficients of the 

vector quantities are the "invariant amplitudes" - there is one 

invariant amplitude for each vector structure which appears in a given 

helicity amplitude. We list the vector structures which appear for 

each amplitude in leading order as x 
Bj 

+ 1: 

V AV AV 
A;,, a q - (1, L Q, Q L) 

V 
A;+- a q 

A A A2 v A* v 
* (L, Q, L Q, Q L) 

(5.10) 

V A A A2 A* 
A;-- a q * (Q L, L , Q > 

V 
A;-+ a q l 

A A A* v A2 v 
(Q, L, L Q, Q L) 

A v  v  

A:, ,  a q l CL,  Q> 

A AV AV 

A:,- a q *  (1, L Q, Q L) 

A AV /Iv 
A- o:q --+ - (1, L Q, Q L) 

A A A 
A:-- a q * CL, Q>. 

The invariant amplitudes multiplying these vector structures are, in 

general, lengthy expressions of which (5.4) and (5.6) are zero mass 

reductions. They are, of course, functions of T, U and z at fixed m 

and xBj. We compute the full vWL from the squares of the above 

amplitudes using (5.7). We plot m2SF as a function of x in Fig. 5, as 

well as the ratio .SF/m2Si. We see that at x 5 10, corresponding for 

39 

‘--.=a 



A = .l GeV and m = .l GeV to x mom Bj 2 .9, this ratio is slowly varying 

with value 

SP,/m'SF - 4 x 104. (5.11) 

For larger x, xBj values the ratio increases. 

The result corresponding to (5.11) for a neutron target is easily 

summarized as 

SF SP 

m2Sn 
;21- 

2 m2SP 2 

(5.12) 

(good to 3% over the range x = 10 to 400) or, using the result 

we have 

'1 2: 6 - - -. 
sp 7 

(5.13) 

(5.14) 

L 

While (5.13) is an exact result, following from the fact that the 

quark struck by the deep inelastic photon must have + helicity (for a 

+ helicity proton) both before and after photon absorption in order to 

contribute to S2, (5.14) is not an exact result. Both + and - 

helicity quarks contribute to SL and with different amplitudes. In 

addition there are leading contributions to SL in which an initially 

negative helicity quark is struck by the photon and flips helicity so 

as to contribute to the same final state helicity amplitude as an 

initially positive helicity struck quark. This results in inter- 
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ference between terms arising from initial quarks of different 

helicities. 

The value (5.11) corresponds to (see Eq. 1.5) 

oL xBj’eg 1 6 x 1o5 m2 

a- - T v 
(5.15) 

implying that very large Q2 values are required before an asymptotic 

series for this ratio becomes appropriate. We do not see any 

justification in the large x 
Bj 

region for the usual statement that a 

small <k$ value guarantees a small value for the l/Q2 coefficient in 

OL/OT. While the scale of this l/Q2 coefficient is set by the same 

quantity m2, the complexity of the proton wave function, the tendency 

a- for cancellation in the expression (4.5) leading to VW*, and to a 

lesser extent the slow convergence of the integrals for vWL (which, 

except for tis variation would be logarithimically divergent) lead to 

. the very large numerical multiplier of (5.15). 
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Section VI. 

(l-'B j )4 and (l-x .)2/Q2 
BJ 

Corrections to vW2 

To obtain the corrections V2 and X2 to the leading terms of uW2, 

see Eq. (4.27), requires a major effort involving REDUCE [14]. Our 

procedure is to isolate terms in A+ which behave as 

A +x+1 + 
- a (l-x) + f+(l-x)2 + g + (l-x) h+ - + 

Q F' 
(6.1) 

Here a+ is the leading term already discussed and we recall that the 

possible "leading" matrix element terms b+ through e+ of (3.18) are 

found to be zero. 

Contributions to V2 arise through a+ - f+ interference in (A+12 

[recall phase space provides an additional (l-x)] as well as through 

trivial corrections to the Ia+1 2 leading term arising from the full x 

dependence in dT (3) of Eq. (4.11). The same diagram and y-matrix 

configurations that contribute to a+ (see Table V) contain terms of 

the f+ type as a result of keeping non-leading corrections in (l-x) to 

the numerator and denominator algebra. However, there are also many 

new configurations of the A type that contribute to f+. (In axial 

w-w, B and C type diagrams do not contribute to f+.) Since we are 

concerned with an interference a+ - f+ contribution, only the same 

final helicity configurations (+-+, ++-, +--, +++) that contribute to 

the leading term a+ need be retained for f+. The structure of f+ is 

revealed by the vector structures which appear 
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fZ-+ 
v A AV VA 

0: (L2 Q2, L Q, L Q, 1) 

fI+- 
A v AV VA 

0: (L2 Q2, L Q, L Q, 1) (6.2) 

fI-- 
AVVA AA 

a (L2 Q, L Q2, L, Q) 

fZ++ 
VAAV vv 

0: (L2 Q, L Q2, L, Q). 

Each vector structure is multiplied by an associated invariant 

amplitude. In general these invariant amplitudes are lengthy 

expressions. For the interference contribution V2 we compute a+f+* + 

a+*f+ summed over final helicity states and integrated against the 

leading term in dT (3) . We combine this with the trivial corrections 
.?a - 

to the a+ 2 term due to non-leading corrections to dT (3) to obtain 

the full result for V2. As for T2 and V2 we find that the ratio V2/S2 

._ is a-slowly varying function of x. We find, for the wave function 

(3.61, 

v; 
-96 x = 10 

-= 

9 

(6.3) 

-168 X = 400. 

Unlike T2/S2 and U2/S2 the above ratio does, however, change in going 

to a neutron target. We find 

v; _ 
15 x = 10 

-- 

s; 

(6.4) 

14 x = 400. 

Note that the coefficients of the (l-~,~)~ correction are very large 

especially in the case of the proton and that, in fact, very large x 
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values (i.e., x 
Bj 

very near 1) are required for the combined S2 and V2 

terms of the (l-x -) 
BJ 

power series to yield a positive result for VW;. 

Thus the behavior VW; ~(1-x~~)~ in the currently accessible 

'Bj < .9 region could have little to do with off-shell counting 

arguments that apply to the leading (l-~,~)~ term discussed here. 

Positivity, of course, implies that the negative (l-x -)4 term is 
BJ 

partially cancelled (at moderate xBj) by higher power terms. This 

could leave an effective (l-~,~)~ power at moderate xBj values. 

Nonetheless our calculations show that the power counting result for 

the leading S2 term can only be strictly trusted at x 
Bj 

values much 

nearer to 1 than those currently accessible to experiment. 

On a related point, note that (6.3) and (6.4) imply that 

.Wz/vWF should approach the canonical value of Sg/S: = 3/7 [12] from 

above. If anything, current data around xBj of .9 suggest that 

- vw;/vw; is below the value of 3/7. Thus the asymptotic results for 

the (l-x .)4 
BJ 

term obtained here would appear to obtain only at x 
Bj 

still nearer to 1. 

In what follows we will adopt the optimistic point of view that 

the (l-x .)4 
BJ 

term is largely compensated by terms with still higher 

powers. The S*(~-X~~)~ term is the least damped (1-xBj) behavior and 

a type of "duality" may hold in which this leading term also 

represents a good average of the sum of all terms. The higher power 

corrections, T2 and U2, discussed so far also have leading ('-xBj) 

behavior at their respective orders of l/Q2. Our next computation 

will show a substantial correction to the l/Q2 term at level (‘-XBj)2, 
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compared to the leading (l-x .)/Q2 
BJ 

form. This correction could also 

be partially compensated by terms with still higher (l-x .) powers. 
BJ 

However, recall that the (l-x .)/Q2 
BJ 

term vanishes for constant os 

whereas the (~-x,~)~/Q~ correction does not. In a sense the 

('-'B j )2/Q2 term is the first "non-trivial" higher power correction at 

order l/Q2. 

(l-x,.>s 
We now turn to the --Q&- correct 

Referring to (6.1) we find several possi 

ion term, X2, of equation (4.27). 

ble sources for X2: 

(a) a+ - g+ interference combined 

space correction, see (4.11); 

with a L 6'(x-x 
Q 

.)(1-x) 
BJ 

phase 

(b) a+ - h+ interference combined with the leading (1-x)8(x-xBj) 

phase space term; 

-(c) \a+12 terms combined with phase space terms of the form 

(1-x) Q" G'(x-xBj) or & (l-~)~ 6" (x-xBj); 

Cd) a+ - f+ interference combined with g b'(x-xBj) or & (l-x) 

6" (x-xBj) phase space terms. 

All of these possible sources do, in fact, contribute. As for f+ we 

confine ourselves to specifying the invariant amplitude content of the 

new forms g+ and h+, of (6.11), which contribute under (a) and (b). 

We find 

4 
g:-+ Oc Q 

A A A v VA 
(Q, L, Q2 L, Q L2) 
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AVVAV AV 
+ 4 (Q, L, L Q2, Q L2) 

Q 

+ li 
AAAVAV 

g++- a Q (L, Q, L2 Q, Q2 L) 

AVVAV AV 
+ ' (L, Q, Q L2, L Q2) Q 

g:++ a ii 
AV VA 

Q (1, Q L, Q L) 

AVVV V 
+ g (Q L, L2, Q2) Q (6.5) 

s;-- Oc !I 
AV VA 

Q (1, Q L, Q L) 

VAAA A 
+ 4 (L Q, L2, Q2) Q 

VA 
h;-+ a CL Q, 1) 

hI+- 

AV 
a (L Q, 1) 

v v 
h;++ a CL, Q> 

h;- 
A A 

a CL, Q>. 

The computation of the invariant amplitudes is performed using REDUCE 

c141. The expressions for those appearing in the g+ amplitudes are 

lengthy while the ones contributing to the h+ amplitudes are not as 

involved. The entire calculation of the interference and phase space 

corrections listed under (a) - (d) is also performed by REDUCE with a 

final numerical integration yielding the results below. We employ the 

wave function (3.6) and obtain 
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XP 696 x = 10 
2 -= 

m2SP 2 898 x = 400 

x; 63 x = 10 
_ -- 

m2Sn 2 213 x = 400. 

(6.6) 

We see that as in earlier cases the ratios are target sensitive but 

vary fairly slowly as a function of x. The values given in (6.6) 

imply that the (l-x .)2/Q2 
BJ 

correction to the leading (l-x .)3 behavior 
BJ 

of vW2 can be quite substantial. For m2 = .Ol GeV2 and Amom = .l GeV, 

we have at xBj = 0.9 

p 2( l xp l-XB.)2 
= 6.96GeV2 =69.6GeV2 

s; (l-xBj)s QL ('-XBj > Q2 

and 

4 XF(1-xg.)2 

s;(l-xBj)s 
= Q2(?xBj) 

(6.7) 

(6.8) 

The proton X; correction is clearly very sizeable. Assuming that the 

6.6 GeV2 coefficient of (6.7) is not substantially varying as x 
Bj 

decreases outside the range x > .9 (in which our calculation is 
Bj - 

perturbatively justified) we would obtain a -50% correction at Q2 = 25 

GeV2, x 
Bj 

= .5. 

We also remark that we have simply not attempted to extract the 

% 
correction to the leading S2(1-x .)3 term. 

BJ 
Such a calculation is 

possible and we would again anticipate a large coefficient since there 

are many contributing sources from both non-leading phase space 

corrections and direct matrix element terms. 
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Section VII. 

Summary 

In this paper we have explored in detail the predictions of 

perturbative QCD, using the approach of Refs. [4], [5] and [6], for 

the behavior of the deep inelastic structure functions for large x Bj' 

We have computed the terms given below which derive entirely from the 

valence quark wave function states of the pion or nucleon target: 

v$ -It s; (l-xBj)2 + T;/Q2 

vq - s; 
N 

VW - 
N (l-x .) 

‘2 ('-'Bj) 3 + T; -$ + UN 1 
2 Q 2 Q4(‘-X,j) 

+ v; (l-xBj)4 
(l-x,.>2 

+ x; -+- 

(7.1) 

(7.2) 

(7.3) 

vWN - N 
L 

SL (l-xBj)3. (7.4) 

Since we are interested in the limit Q2 + 03 followed by the limit of 

large 
'Bj we 

have systematically neglected terms of order 

$"kp"/(1-xBj)] and CI (Q”> relative to terms of order 
S 

aS["kf"/(l-x .)] 
BJ 

in computing the various coefficient functions S2...X2. 

In particular the neglect of terms of order os(Q2) implies that we 

need only consider diagrams, for the forward Compton amplitude, in 

which the photon enters and exits on the same quark line. 

Equivalently, in our calculations we sum incoherently the absolute 
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squares of the tree graph wave function amplitudes (A+ or A-) for each 

type of quark in the bound state. 

Aside from the initial wave function choice, for which we have 

taken the "weak-binding" forms (2.6) and (3.6) - (There is no 

substantial sensitivity here, as discussed.) - there are two 

parameters in our calculation. The first is Amom for which we have 

taken the value 

A mom = .l GeV (7.5) 

in rough agreement with the lower range of existing determinations. 

(We use the lower range because our results indicate the likelihood of 

substantial higher twist contamination in these determinations.) The 

second is the quark mass, which provides the infra-red cut off for 
a- 

internal transverse momentum wave function integrals. The 

normalizations of Si and SF scale as l/m4 and l/m2 respectively and 

thus- provide a sensitive measure of m2. Comparing these quantities to 

approximate experimental determinations shows that 

m2 2 .Ol GeV2 (7.6) 

yields the correct normalization for both. The average transverse 

momentum of the quark struck by the deep inelastic probe is 

exemplified by the results (4.26) which we approximate for discussion 

as 

ck?z N - 3m2 (7.7) 

roughly independent of x Bj' The important point to note is that with 

(7.6) this is a small number entirely consistent with indirect 

determinations using fragmentation and similar data. Using (7.5) and 
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(7.6) we find that all os arguments which appear in our calculations 

are well into the perturbative domain, provided x 
Bj 

> .9. 

Given such a small result for m2 or ck;> it has become customary 

to think that the l/Q2 power law corrections (which scale as m2 

relative to leading terms) are then very likely to be small, 

especially corrections of this type which have no "extra" dynamical 

origin such as diquark [15] or other non-perturbative internal wave 

function structure. In this paper we have found that for a pion 

target this optimistic scenario appears to hold, whereas for a nucleon 

target one must anticipate large power law corrections. 

For the pion target we found (xej 2 0.9) 

-- 

and for 

sY -> -2 
m2$ - 

4x;. WL 
r= --&- Q w2' 

related to aL by 

(7.8) 

(7.9) 

2- r 
aT l-r' (7.10) 

we obtain 

> .9 
rn 'Bj 7 .8m2 (7.11) - Q2 ('-XBj )2' 

For Tz we find a negligible result for x Bj z .9 rising rapidly to the 

asymptotic value (independent of wave function choice) 
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lim 
TT? 

xBfl 4sTI = IL 
(7.12) 

L 

for which the l/Q2 correction is purely longitudinal, as obtained in 

Ref. [4] in the absence of helicity flip and mass corrections. At 

accessible xBj values our results imply that the l/Q2 correction, Ti, 

to $ is not pure longitudinal and is in any case negligible once the 

relationship between the normalizations of .$ and T; through m2 is 

taken into account. The estimate of W; contained in the second work 

of Ref. C41, appropriate to moderate x Bj' 
is a factor of 4 larger than 

our result at xBj = .9, see Fig. 4. Both evaluations are substantially 

lower than the original estimate in the first work of Ref. C41. 

The most dramatic example of a large proton target power 

correction is the result for r of (7.9). The leading term in 

asymptotic series for rp is found to be (x Bj 1 '.') 

law 

the 

(7.13) 

see (5.9). Since positivity requires r 5 1 the higher terms in this 

asymptotic series must be important until Q2 > 1000 GeV2. Certainly 

one can find no justification for the statement that small <k;> 

guarantees a small result for oL/aT. We have attempted in Sec. V to 

present enough calculational details that the sources of such a large 

result for SF become apparent. These include: a large number of 

contributing diagrams; no cancellation tendency, whereas the Si 

calculation exhibits some cancellation (which would, in fact, be 
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complete for constant os and a weak binding wave function); and 

integration convergence. 

slower 

The interplay of these effects is quite subtle. For examp le, in go ing 

from the weak binding wave function (3.6) to the form (3.8), the cancellation 

effect is reduced and SF increases, see (4.21); nevertheless, at x = 10, rp 

also increases. Thus it does not seem that the large value of rp can be 

substantially reduced by minimizing the cancellation in SF- 

The terms Ti and Ui which have the most dominant xBj + 1 behavior 

at the l/Q2 and l/Q4 level, respectively, in the series for W2, are 

found to be modest in size. As discussed they would be zero in the 

approximation of constant moving coupling constant. With the choice 

~- (2.21) we find (at x Bj " .'> 

TN 
2 ,., -4m2 
SN - 2 

UN 
2 

SN " 70m4y 
2 

(7.14) 

see (4.22) and (4.23). At Q2 = 10 GeV2 and xBj = .9 one obtains 

(l-xB -> 
T; + 

N- 
N .4 

‘2 (1-xBj)3 
- 

(7.15) 

N - + .7 
‘2 (1-xBj)3 

- 

which can hardly be called small corrections. Nonetheless, they are 

smaller than the values preferred by Barnett in a fit of this type [2] 

which assumes a higher twist correction form 

_-. 
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Cl - > + 600 m4 &I, -XBj> -‘Bj> 
(7.16) 

He obtains a good fit for m = .138 GeV while the XBj and X2sj factors 

reduce the "effective" l/Q2 and l/Q4 coefficients (in the x 
Bj 

range of 

the fit) to values nearer those given in (7.14), it is clear that 

(7.16) suggests a larger positive l/Q2 or l/Q4 correction than 

predicted by T2 and U2 alone. 

We have computed the coefficient of one possible term which could 

provide a correction of the desired type. We find a l/Q2 correction 

of the form 

(l-x,.>2 
Xg + ‘Bjreg 

700m2 

s; (l-xBj>3 
- Q2(‘-XBj)’ 

(7.17) 

a- 
(This ratio, unlike earlier ratios, is target sensitive - the neutron 

result is -l/10 as large.) Though less leading as x Bj+l than the l/Q2 

T2 correction, the large coefficient implies that the Xi correction 

completely dominates the Ti correction for x Bj 5 .9. We have not 

computed the (l-x .)2/Q4 term which is the natural competitor to the 
BJ 

U2/Q4(‘-XBj). There is a large number of sources for this form and it 

could easily dominate the latter. 

Note that (7.17) is the only term we calculate that has a target mass 

contribution. Defining: 

xp = xp twist-4 + xp Target Mass 
2 2 2 

we find, using 5 scaling 

xp Target Mass 
2 

= 3M$ S; 
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Thus, in our weak binding model with m =.l GeV, MT = .3 GeV, and the 

target mass contribution to (7.17) is negligible. The correct procedure 

to determine the full value of XF is to subtract the weak binding value of 

xp Target Mass 
2 

and to add back in X; Target Mass with the correct value of 

MT = .937 GeV. (this assumes that X2" twist-4/SF , like Vp,is not strongly 

dependent on the wave function; we have not been able to verify this 

explicitly, since the complexity of computing Xg/.$ for other than weak 

binding is prohibitive.). This results in a 40% increase in XF when 

m2 = .Ol GeV2. Thus target mass corrections alone underestimate the full 

XF by a factor of more than 3. 

Although the term (7.17) seems quite large we would like to point 

out that it is of precisely the form and general magnitude considered 

iy Barnett C21 in his favored fits. Barnett adopted the "higher twist" 

correction factor 

[l + x3* W2/W2] 
BJ 0 

(7.18) 

(l-x .> 
where W2 = Q21. As xBj 

'Bj 
+ 1 this form is identical to our X2 

correction provided Wi = X2/S2. For an average nucleon target, 

N 3 7 (as considerd in [Z]), we use (6.6) and Si/.S; = 3/7 to yield 

our prediction, 
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2N 
Wo) = x2/3 N N=509m2. (7.19) 

Barnett analyzed [Z] three sets of data - EMC, CDHS, SLAC-MIT - and 

obtained the following values of o W2 in (7.18) in combined 

"Leading-order QCD" + "Higher-Twist" fits: 

I' 

12.5 + 4.3 GeV2 ALO "‘- 075 GeV EMC 

(W2)N - 0 - 8.3 + 5.3 GeV2 ALO " - 130 GeV CDHS (7.20) 

4.4 + .47 GeV2 *Lo III * 048 GeV SLAC-MIT 

full target mass corrections are included though 5 scaling and should not 

be added to X2/S2 in (7.19). 

Especially in the SLAC-MIT case the x2 of the fit with the correction 

(7.18) was much better than the pure QCD fit. The (WE)N value 

'>- obtained is somewhat sensitive to the x factor assumed in (7.18) 
- 

Bj3 

but clearly (7.20) brackets the value (7.19) predicted by our 

calculation with our preferred value m2 r .Ol GeV2. The values of AL0 

(LO = leading order) in (7.20) correspond to small values of Amom of 

order A mom 
= .l GeV as adopted in our work. 

At our request Barnett has repeated his fits with a complete 

correction form that agrees as x 
Bj 

+ 1 with that predicted by our 

calculation for N = y, 

xi. m2 
+ 509 + + 70 [ m2 I21 w2(l-xBj) ' 

(7.21) 

allowing for an adjustable power x" 
Bj 

on the dominant X2 type term. He 

considered EMC data and obtained [16] 

55 
---.ob 



n=3 m2 = .023 GeV2 AL0 = .112 GeV 

(7.22) 

n=2 m2 = .016 GeV2 AL0 = .056 GeV. 

Both fits have x2 1: 134 for 118 degrees of freedom compared to x2 = 

140 for a pure QCD fit and x 2 = 133 for the simpler form (7.18). As 

in (7.20) fits to CDHS and SLAC-MIT data would yield somewhat smaller 

m2 values. In these fits the T2 and U2 type terms of (7.21) play only 

a minor role in comparison to the X2 type term. 

Since our calculation is based on the valence Fock state of the proton, 

it strictly applies only in the x .+ 1 limit. Thus the agreement between 
BJ 

our results and Barnett's fits should be considered with caution. At 

moderate xBj higher Fock states could be important but we see no reason c- 

-to suppose that the corresponding higher twist corrections are any smaller 

than the ones computed here. 

-Thus, for the proton target, we have seen that the simplest 

possible perturbative wave function for the valence three quark state 

(in which the two gluon exchange graphs of Fig. 4 determine all 

distributions) yields very substantial power law corrections at large 

'Bj to the naive parton model scaling predictions. These are in 

addition to those scaling law corrections due to QCD evolution or 

explicit non-perturbative ("diquark"? [15]) wave function effects. It 

seems improbable that such large corrections could be present for x 
Bj 

_ .9 (where our calculation is theoretically well-justified) and not > 

at lower xBj. Indeed simple extrapolations of the large xBj forms to 

moderate xBj are remarkably successful for the W 
2 

structure function 

and yield an m2 value consistent with that determined by the 
-- 

normalization of the leading (l-x .)3 term. 
BJ 
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Appendix A 

Counting Rules for vW2 and vWL 

First we examine possible sources of enhancement or suppression 

of the large x behavior in a general diagram with n fermions, 

I I . 

. I 
. I 

6-83 4563A9 

,c- The + component of the momentum for any one of the outgoing spectators 

7s proportional to one power of (l-x). It follows from the on shell 

conditions that the '-' component is proportional to (l-x)-l, which 

: implies that all the '-' momenta components flowing throughout the 

tree graph are enhanced by (l-x)-l. Since all the I'+' components of 

the momenta flowing on the internal tree connecting lines are finite 

as x + 1 the square of the off-shell momentum of each internal 

propagator grows as (l-x) -1 - the corresponding propagator is 

suppressed by one power of (l-x). There are Z(n-1) internal 

propagators which results in a basic initial factor (l-x) Xn-1) for 

the tree graph. 

This is modified by numerator algebra. Looking at Table II, we 

see that we may have possible enhancement from vertices of the type 



I 
helicity I final spectator 

+ V 
cx(l- xl” 

(A. 1) 
helicity I 

----k-- 
final spectator 

6-03 4563AlO 

Since the value of these matrix elements carries an inverse power of 

the + component of the final momentum, each such vertex enhances the 

amplitude by a power of (l-x)-l. Also the configuration 

V + A 
+ * . 

or cc(l- xr-’ (A. 2) 

A + V 
. . 

6-03 4563A11 

a- carry a (l-x)-l enhancement, since they are proportional to the square 

-of the momentum flowing in them [Eqs. (2.8), (2.9) 1. Finally the 

gluon propagator numerator matrix element 

_ . 
+ 

I 

I -I 
I ac( I-x) 
I 
I 

6-83 
+ 4563A12 

is proportional (in axial gauge) to the component of the momentum 

carried by the gluon and is thus proportional to (l-x) -1 . 

The final state integral produces an extra suppression from the 

longitudinal momentum fraction integrals: 

Ji dx dz...dznml 6(l-x-z...-zn~l) a(l-x)n-2. 

Consider now the A+ amplitude, which contributes to W2. For 

-- 

_- 
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simplicity look at diagrams in which all the gluon lines are attached 

to the struck fermion line. We can always gain a factor of (l-x)-l 

(from the numerator algebra) for each gluon line which we can 

terminate with a 9 on a negative helicity spectator line or with a y 

on a positive helicity spectator line. We gain, in this way, a factor 

(p.x)-w)e Further enhancement is possible if we pair positive 

helicity spectators and negative helicity spectators as in 

5 

+ 
V + A I”, 

+ 

I I 

: 

I 
I I 

A I o( extra (l-x)-' 
I (A-5) 

I 
+ 6-83 

c- V 4563A13 

yielding an extra (l-x)-l [Eq. (A.2)] for each such pair of opposite 

helicity spectators. The number of such pairs is easily seen to be 

- - 
# pairs opposite = +[(n-1) - 2jAA\] (A. 6) 
helicity spectators 

where M is the difference between the total helicity of the initial 

state and the helicity of the struck quark. Note that we cannot pair 

a spectator with the struck quark itself because 

6-83 4563~14 

+2 since y = 0. Summing up all the (l-x) powers yields 

(l-x) power = 2(n-1) - (n-l) -$ [(n-l) - 2lfill 

(A-7) 

(A. 8) 

--, 60 

= +(n-1) + IMI 



for the A+ amplitude. Computing IA+12x phase space, (A.4), yields 

VW 
2 

x$ (lex)(n-l) + 2jMI + n - 2 = (l-x)2n - 3 + 21hhl. 
(A. 9) 

For vWL the discussion is very similar, the only difference being 

that now we can get further numerator enhancement by pairing a 

spectator with the active quark provided they have opposite helicities 

in the following configuration: 

oc extra (I-x)-' 
(A.lO) 

6-83 
A 4563A15 

Observe that the helicities have to be opposite because only in that 

,+-case do we gain the power of 1 that we need to otain a leading 

Contribution to WL at the same time as we obtain (l-x)-l of (A.l) 

from the spectator connection. We gain the extra (l-x) -1 from the "+'I 

- . .- "split" of (A.lO). Combining (A.lO) and (A.5) we see that we gain one 

power of (l-x)-l from a "+'I "split" for each pair of opposite helicity 

fermions in the initial state, this time including the struck quark. 

This number is easily seen to be 

# pairs =- i(" - 2 AT> (A.ll) 
opposite helicity 

quarks 

where A T is the total helicity of the initial state. Combining powers 

we get 

VW alA-12 phase space a (l-x) 
2[2(n-l)-(n-l)+n-2AT)]+n-2 

L (A.12) 
2n - 

= (l-x) 
4 + 2AT 
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Appendix B 

Relation to Operator Product Results 

The technique most commonly employed to study higher twist 

effects in deep inelastic scattering is the operator product 

expansion. There the tree level hard processes which are relevant at 

twist 4 are [17] the two quark diagrams of Fig. 6a and the 4-quark 

diagrams of Fig. 6b. In axial gauge the diagram of Fig. 6a(i) 

contributes to twist 2 and higher and the diagrams 6a(ii) and (iii) 

contribute to twist 4 and higher. All these diagrams are present in 

the tree graphs of our calculation. We have not included 4-quark 
c- 

diagrams such as 6b because they are suppressed - by a power of 

$Q2). (They actually vanish in the weak binding case since the 

._ gluon-is always cut and radiation on-shell-> on-shell is impossible.) 

The operator product expansion automatically incorporates Lorentz 

invariance, w-w invariance and the symmetry properties of the 

target. 

In our direct calculation, symmetries and gauge invariance are 

not so explicit. It should be pointed out, however, that the weak 

binding calculation, when all spin flips contributions are included, 

is completely Lorentz and gauge invariant. Gauge invariance follows 

immediately from the fact that, when the initial quarks are on shell, 

for fixed momenta of the final state quarks, the total amplitude for 

absorption of a photon is gauge invariant. The use of the running 
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coupling constant does not spoil this conclusion, because the coupling 

is the same for each gauge invariant subset of diagrams contributing 

to the amplitude. Once gauge invariance is established, Lorentz 

invariance follows immediately; because our calculation could have 

been done as well in Feynman gauge, where the axial vector n does not 

wear, and then, the only possible form of the answer is the one of 

eq. (1.1). The use of axial gauge is a mere convenience and large 

portions of our calculations were also performed in Feynman gauge as 

an explicit check of our axial gauge results. 

It is interesting to point out a difference between our result 

and that of Soldate, Ref. [13]. By calculating the matrix elements of 

the various operators, using large x formalism, he finds as x + 1 
c- Bj 

while we find 

.+l (l-x .) (l-x .)2 
VWiT xB; T2 + + X2 +. 

The disagreement seems to derive from our use of the running coupling 

constant in the calculation; if we used a constant os, the coefficient 

T2 vanishes. 

As a final point note that we have obtained results for the 

absolute normalization of our higher twist effects through the use of 

an explicit wave function calculated for large x 
Bj 

using the formalism 

of Ref. [5]. In this sense our results are less general than those of 

the operator product formalism but do provide an explicit 

normalization of the contributions which appear therein. 
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TABLE I : P+, (k) 

A V 

--& -+ 

ik = 
I 

; F 
n (v) 

-+- V(A) 

I 
= I k 

-F k+ 

Y+ + 
-4---- 

I = 
I 

Y+ 
all others=0 

=- h 

k- 
+ k 

5-83 
4563 A3 
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I 

Table II 

Matrix elements of one and three y-matrices 

a!, B= helicity in p+ + m frame 

u,(q) 9 k IJ 
Notation: 

Jq+/JP+ 
f a- 

iu’k) 
E-Ci ---"y IJ 

,'k+/&+ 

va(k) k v,(q) q IJYA 
:: 

&+/h+ 
= - I3 Jq+,Jp+ =a-+: ; 

= yAyvyp 

Overall 
Factor a=B=+ a= =- a=+ p=- a=- B=+ 

q + k 
a I B 2P+ 1 1 0 0 

q - k 
a r B 2p+ /IV AV AA vv 

++ 
kq qk+m2 kq+m2 -mCk-ql +mCk-ql 

E- q A k 
a . B 2P+ 

A 
‘36 

A 
k/k+ 0 m(L-1) 

q+ k+ 

q V k 
a-B@ 

+ V 
k/k+ 

V 
q/q+ -m(l-L) 0 

q+ k+ 
-q v +A k 

a : B BP+ 1 0 0 0 

q A + V k 
. 

a - B 8p+ 0 1 0 0 

qA + - k A 
a : B BP+ 0 k/k+ 0 -m/k+ 

q V + - k 
.‘ p BP+ t/k+ 0 m/k+ 0 

a 

q - + A k A 
a : B BP+ q/q+ 0 0 m/q+ 

q - + V k V 
a : B BP+ 0 q/q+ -m/q+ 0 

q cc k P k 
a p=a 9 B 

q IJ u A k q P u A k 
a B =a B 
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TABLE III 
Numerator y-Matrix Algebra Results: 

&Contributions 

+ 
+ , 
I I X-l 4p+ k; 
I 

_I_ - (I-x)a 
A 

L-r- 
+ v + + 

I 
X0-l 4p+wd3 
-- 

-I- (I-x) 
A 

2 + + + + 
_I_ + 
-l-L + ” + + 

-&- 

X-l 8 p+ kf 
rv a(l-x) 

x-l 4p+ k; -- - (I-x) 

d- Contributions 

+d+ x-l 4 kf ;;; 

_I_ - 
A p’(I-x1* 

?-Tzf-2 For all the above 
S-83 4563A7 
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TABLE IF 
NUMERATOR RESULTS 

d+ Non Flip Contributions 
(charge and colour factors omitted 1 

+4-t++ 
I 
I 1 A 16p+ B SX x-l---- 

N (i-x)3 (cl+p) z(l-2) 

++-+ 
I A x-1 -- - - 16~’ Q SlS 

i ; N (l-XI3 (1+13 z(l-2) 
+ I I I 

+ ’ v 

+ A V+h + 
II + 
I I - x-l 

h I rV 
+ 6p+ 

(I-x)3 
+++ 

TX 

z(l-i) 
5-83 

4563A8 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

c- 

Fig. 4 

Fig. 5 

Fig. 6 

The initial and final Fock states of a general bound state of 

fermions. 

Tree graphs for the Z-quark pion valence state at large xsj. 

Results for a "pion" target: Plotted as a function of 

-'Bj> 
are m2$, SF/m2$, T;/m2$ and <kT>/m2, 

where m2Ss is in units of (GeV)2, all other quantities 

are dimensionless. Multiply .Sg by 1 X2 for a particular 
9 q 

type of pion. 

Enumeration of the tree graphs appropriate at large xBj for 

the 3-quark valence proton state. 

Results for a proton target. Plotted are m4SP m2SP and 
2' L 

SF/m SE as a function of x, where m4$, m2Sr are in units 

of GeV4, while S~/m2$ is dimensionless. 

Tree level hard processes contributing to deep inelastic 

scattering. 
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