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Abstract

We present results of a direct-calculation of leading power law
corgections to the proton and pion structure functicns at large x - te
Proton .nd to order 1/Q?

order 1/Q% for wW proton .4 1/Q2 for W

2 L
for vW,P'°" and wLplon. For vwz we find large ~(1-x)* corrections to

2
the leading ~{1-x)3 behavior as x ~> 1 and substantial (1-x)2/Q2
cervections, a phenomenologically desirable form. We find a very
large value for the coefficient of 1/Q2 in (GL/UT)proton' The 1/Q2
correction to vwzpi?n isiof the form proposed by Berger and Brodsky
but much smaller than their estimate after complete normalization

constraints are imposed. In addition this correction is not purely

longitudinal until (1-x) is very near zero.
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"Introduction

While QCD s widely accepted as the theory of the strong
interactions, detailed comparison with experiment is far from perfect.
Even the deep 1inelastic structure function, which in principle
provides one of the cleanest experimental tesfé,‘hay have important
ﬁéwer law corrections at various orders in 1/Q%. 1Indeed it now seems
clear that the leading asymptotic terms predicted by GQCD do not
explain the low to moderate Q% structure function data nor the ratio,
R = oLloT [17f2]. In a previous letter we presented partial resuits
of a direct calculation of the leading power law corrections to
vwéproton and vaproton at large x near 1 and large Q% [33. 1In the
present paper we extend these calculations considerably. We calculate
not only the leading ~(1-x)/Q%? corvection to the ~(1-x)3 behavior
of wzproton but also the ~ (T%Ejﬁq, the ~(1-x)%/G% and scaling (1-x)?
corrections. We find that: 1) the (1-x)/Q% correction is small with
negative coefficient, as previously reported; 2) the TT:%TQI
correction is small and Ppositive; 3) both the (31-x)/Q% and zi:%jag
corrections would vanish for a constant strong coupling constant -
i.e., in a sense they derive from higher order corrections; 4) the

{1-x)2/Q% correction is positive and of substantial magnitude; and 5)

the (1-x)% correction is negative/positive for a proton/neutron target

proton proton
va /vwz

is, as previously reported, very large and x independent as x = 1.

with large coefficient. Our asympiotic result for

{We note that the earlier calculations did not include helicity flip



contributions whereas those discussed here inciude ail contributions in a

proton/vwzproton

given order.} This result for Vi suggests that very large

L
_ Q% is required before a meaningful asymptotic series for UL}GT can be

developed. The size of all terms is fixed, in our approach, by the

Uwzproton‘

" In the present paper we have also "repeated” the calculations of

approximately known normalization of the leading (lt-x)-3 term of

Berger and Brodsky [43 for the ~{1-x}? and ~{1-x)%/Q? terms in vwzpion and

the (1-x)9 term in vNLpiGn. We have, however, included helicity flip and

other quark mass effects. In addition all normalizations are fixed by that

of the {1-x)%/02 correction to vwzpion_js much smalier than suggested in

Ref. g4] and that it is not purely longitudinal until x is extremely near 1.
We would like to emphasize that our purpose here is to perform a

) calculation within the context of the standard QCD picture of hadrons and

not to give a detailed fit to data. At large x QCD predicts that the

.valence Fock states must dominate the hadron structure function. OCur results

for the valence Fock state will thus be valid for x sufficiently near 1.

At moderate x it is 1ike1y_that higher Fock states will be important.

it is quite possible that thé very large higher twist effects that we

obtain for the valence states are also present for those higher Fock states.

- Qur analysis will be based on the extension of the Brodsky-lepage
formatism [5] first employed by Berger and Brodsky [4] in their calculation
of higher twist contributions for pion beams. We begin in Section I by
giving kinematic preliminaries. In Section II we repeat the pion calculation
using our techniques and discuss possible subtleties and difficulties in

the Original results. In Section 1I1 we turn to the proton target.



Section 1

We begin by giving a few kinematic preliminaries. The structure
functions for deep inelastic scattering are defined through

Q.9 o o o pe
M (pea) = sl - g1 ¥ * Ip, - g %fglfpv " q, E?Q]wz (1.1)

We use light cone notation; for general vectors v and v we define

Vo= yo 4 8 GT = (Vl, VZ)

v = y° - y38 v2 = vy - O¥ = 'y - v% (1.2}
0 = vt o+ 5y2 u-v = %[u+v— Uy - 03 - EQ]

Y=yt -y

Note that use of 0 and 3 for transverse momenta will simplify later Birac

algebra.

In a frame defined by
+ - . +
q=4{(a, q, ET) with q

If

0, q =2v/p’, = Q2
p= (P+, P, 67) with p = M2 /p+, v = pq (1.3)
we have

=+, + > 42 W '
Wy = W /pT oW =t (1.4

and the standard ratio of UL/{JT is given by

4%2. W
_ _ r _ B L
R = OL/GT = r "ﬁgl [vwz
(1.5)
oy
*8j T 2v

We will calculate W' oand W by computing the amplitudes, A" or

A—for absorption of a + or - component photon by the target, squaring



the amplitude, and then integrating over final state phase space. In
computing AN or A we begin by imagining a superposition of multi-
particle Fock states [5] for the incoming target. In the frame of
eqgn. (1.3) we define the ampiitude for finding n {on-mass-shell)
quarks and gluons with spin projection SZ along the z divection and

— - _

momenta p; as (See Fig. 1)

+
(M. 3 N
¢S (ai’ pTi; si)’ Gi - + (1-6)
Z p
where, by momentum conservation,

n no

2w, =12 Pri = 0. (1.7}
i=1 i=1

The s, specify the spin projections of the constituents. For XBj =1

we will be concerned only with valence Fock states containing guarks

{(n)

or anti-quarks. For each fermion or antifermion constituent ws
rd

multiplies the spin factor

u®B.) ., V() .,
+1 Jp or +1 Jp -

in _ JPJ-“
The wave function is normalized according to
n d%py. do.  (n)
Ti 7 3 2
i J ? 2007 $sz (Pris @55 85D (1.8)

S,
3

3 - 2 2 =
162 8(1 Zui) & (EpTi) 1.

Qur spinor normalization is such that 2 us(p)as(p) =g + m
5



Similarly, the final-state created by the absorption of a + or -
component photon will be specified by momenta and spinors
u(k.,) v(ks) 4

T— VP or —— Jp
-k, Jk,

(See Fig. 1). In this normalization the phaselgpéhe associated with
an n-particle final state is (xi = k:/p+)

2
n dxi d kTi

- 3 52
H

arém

5(1 - 5x.) 2 sl(p+q) - 3 K,
> + S
1 p 1

1.

Our- procedure will be to calculate w** or W by first computing the
amp1itude A+ or A for a given quark in the initial state
configuration specified by ¢SZ to absorb a + or - component photon and
yield a final state as specified above; this amplitude will include
the integration over initial configurations BTi and o, and a coherent

sum over the initial quark spin states for the given Sz' We then

obtain, for a given-struck quark

2
W T = dikys g on ffi_f_:Ii
2 7n Q! i=1 2(2n)
16m3 82(5 KTi) 8(1 - 2 x,) (1.10)
j i
M ool(pra) - 3 k1] A" 7|2
p i
here A**” depend K ds!
where epends on X, Ky, and s..



Finally we sum over the possible guarks which can be struck by
the deep inelastic photon. We do not allow for interference terms in
which the photon is absorbed on different quarks of the target. These
terms are suppressed by a factor of

as(Qz) .
"__“E¥“__ : o - -

a_{(—)
s 1 xBj

relative to the diagonal terms we retain. This is because the virtual
photon momentum has to be routed through an explicit gluon exchange
between the two interferring quarks {(when visualizing the calculation
as that of the imaginary part of__the forward Compton amplitude).

Qur normalization is such that for a 1 particle state Vi, = a(l-xsj).



" Section 11

Calculational Framework
and

" Apptication to Pion Structure Function

— - _

We now consider deep inelastic scattering on a pion target at

iarge XBj' In the xBj - 1 limit the bound state guark struck by the
virtual photon is required to carry most of the "+" - component of
longitudinal  womenium. The simplest diagrams aliowing this

configuration are ilTustrated in Fig. 2, where we consider the g g
Foek component (in the light-cone decomposition of Ref. [5]) - higher
Fock components being suppressed by powers of (1-x8j)2. We wili
calculate the amplitude for virtual photon absorption in the xBj » 1
1imit and later sqguare and provide phase space factors to obiain the
structure functions, as discussed in Sec. 1.

In the frame of Eq. (1.3), the on-shell receil momentum, p-k, of

Figs. la-b is given by

(p-k) = (1-x)p"
o mPekE
(p-k} = —— (2.1)
(1-x)p
(k)7 = ~ky



where m is the spectator quark mass and x = xBj in Teading order. From
(2.1) we find that
| -(mZ+k2)

kz(X) ~ W Tt - (2.2)

is forced far off-shell in the x » 1 region. This purely kinematic
result allows us to apply the Brodsky-Lepage formalism in the x»1
1imit 5], [4].

In the procedure of Ref. [5] one notes that the transverse
momenta of the initial quarks do not enter into the large off-shell
momentum (2.2). Thus one may evaluate the tree graphs of Fig. 2a, 2b
with coliinear on-shell initial quark and antiquark 1ines and incoming

spinors

u(ap’) v[(1-a)p']
WL and Tl_Tp—.
This tree graph result is then conveluted with the evolved wave

function ¢(a, "Q*") defined by (for simplicity we de not write the

standard wave function renormalization factor)

dqe d2
wn2n Y P 5 >
o, " =g S s 160G b (2.3)

d’sz(_p)l! _62’ 51, 52) G(Sl + 52),



where p{ = ap+, p; = (l-oz)p+ and we require a spin 0 qa Fock state for
the pion. This "evolved" wave function is thus the integral over
initial transverse momenta of the Fock state wave function with upper
limit "Q%" set by - - -
S R G O) (2.4)
This is the point beyond which the initial transverse momenta can no
longer be neglected in calculating the tree graphs. It is the region
below "Q2" which gives the leading log contribution in the x » 1 limit
[51.

In the T1imit of very large "Q2", ¢{u, "Q%2") takes a particularly

simple form [5]1 for a pion,

"Q2”—)cn
¢(0[, I!Q2Ii) - 0!(1"01) . 32_: (25)

where a_ = number of colors. At more moderate “Q2" the wave function
will not have reached its fully evelved form. In fact Berger and
Brodsky [4] use the weak binding form
nn2ny = _l f_n 3
oo, ") = 8o - ) F o (2.6)

Wé have chosen the normatization of ¢ so that the normalization of the
large Q2 pion form factor, proportional to fﬁégl [5], is the same for
{(2.5) and (2.6). More sophisticated forms for ¢ are considered in
Ref. [6]. We do not, in this paper, wish to explore all possibilities
for the pion and so we will restrict our considerations to a ¢ ef the
form Eq. (2.6). We will empioy £ = 130 MeV.

10



The above wave function for momentum coordinates must be
supplemented by the color wave function

6ab

In. (2.6)"

c

(a, b = quark, anti-quark colors respectively), and the pion spin wave

— - - .

function

%E(!+’ => ==, ) {(2.6)"
both normalized to unity in the square. The + and - refer to infinite
p+ helicity states, see Ref. [5].

The ca?culation_ will employ_“an axial gauge for the gluon
specified by

N Agtyon = 0> 0 = (0, n, 0,0). (2.7)

In this gauge the rules for the numerator of the gluon propagator,

-g  + = P (k), are specified in Table 1.
p\)

We will also employ the Dirac algebra rules for matrix elements
between on-shell spinors specified in Table II, adapted from Ref. 5 to
our more convenient notaticn. We will employ "helicity" states where
the helicity is that which a particle would have in the p+ > timit,
sée Ref. [5]. We supplement these rules with the observation that the

numerator structure of an off-shell spinor 1ine may be written

11



K u (& +
_k_:_ i u;\f- )+ U)\f_ )+ . (kz_m2)}’_+ _ (2.8)
p " Jk/p JKk/Vp 2k

with a simitar rule for anti-fermions. Graphically

K+m=

-+

= ! + ) {2.9)

F— ] =

Here the spinors are on shell spinors. The K componert is placed on

shell and the y+ term of (2.8) compensates for this correction. Note

that this trick combined with the axial gauge of Table 1 impiies that
++

only + and A or V matrix elemenis need ever be considered for W , for

W a limited number of - elements are reguired.

One finds that the amplitudes have the form
At~ a+(1~x) + b+/Q + c+/02/(1-x)
: _ _ (2.10)
A ~aQ
up to sub-leading terms in {1-x}~!. The numerator aigebra for non-fiip
contyributions appears in Table III. We, of course, only retain those

contributions capabie of contributing to the leading terms as x~>1. The

phase space & function has the expansion

- 2k -a . m2+k2
ol ST T ' : T
é(x-xBj) -3 (x—xBj) q -8 (x—xBj) FeTTox)
2
7t .3 {2.11)
+ -2-]]— 6"(x—xBj)(———2—5 T) .

We sguare the amplitude, {2.10}, multiply by the expansion, {2.11), and
collect all terms of given powers in 1/0 and 1/(1-x). {Observe that the

derivatives of 8§{x-x lead to extra inverse powers of (1-x).) The

B3’
resulting forms are

vwz xx1 {1-x)2 +.constant /G2

(2.12)

vwz le constant

12



More generally (Appendix A) one can show that the leading terms for

n-body fermion Fock states behave as [7]

x»1
-342| A
W, T~ (1) 2 a| (2.13)

where Ax is the helicity of the initial target spin state minus the helicity
of the quark (or antiquark) probed by the virtual photon. _ The corresponding

rule for W is

L x>1
M - 2.1
Wy~ (1-x) 2420 {2.14)

where hy is the helicity of the initial target spin state.

vle now discuss the details required to obtain the full result including
normaiization and spin-flip terms. The color wave function {2.6)' and
coup1ing constants yield a factor of -géC

£ In addition we convelute with

the initial wave function and sum over spin configurations, see (2.6)".

We define
nAZa f 3
I, = oo, Q%) do = =2 {2.15)
A o 2 E
_ (0‘," 2:!) _
IB = e dog = ZIA.

where the rightmost equalities hold for the form of the wave function
given in {2.6). These are the only two independent wave function
weightings which appear once the symmetry under o <> (1-a) of ¢(a)

is employed. Denoting, for example, A as the amplitude for an

+e -
initial +- helicity to absorb a photon and yield a final +- helicity

state we define amplitudes for fixed final helicity states as

13



1 ., -
Ao = UE(A+-,+-_ A-+,+-)

_ 1
Ay = JE{A+— ++ A-+,++)
(2.16)
_ 1 -
A= 7§(A+-,-+ A-+,-+)
1
A-- - JE(A+-’-- ) A-+:--)
corresponding to the coherent helicity 0 initial pion state. We
obtain (taking the charge of the struck quark to be unity for the
moment)

w0 L e an 8o (1=x) 1 (1 41y - "o 44 (Ip- 1,)]
+= J2 Fog T (m +kT) A B (k%+m2) Q%(1-x)'"'B A

Af;'le - (A, )%
\
3 xil %E(_cFus4n}?$:$§%§g [Tm:+i$)- Qg(l-x) (Ig - 1]
At x21 +(A:+)* (2.17)
VA
. ox»l - q-k I

1 4 AL _ - s
A~ UE(‘CFGS4H)(;;)[TEE:E¥T] = -(A_))*

_ ) oV
.oel g . amly -
A, ~ 3?('CFGS4H)(;;) [TE?:E¥7] =+ (A__)*.

Note that no terms of the form ¢ in £q. (2.10) appear. We next

square and incorporate final state phase space, see {1.9) and {1.10).

14



We obtain, using the expansion {2.11},

VW, = go fodr (2.18)
x>1 o B 2~ T
- - 2 2 2 1 2 m 2 2
4CF I dkT o §(E¥;ﬁ?j?[{IA+IB) + ?E%:EET{3IB+21AIB)](l-xBj)
2 2
2 (615+41,1_)m
1 1 o 2,2 B iA'B
+ i (E¥1527 [41A figlagj((318 4IA ZIAIB) + k%+m2 13
and -
T = CL g a®@ |
M TR (2.19)
Xg 21 2 2
BJ dky oy 2

~ 49 ¥ m2+k?) A’

The simplified results of Berger and Brodsky Ref. [4],

X. .21 2 2
W ° 36 €2 1° % o2 f(1-x, )2 + & kT} « (o, +02)
2 F YA “m2 E%‘ 5 Bj g Q7 ARLTRT

15



dk? 2
R P Y
J
are obtained by neglecting m?'s except as an integration cutoff and by
using Ig = 2I, as appropriate for the wave function (2.6). In this
approximation the higher twist contribution to uw {propertional to
1/Q2) is purely 1ongitud1na1 We w111 see that ;va;uat1on of the more
general expressions (2.18) and (2.19) does not yield this result until
xBj is very near 1 - the longitudinal content of the 1/Q2 correction
1o uwz is sensitive to the m? scale and to the wave function through

I, and Ip. We evaluate the full expressions (2.18) and (2.19) for the

approximate wave function (2.6), and"émploy a moving coupling constant

T Mmom k%-'—mz
C('S = C{'s (0‘ '(i'_—x)) (2.21)

with @ = % for (2.6); o is thus the two-loop momentum-subtracted
moving coupling evaluated at the off-shell momentum carried by the
gluon in the graphs of Fig. 2. This procedure possibly reduces [8]
the higher order corrections to these graphs when they are evaluated
in axial gauge. Note that the term in vW, proportional to 4IE/Q2 .
1/(k%+m2) is 1ogarithmicai1y divergent without the moving a, whereas
the additional higher twist terms with explicit numerator m? powers
converge. For xéj very ﬁear 1 this near divergence enhances the first
term and Teads to a purely longitudinal higher twist correction,
However, for practica) xBj values, the results are very different.

The numerical results are best expressed as a function of the

variable

16



m2

X = 2 e (2.22)
'ﬂ‘mom(1 xBj) .
2 - -
where AZ _ is the QCD scale of a_ in {2.21).
Befining
xBj+1
m - 2 v 1 o LT HT
uwz ~ (1 xBj) .S2 + 7z T2 =Wy FVWy .. (2.23)
m Xqul n
va ~ SL

{LT = leading twist, HT = higher twist) we note that the quantities

m2sg, SE, and T; are independent of m? at fixed x. 1In Fig. 3 we piot,for

unit quark charge, mzsg, T;?mzsg, and (k%)/mz where (k%) is defined with

respect to the integrand of Eq. {2.18).
The graph begins at > 10 where the perturbative calculation

becomes valid. First it is necessary to comment on the normalization

LA

of 52. Data at large XBj may be extracted from pion-nucleon Dvreil-Yan

pair production using the deep inelastic determination of the nucleon

[91

structure function This indirect extraction uses a K-factor of 2.

The (l—xBj)2 fits to vszT yield an approximate coefficient

LT  x,.=.9 .
vWZ Bj
52 = (ijiggjg e 10 to 15 (2.24)

From Fig. 3 {corrected for charge squared factor of 5/9) we see that
2 /72
an m /Amom value of roughly

2
=1 (2.25)
Mom

17



corresponding to x = 10 at xBj = .9 is required to obtain {2.24). For

Amom = .1 GeV, in rough agreement with recent determinations {11, [2],

[10], we obtain m2 = 0.01 GeVvZ2.
To interpret this m? value it is helpful to calculate the average
transverse momentum squared of the struck quark, <k%>. It varies

- -

stowly with Xgj as shown in Fig. 3. For example

1.6 m2 ¥y = 10
<k%> = (2.26)
3.3 m2 x = 400.
Thus m? = .01 GeV? corresponds to an intrinsic transverse momentum (at

large xBj) of order 100-200 MeV, well within the conventional
phenomenological range. We will discover that this same approximate
m? _ value also yields the correct normalization for the nucleon
structure function.

From Fig. 3 we see that the normalization of vwléT/(l-xBj)2
decreases slowly as xBj + 1 due to the effects of the moving coupling
constant. On the other hand the 1/Q% "higher twist" component becomes

potentially important in precisely this region. From Fig. 3 we see

that the predicted-vajues for Tg are guite small for m? = .01 GeVZ.
‘Nonetheless
T Xy = -39
T~ 77 5 = 0.5. {2.27)
vwz Q 52(1-xB.) » »
1 Q°=10Gev

At xBj values below .9 vaHT becomes negative but is, in any case,

negligible.

18



The longitudinal structure function, v is predicted to be

L°

independent of xBj in the limit xBjﬁl and will thus also become
increasingly important in this region. A useful guide is

m?=.01 .2

Mo (2.28)

uwZLT 1 xg.=.95, -

Clearly the larger Xg; is the larger Q2 must be in order for these
leading approximations to yield

4x8.

f‘=—Qz"1 N

<
| =
—

<1 (2.29)

<
=

as required by positivity, see Eq. (3.5).
Qur results differ from those of Ref. [8]. First our explicit

calculations when normalized by comparing to data constrain m? to be
in a range inconsistent with <k%>:v1 GeV? as chosen in the first
article of Ref. [4]. The small m® value Teads to a Sma11 higher

twist coefficient. The exact form of the ngT and NL calculations,
including m® numerator algebra contributions, is also more complicated
than the Ref. [Q] approximation and tends to prevent the higher twist
contribution from being pﬁre?y longitudinal. Indéed the "transverse"

part of vng

is generally negative in our calculation. Only for very
small values of (l-xBj) will Egs. (2.18) and {2.19} yield a purely
longitudinal higher twist component in vwz, for it is only by a power of

1

-1
[In(s=
1 xBj

)]

that the mz(k%+m2)-2 contributions are suppressed relative to the

and W, .

2. .2.-1 . HT
(KT*m ) T terms in W 1

2

19



The second work quoted in Ref. [4], includes a rough estimate
of NL. While their formula for w[ is exactly the same as ours, they
evaluate it by first relating it to the meson form factor, F“(Qz),
and then inputting the phenomenological form determined by low Q2
experimental data for Fﬁ.- In contrast, in the striet xB3-+ 1 Timit,
our Eq.‘(2}19) is equivalent to empioying the asymptotic QCD form
for the meson form factor. Thus our result ‘-J;I+ = .05 GeVz-—g-/Qz
at xBj = .9 is approximately a factor of 4 below their estimate,

which is probably appropriate at smalier xBj'

Regarding other possible meson "targets” we note that 0 helicity
vector mesons yield exactly the same results as for pions up to an
overall normalization factor. Transversely polarized vector mesons

exhibit some distinct gualitative differences:

a) va behaves as (1-x)2 instead of (i-x)O.
h) ung recejves no matrix element contributions. For instance

the diagram of Table III which is a leading matrix element
higher twist - contribution - for the pion helicity
configuration, is zero for a ++ » ++ helicity configuration.
Thus _the higher twist contributions for transversely
polarized vector mesons come entirely from the &-function

expansion (2.22) and will yield a negative coefficient.

20



" Section III
The Proteon Structure Functien; Preliminaries

The caiculation of the proton structure function proceeds in
close analegy to the pion case. 'However, the number d¥.diagrams for
the proton valence three quark state is much larger. Qur classifi-

cation appears in Fig. 4. The kinematics are illustirated in the A

diagram of Fig. 4. The vectors 2 and p-k-£ are on shell and we define

[in (+, -, T) notation]
2. 2
2_+m
T
] 2= (2(1-)p , ——, %)
z(l—x)p+ T
(3.1)
(B +K)2+m2
pok-2 = [(A-2)(1-0p", ———— B +k0)]
(I-2){(1-x)p
ET = ET + &g
In this case
- 2- 2 2, 2
Cexy b o T T (3.2)
z{(1-x) (1-z)}(1-x) ’

is again forced far off-shell and perturbative calculations based on
the formalism of Ref. [5] are appropriate. In this region higher Fock
states, beyond the valence, are suppressed by powers of 1/k%(x) in the
amplitude. We define an evoived wave function for the three quark

state as

21



wqzn 2D d2p
unp2n = “Q2" Tl Tz - 3 3
¢(a, B, "Q*") A i ) I ey dJsz(plpzp_sslszss) {3.3)
17273
6(51 + Sy + §3°°S )

z
with "Q2" set by 1/(1-x8j) as in (2.4). At very large "Q2" the form
of ¢ for a helicity + % proton state,

'%g Qu+u+d->- Ju+ru-d+>-ju-u+d+>) (3.4)

-~ - -

+ symmetyization
is {neglecting logarithmic structure)

“an—)ﬂ?

o{a, B, "Q*")  ~  CoB(l-a-B). (3.5)
Qur calculations, however, are to be Compared with data at modest "Q2"
“values; in this region ¢ is unlikely tc have attained its fully

evolved form. Other possibilities include a simple weak binding form
6 =8 6(a - 6B - 3. 38

A form for ¥ based on off-energy-shell dynamics, which leads to good
agreement with moderate Q2 nucleon form factor data and ¢ - pE decay,
has been proposed by Brodsky et al.[11]

> phyrn?  pfpem?  phgem
= ~-h2 .
byg(as B, Bry) = Aewp [02 gy + —a— +—p 11 (D)

independent of spin. The corresponding ¢ is

oo, B) = A, oB(l-0-B) expi-b2n*(qzag * 3 * 3] (3.8)
where the choices
Aé = .35 Gev? {(3.9)
b2me = .012 (3.18)
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yield their best fit. The corresponding valence state probability is
< %. Note that all choices of ¢ are symmetric under a «> B < 1-0-B.
Various integral weightings of ¢ will appear in our diagram

evaluations. Those appearing in vw;T and va are

_ i
Iy =T ¢(a, B éﬂ dp B(a+p)Z

I
—
1}

g = J ¢, B) do dp E("%-?ﬁ (3.11)

bt
I

1
¢ = J ¢(e, B) du dp BZ(o7E)
Ip =S oCa, B) do df o

In comparing results for different wave functions we normalize B and €
of . equations (3.5), (3.6) so that the IA values for these wave
functions are the same as for {3.8). Since the IA weighting dominates
the nucleon form factor calculation this will lead to the same form
factor normalization for all three cases.

As in the pion calculations the moving coupling constants will be
evaluated at the momentum transfer carried by the associated gluon.
The wave function momentum fractions o, B.or y = o + 8 appear in these
arguments and are evaluated at their average values for the particular
type of integﬁgl IA“TID which weights a given contribution. We

denote these average values by
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The color wave function for the proton is taken as (normalized to

unity)

1

76 € abe (3.12)
which yields a color factor of

=1 - - -
=3 CF (3.13)

Ol

Coloy Factor =

for.each aﬁp]itude diagram of Fig. 4. Note also that the tree graph
involving the three-gluon vertex is zero for the color wave function
of (3.12).

We are now ready to discuss amplitude evaluations. For the
moment we consider only terms with leading x»1 behavior in a given
order of 1/9. For vwz we 1ist those forms capable of yielding

(1-x)®
W, ~ (1-x)/Q? (3.18)
1/Q*(1-x)

while for VW, we will only keep terms contributing in order 1/Q°

L
(i.e., to UL/GT in order 1/Q%)

M~ (1m0 (3.15)
These are
+ + + +
+ x»1 +,.- b - C d e
AT a ) g o] T B0? T Eaeos
A" %2l om0 (3.16)
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Final state phase space provides one power of (1-x) so that wupon

computing (1-x)|A|2 we cobtain

Wi, Xl a2-03 + . (3.17)

va x&l a_z(l-x)3

in agreement with (2.13) and {2.14).



- Section 1V
\)Wz
The results for A+ are easily summarized. First, the possible

power suppressed corrections, with Tleading xBj+1 behavior 1listed in

(3.16), to the dominant a’ term do not arise(’i?e.,'B+=c+=d+=e+=0.
fﬁefe are numerous terms contributing to A+ of order
+ x>1 (1-x) 1
Anon-]eading g Q- (4.1)
as the

but those are not as important in the strict xBjal T1imit of vwz
various 1/Q% and 1/Q* corrections arising purely from the expansion of
the "-" - component ﬁomentum consef;ation phase space delta function.
We refer to this as the absence of teading higher twist "matrix
element" contributions in the XBjél limit. This absence is rejated to
the extra power of (1-x) in A~ relative to the pion calculation,
compare {3.16) to {2.10}, which 1in turn arises from the non-zero
helicity of the incident photon. However, terms of the form (4.1)
will be computed later and will be found to be phenomenologicaily more
important than the terms we consider now.

In the gauge {(2.7) only a very few diagrams contribute‘to the a*
tér"m of Eg. (3.16). The Feynmar graph numerator results for the
non-zero y-matrix configurations are listed in Table V, for the
non-f1ip helicity configuration +-+ » +-+,

We have defined the variables
22+4m? L%+m2

T —
z U= (1-2)

T = S5=U=+7 (4.2)
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Only diagrams 2A, 5A and 4A of Fig. 4 contribute as x»1. The
corresponding denominator products are

(dy) = mg i
Z2A B<{a+R)US

1- 4
- (dgp) = Gr(aeyTSs (4-3)

() = A
4A aB{1-pIUT-S”

The moving coupling constants appearing in the various diagrams are

evaluated at the average off-shell momentum transfers carried by the

two gluons. The absolute values of these momenta transfers are

on. (a+B)S  Bu

{1-x) * (1-x)
- o {etB)S o d
SR: Ty 150 (4.4)
. aT g U
Mang ey

Combining Table V, Egs. (3.11), (3.13), (4.3) and (4.4) and using a <

B symmetry of &, we obtain

AV
+ x>l o+ 1 2 2L
A+—+, +-% = _?p (1 x)(3CF)(4n? z{1-2) _
S B
- A V -
= A £ L.

We have introduced the notation (defining yzo+g)

yAS

o [<otp> - 5/(1-x3]
S IA

aBU - U/(1-x)] (4.6)

as[<a> :

I
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BCU = as[<B>I c U/ (1-x)1
¢

etc.

At this point note that A vanishes if the weak binding wave
function (3.6), which implies IB = ZIA, is chosen and if the as's are
taken to be constant.

- - The TYeading helicity flip contributions are easily summarized.
First, the upper 1ine may not flip without losing a power of {(1-x),
see Eq. (2.13). Helicity flip for the middle line leads to the
replacement in equation (4.5) of ﬁ by {-m). Helicity flip for the

lower line leads to H_+ -m. Helicity flip for both lines results in Q
¥ m2,

' The results for initial helicity configuration ++- are obtained
from the above by Tesl, a«sp, and ETQ'ET interchange which leaves A in
{4.5) wunchanged. The initial -++ helicity configuration does not
contribute to the leading x»1 behavior.

For the spin wave function (3.4) we thus obtain the final state

spin amplitudes:

VA
+ 1 + + 1
A~ JE(C A++_’++_ + d A+_+’++_) = T A(cel + dm?)
AV
+ 1 + + 1
A+_+ ~ UE(C- A++_,+_'+ +d A+_+’+_+) = Jg A(sz + d2i)
4.7
R NN +d Al =L pgent - dng o
Ap. ™ Ug(c A++—,+—— d +—+,+——) - 76 (cm me)
v v

1 + 1 i
Aper ~ ]E(C A++—,+++ +d A+—+,+++) - J6 A{cmg - dml)
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leading to

+ + + +
LT R C W R VO [ W S W e
2442
= AZ % (2% + mz)(L% + m2). (4.8)

For a proton, (3.4) implies that for each struck u quark {(of + helicity)
c=2,d=-1 (4.9a)

while for the struck d quark (of + helicity)
c=-1, d=-1. (4.9b)

The above does not include the charge squared factor. Using the

weightings (4.9) we obtain (after including the charge factors)

Tk = |Alz (G2 + m2)(12 + w2). (4.10)

proton

=

For a neutron target the 7/9 is replaced by a {3/9) yielding the

o . LT LT
well-known 3/7 ratio for (ﬂdz neutron/(vwz ) fizi.

proton
Note that the helicity flip terms in net, merely change the

helicity-non-flip factor, 2%

to (£2+m2)}{L2+m%). This is, of course, much simpler than what happens
T T

L%, which would have appeared in (4.10)

in the pion case. This simplicity is quickly traced to the fact that
the 1ine struck by the photon cannot flip helicity in the proton case
(without extra (1-x) suppression) whereas it may in the pion case.

The final state phase space factor for the proten 3-quark Fock

state is dr(3) given in (1.9). We have

20 A2 -
d QTd LT(l xydzdx

[16T1%]?

s (kytag)tm
IME(2y - o - — ) (4.11)

(3) _
dr =2 1-x X

finai
helicities
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As before we will expand the & function, this time up to order

1/Q%. Because the matrix element |M|2 is even under both ET > _iT and

tT - -iT we can use the simplified form

¥ .1
Bj dxdz(1-x)rdiZnded
ar(® Ty g e —
final Li6n™]
helicity = - - -
states
s 325 1 ¢
60cxgy) = i 81 Oxgy) * ImgE * 2 gm0 ey
(LZ2+22)S (Li+93+41202)
- T _T 6Il|(x_x _) + l T 1 T T Gllll(X'X .)
(1) Bj 4 Q BJ
+ D 1 - -
(ﬁg)} (4.12)
We finally obtain vwz as
3y |t
v, = 5= [ d r3) A (4.13)

First let us examine the x integral. The important x dependence in
(4.13) is a series of terms of the form

“ C, Cs ¢4
I(XBj) = f dx(1-x)2 as((l‘x)) Gs(l_x) as(l_x) as(i:;) _ (4.14)

S L3037 52
(60xxg9) ~ e © Oy ¥ I T ot k)

2 2 4 2p2 4
(L2.+22)$ | (Li+a1202+0%)

EE R 6"'(x—xBj) + 5 § 6""(x-x8j)}.

We note that for

a An

o_ = a= >
11—§nF

s~ . ¢
(35

(4.15)
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we have

dor a2
s S

sS@x a(i-xy (4.186)

o

The 1/Q% correction terms which involve f(1-x)2 6'(x-x8j) and f(1-x)3
6?'(x-x8j) receive their teading contribution by differentiating the
explicit (1-x) power the maximal number of —times. — Contributions
obtained by differentiating one of the ués are suppressed hy a single
o relfative to these leading contributions. In contrast, the 1/Q%
correction terms involve integrals of the form

f(l-x)é"(x-xBj); f(l-x)zﬁ"'(x-xBj) or [(1-x)3 6""(x-xBj)
which would be zero- unless one of the 6 function derivatives is

partially integrated against a moving coupling, a.. Thus the Teading

1/0% term will involve an integral over 5 powers of ag, Versus four.

Defining
q Ci q Ci
2 GS =.§ &S(i:;), HGS ='§ US(T:;), (4.17)
i=1 i=1
Eg. {4.14) reduces to
= {1~ 3
I(xBj) = (1 xBj) Hus J e
Bj
(l—xB.) -
+ __ﬁz—l— [6(L2+22) - 25]Mla, . (4.18)
BJ
6 Li+22+4]292)
1 52 _ .02 T°T 777 .
P ATtz T AETS ;] 1o -2 a )
i x—xBj
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Writing the leading power law contributions as

x -1
8 TZ U2
~ - 3 -
V¥, 52(1 XBj) + e (1 XB:',) + RGN + .. (4.19)

BJ
We obtain the following explicit expression for SEFOton from (4.13),

(4.5), (4.10) and {4.12):

- P a7\, 1 ®
s, = 24(g)(5L)2 Sy dz meTdT j;E_Udu (4.20)
Z 1-7
yAS 8AU . yAS BAT, _ , PBBT aBUs

The expression for T2 is easily obtained, following the procedure just
outlined in (4.18) by multiplying the integrand of (4.20) by
- [6{U{(1-2) + Tz - 2m2} - 2S].

The expression for U2 is similarly obtained by following the procedure
of (4.18). 1t 1is clear that U2 vanishes un]ess.we employ moving
coupling constants. That this is also true of T2 is less ohvious;
nonetheless it can be verified by amalytic calculation that T2 is
indeed identically zero for constants a . Thus both T2 and U2 are
sensitive to the manner Jn which we have approximated higher order
‘corrections to our tree graphs through evaluating the moving coupling
canstants as spgcifiedlin Eq. (2.26). For constant a the leading
power law corrections to vW, behave as (1-x)2/02 and 1/Q%, thus
establishing contact with the results of Ref. [13]; see Appendix B for
further comparison.

Our complete results are easily summarized. First we note that

the ratios T2/52 and U2/S2 are very insensitive to the wave function
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choice. Only the normalization of 52 exhibits any sensitivity. For a
given choice of m the 52 normalization values of =10 are in the ratio
Sz[Eq. (3.5)1: Sz[Eq. (3.e)1: SZ[Eq. (3.8)] = .147:.022:.051 (4.21)
i.e., the normalization changes by a factor of 7 for different wave
function choices. This sensitivity 1is due to the tendency for
A and'IB terms of (5.26}. Indeed for the

wave function (3.6) 52 is identicalily zero for constant aS! We

cancellation between the I

present vesults for the proton, with wave function cheoice {3.6), in

Fig. 5. There we plot the m independent [at fixed x, see {2.22)]

quantity m? Sgroton as a function of yx. The resulis for T2/S2 and
U2/52 show that they vary slowly with XBj’ i.e., with y.
- T2 7 ¥ = 10
R )
S, 7 ™4 x = 400 (4.22)
U2 76 x =10
L P = 400
2 X = A

Results for a neutron target are easily summarized. We find SS/SS =
3/7 as obtained in [12] while T2/S2 and U2/52 are target independent.
The 3/7 ratio above is, -of course, a direct consequence of the fact
that only struck guarks with + helicity before and after photon
absorption contribute to 52, See (4.7) - (4.9).

In order to determine an approximate m? value we (as in the pion
case) look at the overall normalizaticn of the leading twist contri-
bution, sg”°t°”. Data at x;>.9 is not available. We adopt the
procedure of extrapolating the plots of Fig. 5 to small x and find

that the approximate experimental result
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-xBj:'?

wuproten o 5(1wxg;)® | (4.24)
requires

m? < .006 GeV?, (4.25)
where A;om = .01 GeV% has again been employed. We note that this is

roughly the same size for m? as required in the’bioﬁ cagé, Eq. (2.24).
in fact for future discussion we will employ m® = .01 GeV?., Once
again we calculate <k%> as a function of m2. For the proton we obtain

2.8 m? y = 10
(4.26)
3.9 m2 X = 400

It

2
< k.l.>

which, for m? < .01, yields a very reasonabie intrinsic transverse
momentui.

It should he apparent from (4.22), (4.23) and (4.19) that none of
the leading corrections to vwgroton are very sizeable for the value m®
< .01 determined from overall normalization. 1In a later section we

will discuss nonieading corrections to vwz of the form given below by

Vz and X2:
X =1 - .
Bj s T2 U2
vwz ~ 52(1'X8j) + 62(1'X8j) + —KTT:IEET {4.27)

. (1-XB-)2
+V(1mxg )% + X, ——ﬁg—l—— + o

These corrections receive contributions both from explicit matrix
elements and from kinematical terms generated through & function and

other expansion corrections to the leading S, term. 1In addition

2

qgjther VZ nor X2 vanishes for constant a.
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Section V
VW

First, however, let us turn to a discussion of the longitudinal

structure function va. For spih 1/2 quarKS'UﬁL scales. The deter-

mination of va vequires computing the amplitude A" . In this case, as
xBj+1 all three initial helicity configurations - +-+, ++- and -++ -
and all 8 final helicity configurations contribute to the behavior

xBj+1

va b SL(l-xBj)3._ In addition Qjagram types 1A, 2A, 3A, 4A, 5A

and 6A all make contributions in axial gauge and most receive contri-
butions from several y-matrix configurations. (Note that in axial
gauge B and C type photon attachments, see Fig. 4, do not contribute
to the leading xBj+1 hehavior.) It is neither usefuT nor practical to
tabulate in detail all the contributions. Instead we confine our-
selves to writing out the amplitudes for +-+ > +-+, ++- > ++- apd -++
» -++, and then illustrate how to combine these to obtain VW . We use
the short-hand notation fér the‘as's given in (4.6).

The structures of the non-flip amplitudes for the three possible

helicity states are

- VA VVAA
A+_+’+_+ =Agg+Bql2g (5.1)
with A;+_’++_ obtained by tT++ ET’ z < (1-z), a < B from R+_+,+,+, and



A

-4+ -4+

It
=1
o =
o -
- =<

We define
A= M [(1 2)E + LZH]
p z{l-z)
_ A(1-0@m?
= DL
p z{1-z)
and obtain (charge and color factors are omitted)

) 21,
{su BCU ¥CS +

—
=

BAU yAS

w
o

=Py
=0

I
- <5 BCU YCS + —5 BBU oBT

IB ZID
- - 5 BBU aBT + TU— BDU aDT

2IA ICU I
* T BAT yAS + Tez BCT yCS + T§ BBT aBU}
x>1 I IA
F 252 {——g BCU YCS + gez BAU YAS

‘A lg
+ 752 BAT YAS - TUS BBT aBU
I 1

H X2 {03 BAU YAS - oez BCU YCS

ZIA- IB
" GET BAU YAS 0ZT oBT pBU

IB 1

c
* TS

aBT BBU - 752 BCT YCS

ZIA IB
- F<Y BAT yAS + U BT oBU}
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For the -++

and obtain

G

H

case we define

2
- ML) g E o L2

p" 2(1-z)

2
- ML) 55 4 (21

p* z{1-z)

SU

W] —
&l

BCU yCS + =5 BAU YAS

I
<% BCU YCS + =2 BBU aBT

B 21
TS BBU aBT + o 80U oD

¢ 'Y
5 BCT yCS + TS BCT yC€S

Ip
-3 BU BBT}

H IB

= {U%g BCU YCS + —o AU BT

_§_

UTS

I I

s BAT YAS - =5y BCT YCS

e

I, o I

B B

C UTe BBY oBU - ﬁTg BBT aBU}

-E(T < W)

= -F(T < U).

(5.5)

{(5.6a)

(5.6b)

(5.6¢)

(5.6d)

The full result for vNL is obtained, in this helicity non-flip

case, by combining the absclute sguares of the amplitudes fTor the

various helicity configurations and charge choices according to the

weve function weighting (3.4) and using (1.4) and (1.10) to obtain
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-2
2
wi = ga®ph? Al (5.7)

xBj+1

~ - 3
SL(l XBj)

where, for SL, we keep only the leading term in dF(3) of Eq. (4.12).

The result for vwﬁroton cbtained by keeping only these helicity
non-flip terms was given in Ref. [31 for the wave function (3.8).
Helicity flip terms, which are explicitly proporticnal to the mass m,
are important, however, for all x values we have considerd. They

result in a moderate increase in the value of Sf. For instance for

the wave function (3.6) we obtain (in units of Gevq)

Non-F1ip All
3.3 1072 8.3 1072 y = 10

mzsf = (5.8)
3.7 1073 1.0 1072 ¥ = 400

Our complete answer will include the helicity flip terms and
employ the wave function (3.6). We have investigated the sensitivity
of ihe ratio SE/mzsg to the wave functien choice in the helicity
non-flip approximation. We find only a mild sensitivity throughout

the entire x range. For example

Eq. (3.8) Eg. (3.6)
Sp 3.6 104 1.5 104 x = 10
L. (5.9)
m2s®
2 4.5 104 7.9 104 ¥ = 400.

The complexity of the full result for va {obtained by using
REDUCE) [14] is apparent in the "invariant ampiitude" expansions of

the amplitudes A" for fixed final helicity states (ithe coherent sum

38



over initial helicity states having been performed). Each helicity
amplitude contains terms proportional to various vector quantities
such as a, E, ﬁz’ etc., as in (5.1) and (5.2). The coefficients of the
vector quantities are the "invariant ampiitudes” - there 1is one
invariant amplitude for each vector structure which appears in a given
helicity amplitude. We list the vector structures which appear for

each amplitude in leading order as xBj » 1:

_ Y AV AV

A,y xa- (A, Lg, 210)

) VoA A AV A
A, xq- (L, 2, L2, 2°0L)

(5.10)

_ YV  AA A, A
A,_=q - (2L, L2, 22)

} VoA A AV A, Y
A, xaq- (2, L, L7 g, 27 L)

) AV OV
A_++ « q * (L’ 2)

_ A AV AV
A_=q- (1,12, 21)

} A AV AV
A_,xqg- (1, L2, 21L)

) A A A
A___ =g - (L, 2).

The invariant amplitudes multiplying these vector structures are, in
general, lengthy expressions of which (5.4) and (5.6) are zero mass
reductions. They are, of course, functions of T, U and z at fixed m
and XBj' We compute the fuli va from the squares of the above
amplitudes using (5.7). We plot mzsf as a function of x in Fig. 5, as

well as the ratio SE/mzsg. We see that at yx < 10, corresponding for
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mom

A = .1 GeY¥ and m = .1 GeV to XBj < .9, this ratio is slowly varying
with value
sP/m2sh ~ 4 x 10%. (5.11)

For larger x, xBj values the ratio increases.
The result corresponding to (5.11) for a neutron target is easily

summarized as

n p

5 St
n o~ P (5.12)

m252 m2$2

{good to 3% over the range y = 10 to 400) or, using the result

Sn
2-3, (5.13)
>2

we have
Sn
“% ~ %- (5.14)
S

While (5.13) is an exact result, following from the fact that the
guark struck by the deep inelastic photon must have + helicity (for a
+ helicity proton) both before and after photon absorption in order to
contribute to 52' (5.14) 1is not an exact result. Both + and -
helicity quarks contribute to SL and with different ampiitudes. In
addition there are leading contributions to SL in which an initially
negative helicity quark is struck by the photon and flips helicity so
as to contribute to the same final state helicity amplitude as an

initially positive helicity struck guark. This results in inter-
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ference between terms arising from 1initial quarks of different
helicities.
The value (5.11) corresponds to {see Eq. 1.5)

Xps=.9
GL BJ . m2
6} ~ 1.6 x 10 hi (5.15)

implying that very large Q2 values are required before an asymptotic
series for this ratio becomes appropriate. We do not see any
justification in the large XBj region for the usual statement that a
small <k%> value guarantees a small value for the 1/Q% coefficient in
UL/GT. While the scale of this 1/Q% coefficient is set by the same
guantity m%, the complexity of the proton wave function, the tendency
for cancellation in the expression {4.5) leading to vwz, and to a
lesser extent the slow convergence of the integrals for qu (which,
except for g variation would be logarithimically divergent) lead to

the very large numerical multiplier of {5.15).
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Section VI.

- 4 - 2 2 =
(1 XBj) and {1 xBj) /0% Corrections to vwz

To obtain the corrections V2 and X2 to the leading terms of vwz,
see Eq. (4.27), requires a major effort involving REDUCE [14]. Ouwr
procedure is to isolate terms in A" which behave as

+ (1-x) . h'
g + = {(6.1)

Here a' s the leading term already discussed and we recall that the

-+

A x21 a+(1-x) + f+(1-x)2 + g

possible "leading" matrix element terms b through e of (3.18) are
found to be zero.

Contributions te V, arise through a’ - f' interference in |A+|2
[recall phase space provides an additional (1-x)] as well as through
trivial corrections to the |a+l2 leading term arising from the full x
dependence in dr(3) of Eq. (4.11). The same diagram and y-matrix
configurations that contribute to a+ (see Tabie V) contain terms of
the ' type as a result of keeping non-leading corrections in (1-x) to
the numerator and denominator algebra. However, there are also many
new configurations of the A type that contribute to £ {In axial
gauge, B and C type diagrams do not contribute to f+.) Since we arve
concerned with an interference a+ - f+ contribution, oniy the same
final helicity configurations (+-+, ++-, +--, +++) that contribute to
the leading term a’ need be retained for f+. The structure of £ s

revealed by the vector structures which appear
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. V A AV VA

fo, = (L2 22 Lg,LZg, 1)

+ AY AV VA

fooox(L® 2%, Le, Leg, 1) {6.2)
N AY VA A A

f,_ = (L2 2, L8%, L, 2)

. V A AV ¥V V¥

foas © (L2 2, L 22, L, 2).

Each vector structure is multipiied by an associated invariant
amp1itude. In general these invariant amplitudes are lengthy
expressions. For the interference contribution V2 we compute atfTx o+
a *f" summed over final helicity states and integrated against the

3

We combine this with the trivial corrections

(3)

leading term in df

to the a’ 2 term due to non-leading corrections to dr to obtain

the full result for V2. As for T2 and V2

is a-slowly varying function of y. We find, for the wave function

we find that the ratio V2/52

(3.8),
P -96 x = 10
~§ = (6.3)
55 -168 ¥ = 400.

Unlike TZ/S2 and Uz/S2 the above ratio does, however, change in going

to a neutron target. We find

J 15 x = 10
_% - (6.4)
5y 14 x = 400.

Note that the coefficients of the (1-xBj)4 correction are very large

especially in the case of the proton and that, in fact, very large y
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values (i.e., xBj very pear 1) are required for the combined 52 and V2
terms of the (1-xBj) power series to yield a positive result for vwg.

Thus the behavior vwg ~(1-xBj)3 in the currently accessible
xBj < .9 region could have 1little to do with off-shell counting
arguments that apply to the 1leading (1-xBj)3 term discussed here.
Positivity, of course, implies that the negative (1-xBj)4 term is
partially cancelled {(at moderate XBj) by higher power terms. This
could leave an effective (1-xBj)3 power at moderate xBj values.
Nonetheless our calculations show that the power counting result for
the leading 82 term can only be strictly trusted at xBj values much
nearer to 1 than those currently accessibie to experiment.

On a related point, note that (6.3) and (6.4) imply that
vw;/uwg should approach the canonical value of Sg/Sg = 3/7 [12] from
above. If anything, current data around xBj of .9 suggest that
vwgﬁuwg is below the value of 3/7. Thus the asymptotic results for
the (l-xBj)4 term obtained here would appear to obtain only at xBj
still nearer to 1.

In what follows we will adopt the optimistic point of view that
the (1-x8j)4 term is largely compensated by terms with still higher
powers. The 52(1-x8j)3 term is the least damped (1-xBj) behavior and
a type of '"duality" may hold in which this leading term also
represents a good average of the sum of ail terms. The higher power
corrections, T2 and U2, discussed so far also have leading (l-xBj)

behavior at their respective orders of 1/Q%. Our next computation

will show a substantial correction to the 1/Q% term at leve) (l-xBj)z,
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compared to the leading (l—xBj)/Q2 form. This correction could alsco
be partially compensated by terms with still higher (l-xBj) powers.
However, recall that the (1-x8j)/Q2 term vanishes for constant o
whereas the (1—xBj)2/Q2 correction does not. In a sense the
(1-xBj)2/Q2 term is the first "non-trivial" higher power correction at

order 1/Q2.

(1-xg )%
We now turn to the ——6251—— correction term, XZ’ of equation {4.27).

Referring to (6.1) we find several possible sources for XZ:

{(a) a - g+ interference combined with a 1 6'(x-xBj)(1-x) phase

Q

space correction, see (4.11);
(b} a+ - h+ interference combined with the ieading (l-x)é(x-xBj)
phase space term;

(c) ]a+|2 terms combined with phase space terms of the form

(1‘)() | _ 1 w2 [} - .
7 &' {x xBj) or ht {(1-x)¢ &" (x xBj)’
(d} a’ - f+ interference combined with %z 6'(x-xBj) or %g (1-x)

& (x-xBj) phase space terms.

. +
A1l of these possible sources do, in fact, contribute. As for f we
confine ourseives to specifying the invariant amplitude content of the
new forms g+ and h+, of {6.11), which contribute under (a) and (b).

We find



involved.

g.;.+_

94ss

< P

The entire calculation of the interference and phase space

+
o o«
e
— >

L)
-

— >
o >
= >

a

a

Lo Ol ol Olo Ol Olow £ o>
Lot Fn
-

— =

-

+
IR S

Fatin
o =l
— =
“ >
T
<

+
)

o
[o+]
et

Lt

R

r— >

o o«
ot

vV oV
(L, £}

f

ANA

-« (L, 2).

final numerical integration yielding the results below.

wave function (3.6) and obtain
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(6.5)

The computation of the invariant amplitudes is performed using REDUCE
The expressions for those appearing in the g+ amplitudes are

lengthy while the ones contributing to the ' amplitudes are not as

corrections listed under (a) - (d) is alsc performed by REDUCE with a

We employ the



D 696 x = 10
2 =
2¢B
meS5 898 X = 400
(6.6)
yD 63 ¥ = 10
2 -
2R
m3, 213 ¥ = 400.

We see that as in earlier cases the ratios are target sensitive but
vary fairly slowly as a function of x. The values given in (6.6)
imply that the (1-xBj)2/Q2 correction to the leading (1-xBj)3 behavior

of vwz can be quite substantial. For m? = .01 GeVZ and Aom = .1 GeV,

we have at Xg: = 0.9
J
1 yPrq 2
3z %217%g3)" _ 6966ev2 _69.6Gev? 6.7)
5P (1-x,.)3 Qz(l"XB.) Q< '
2 Bj J
and
1 .n,._ 2
gz XoU%i0® 63 6.3 6.8)
Neqya 3 C-xg.) Q& ’
82(1 xBj) Bj

The proton Xg correction is clearly very sizeabie. Assuming that the

6.6 GeVZ coefficient of (6.7) is not substantially varying as xBj
decreases ouiside the range xBj > .9 (in which our calculation is
perturbatively justified) we would cbtain a ~50% correction at ¢2 = 25
GeV?Z, Xg; = .5.

We also remark that we have simply not attempted to extract the
%g correction to the leading 52(1-x8j)3 term. Such a calculation is
possible and we would again anticipate a large coefficient since there

are many contributing sources from both non-leading phase space

corrections and direct matrix element terms.
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Section VII.

Summary

In this paper we have explered in detail the predictions of
perturbative QCD, using the approach of Refs. [4], [5] and [86], for
the behavior of the deep inelastic structure functions for large xBj‘

We have computed the terms given below which derive entirely from the

valence quark wave function states of the pion or nucleon target:

xBj+1
- mToeq. 2 T,
vwg §; (1=xg )% + T5/Q (7.1)
HA
vwf ~ 5 (7.2)

N N . (1 Xg
Wy o~ 5, (Imxg ) + T —_—g—l— + U2 3 (1 =

(1 Xg

+ v (1-xg)* + x ——7TAL—- (7.3)

¢

\)WE

5\ (1-xg)° (7.4)

Since we are interested in the 1imit Q% » = followed by the limit of
large XBj we bhave systematically neglected terms of order
ui[“k%“/(l—xaj)] and o, (Q2) vrelative to terms of order
as[“k%“/{l-xaj)} in computing the various coefficient functions 52...X2.
In particular the neglect of terms of order aS(Qz) implies that we
need conly consider diagrams, for the forward Compton amplitude, in

which the photon enters and exits on the same quark line.

Equivalently, in our calculations we sum incoherentiy the absolute
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squares of the tree graph wave function amplitudes (A+ or A ) for each
type of quark in the bound state.

Aside from the initial wave function choice, for which we have
taken the "weak-binding" forms (2.6} and (3.6) - (There is no
substantial sensitivity here, as discussed.) - there are two
parameters in our calculation. The first is Amom for which we have
taken the value

Amom = .1 GeV (7.5)
in rough agreement with the lower range of existing determinations.
(We use the lower range because our results indicate the 1ikelihood of
substantial higher twist contamination in these determinations.) The
second is the quark mass, which provides the infra-red cut off for
internal transverse momentum wave  function  integrals. The
normalizations of Sg and Sg scale as 1/m* and 1/m? respectively and
thus provide a sensitive measure of m?. Comparing these quantities to
approximate experimental determinations shows that

me < .01 Gev? (7.6)
yields the correct normalization for both. The average transverse
momentum of the quark struck by the deep inelastic probe is
exempiified by the results (4.26) which we approximate for discussion
as
N - 3p2 (7.7)
roughly independent of xBj' The important point to note is that with

{(7.6) this is a small number entirely consistent with indirect

determinations using fragmentation and similar data. Using (7.5} and
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(7.6} we find that altl o arguments which appear in our calculations
are well into the perturbative domain, provided xBj > 9.

Given such a small result for m? or <k%> it has become customary
to think that the 1/Q2 power law corrections {which scale as m?
relative to leading terms) are then very 1likely to be small,
especially corrections of this type which have no "extra" dynamical
origin such as diquark [15] or other non-perturbative internal wave
function structure. In this paper we have found that for a pion
target this optimistic scenario appears to hold, whereas for a nuclecn
target one must anticipate large power law corrections.

For the pion target we found (xBj > 0.9)

5.
- —__d .2 (7.8)
m252
and for
4xZ. W
_ B L
= —Qz-l TZ, (?-9)
refated to o, by
o
L._r
E; = 1o {(7.10)
we obtain
Xp: > .9
nTBj = . 8m*®
> 7. 7.11
r - @xgy) (7.10)
For Tg we find a negligible resuit for xBj ~ .9 rising rapidly to the

asymptotic value (independent of wave function choice)



Tim T
x,.»1 —2 =1 (7.12)
Bl ™ 45

— oMo =

for which the 1/Q? correction is purely longitudinal, as obtained in
Ref. [4] in the absence of helicity flip and mass corrections. At
accessible xBj values our results imply that the 1/Q% correction, Tn,
to wg is not pure longitudinal and is in any case negligible once the
relationship between the normalizations of Sg and Tg through m2 is
taken into account. The estimate of Nz contained in the second work
of Ref. {41, appropriate to moderate xBj’ is a factor of 4 larger than
our result at xBj = .9, see Fig. 4. Both evaluations are substantially
lowey than the original estimate in the first work of Ref. [4].

The most dramatic example of a large proton target power law
correction is the result for r of (7.9). The leading term in the

asymptotic series for rP is found to be {x,- > 0.9)
) Bj -

P

~

r > 1.6 x 105 m2/Q%, {(7.13)

Aﬂ«l‘-‘-
mlw
PRI

see {5.9). Since positivity requires r < 1 the higher terms in this
asymptotic series must be important until Q% > 1000 GeV2. Certainly

one can find no justification for the statement that small <k%>

guarantees a small result for GL/UT. We have attempted in Sec. V to
present enough calculational details that the sources of such a large

result fer SE become apparent. These include: a large number of

N
2

calculation exhibits some cancellation (which would, in fact, be

contributing diagrams; no cancellation tendency, whereas the S
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complete for constant o and a weak binding wave function); and slower
integration convergence.

The interplay of these effects is quite subtle. For example, in going
from the weak binding wave function (3.6} to the form (3.8}, the cancellation
effect is reduced and SS increases, see {4.21); nevertheless, at x = 10, P

also increases. Thus it does not seem that the large value of rP can be

. s . . P
substantially reduced by minimizing the cancellation in 5,-

The terms Tg and Ug which have the most dominant xBj + 1 behavior

at the 1/Q% and 1/Q* level, respectively, in the series for W,, are

2!
found to be modest in size. As discussed they would be zero in the

approximation of constant moving coupling constant. With the choice

oo £2.21) we find (at Xps = .9)
T
£~ =4p2
N -
2
(7.148)
0
—N~70m4,
N
2
see (4.22) and (4.23). At Q2 = 10 GeV2 and Xg = .9 one cbtains
{(1-%g:)
N B
1
- 3 =
52 {1 xBj)
{(7.1%)
N (1--><B.)-1
U, —p—
.
- 3 -
S2 (1 xBj)

which can hardly be called small corrections. Nonetheless, they are
smaller than the values preferred by Barnett in a fit of this type [2]

which assumes a higher twist correction form
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2 X, .

xZ .
B B
(L~ ey © 8% ™ FTg (7.18)

He obtains a good fit for m = .138 GeV while the xBj and xgj factors

reduce the "effective" 1/Q% and 1/Q% coefficients (in the xBj range of
the fit) to values nearer those given in (7.14), it 1is clear that
(7.16) suggests a larger positive 1/Q% or 1/G* correction than
predicted by T2 and U2 alone.

We have computed the coefficient of one possible term which could
provide a correction of the desired type. We find a 1/0% correction

of the form

P (1_:‘(8')2 Xg :~. 9

X ———z—l‘* Bi— 2
2 _Q e 700m

Sp (1-x )3 - Q (1-)(8‘). (7.17)
2 Bj J

{This ratio, unlike earlier ratios, is target sensitive - the neutron
result is ~1/10 as large.) Though less ieading as xBj+1 than the 1/Q2
T2 correction, the large coefficient implies that the Kg correction
completely dominates the Tg correction for xBj < .9, We have not
computed the (1-xBj)2/Q4 term which is the natural competitor to the

U2/Q4(1~xBj). There is a large number of sources for this form and it

could easily dominate the latter.

Note that {7.17) is the only term we calculate that has a target mass

contribution. Defining:

p _ b twist-4 p Target Mass
5 = % R

we find, using £ scaling

p Target Mass _ ..o <P
X2 = 3MT S2
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Thus, in our weak binding model with m =.1 Ge¥, M. = .3 GeV, and the

T
target mass contribution to (7.17) is negligible. The correct procedure

to determine the full value of Xg is to subtract the weak binding value of

Xg Target Mass .4 to add back in Xg Target Mass ith the correct value of
M; = .937 GeV. (this assumes that Xg twist—4/3p , tike ¥P, is not strongly

dependent on the wave function; we have not been able to verify this
explicitly, since the complexity of computing XS/S? for other than weak
binding is prohibitive.). This results in a 40% increase in Xg when
m2 = .01 Ge¥?. Thus target mass corrections alone underestimate the full
xg by a factor of more than 3.

Although the term (7.17} seems quite large we would 1ike to point
out that it is of precisely the form and general magnitude considered

by Barnett [2) in his favored fits. Barnett adopted the "higher twist"

correction factor

3 w22
i1+ xBj wo/w ] (7.18)
(1-XB-) .
where W2 = Q2——;——l—. As Xgj * 1 this form is identical to our X,
Bj
correction provided Wg = XZ/SZ. For an average nucleon target,

N = E%E {as considerd in [2]), we use (6.6} and sg/sg = 3/7 to yield

our prediction,
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2N _ N, N _ 2
(wo) = XZ/S2 = 509 m<, (7.19)
Barnett analyzed [21 three sets of data - EMC, CDHS, SLAC-MIT - and

obtained the following values of wg in (7.18) in combined

"Leading-order QCD" + “Higher-Twist" fits:

12.5 + 4.3 GeVZ Ay ~.075 GeV EMC
W = 8.3 £ 5.3 GeV2 Alg ~ -130 GeV CDHS (7.20)
4.4 + .47 GeV? ALg = -048 GeV SLAC-MIT

full target mass corrections are included though £ scaling and should not
be added to X2/52 in {7.19). |

Especially in the SLAC-MIT case the x? of the fit with the correction
(7.18) was much better than the pure QCD fit. The (Hg)N value

chtained is somewhat sensitive to the xBj3 factor assumed in {(7.18)

but clearly (7.20) brackets the value (7.18) predicted by our
calculation with our preferred vaiue m® ~ .01 GeV2. The values of Mo

(L0 = leading order) in {(7.20) correspond to small vaiues of Amom of

order Noom .1 GeV as adopted in our work.

]

At our reqguest Barnett has repeated his fits with a complete
correction form that agrees as XBj + 1 with that predicted by our

calculation for N = Eiﬂ,

5
xn m2 5
2 -
- Wgz%?;;—j + 509 —5%2—— + 70 [Wgz§:ié-312}, (7.21)
Bj J

allowing for an adjustable power xgj on the dominant Xz type term. He

considered EMC data and obtained [16]
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n=23 m2 = ,023 GeVZ A

Lo .112 GeV

(7.22)

U

n=2 m? = .016 GeV? A .056 GeV.

0
Both fits have x? ~ 134 for 118 degrees of freedom compared to xZ =
140 for a pure QCD fit and x% = 133 for the simpler form (7.18). As
in {7.20) fits to CDHS and SLAC-MIT data would yield somewhat smaller
m?Z values. In these fits the T2 and UZ type terms of (7.21) play only
a minor role in comparison to the X2 type tera.

Since our calculation is based on the valence Fock state of the proton,
it strictly appiies only in the xBj—* 1 Timit. Thus the agreement between
our results and Barnett's fits should be considered with caution. At

- moderate xBj higher Fock states could be important but we see no reason

~1to suppose that the corresponding higher twist corrections are any smalier

than the ones computed here.

"Thus, for the proton target, we have seen that the simplest
possible perturbative wave function for the valence three guark state
(in which the two gluon exchange graphs of Fig. 4 determine all

distributions) yields very substantial power law corrections at large

xBj to the naive parton model scaling predictions. These are in
addition to those scaling law corrections due to QCD evolution or
explicit non-perturbative ("diquark"? [15]) wave function effects. It
seems improbable that such large corrections could be present for xBj
> .9 {where our calculation is theoretically well-justified) and not

at Tower xBj‘ Indeed simple extrapolations of the large x5, forms to

Bj
moderate xBj are remarkably successful for the wz structure function
and yield an ®m® value consistent with that determined by the

normalization of the leading (l-xBj)3 term.
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Appendix A

Counting Rules for vwz and va

First we examine possible sources of enhancement or suppression

of the large x behavior in a general diagram with n fermions,

-

=83 4553 A9
.. The + component of the momentum for any one of the outgoing spectators
s proportional to one power of (1-x). It follows from the on shell
conditions that the "-" component is proportional to (l-x)hl, which
impiies that all the "-" momenta components flowing throughout the
tree graph are enhanced by (1-x)—1. Since all the "+" components of
the momenta flowing on the internal tree connecting Tines are finite
as x - 1 the sgquare of the off-shel)l momentum of each internal
propagator grows as (1->-:)-1 - the corresponding propagater is
suppressed by one power of (1-x). There are 2{(n-1) internal
propagators which results in a basic imitial factor (1_x)2(n-1) for
the tree graph.
This is modified by numerator algebra. Looking at Table 11, we

see that we may have possible enhancement from vertices of the type



helicity : final spectator
+ v
x(1—x)"! (A.1)

|
helicity : fingl spectator

A
&-83 4561A0
Since the value of these matrix elements carries an inverse power of

the + component of the final wmomentum, each such vertex enhances the

amplitude by a power of (1-x)-1. Also the configuration

Vv + A
+ - -
-
or O(“—X) (A.Z)
A + v
£543AN

6-83
== carry a (l—x)-1 enhantement, since they are proportional to the square

“of the momentum flowing in them [Egqs. (2.8), (2.9) 1. Finally the

gluon propagator numerator matrix element

+
—_
—|
§
|
—_— &-83
+ £543412

is proportional {in axial gauge) to the component of the momentum

carried by the gluon and is thus proportional to (1-x}-1.

The final state integral produces an extra suppression from the

lTongitudinal momentum fraction integrals:

o __an-2

IO dx dz...dzn_1 &(l-x-2... Zn-l) «{]1-x} . (A.4)
Consider now the At amplitude, which contributes to wz. For
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simplicity look at diagrams in which all the gluon lines are attached
to the struck fermion line. We can always gain a factor of (1-x)_1
{from the numerator algebra) for each é]uon line which we can
terminate with a Q on a negative helicity spectator line or with a ¥
on a positive helicity spectator line. We gain, in this way, a factor
(1-x)_(n_1). Further enhancement is possible if we pair positive

helicity spectators and negative helicity spectators as in

3

o extra (i-x)" (A.5)

6-83
4563AL3

A
T
[
|
t
|
|
+ .
v
yielding an extra {(1-x) 1 [Eq. (A.2)] for each such pair of opposite

helicity spectators. The number of such pairs is easily seen to be

# pairs opposite = %[(n-l) - 2{arn]] (A.6)
helicity spectators

where AA is the difference between the total helicity of the initiail
state and the helicity of the siruck quark. Note that we cannot pair

a spectator with the struck quark itself because
Y

&-83 4563814

=0 (A.7)

since y+2 = 0. Summing up all the (1-x) powers yields

(1-x) power = 2(n-1) - (n-1) -% [(n-1) - 2|Ar|]

(A.8)

3(n-1) + {m|
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for the A amplitude. Computing |A+|2x phase space, (A.4), yields

v, %&b (oM F2[BA] = 2 g g2 = 3 2] (g g

For va the discussion is very similar, the only difference being
that now we can get further numerator enhancement by pairing a

spectator with the active quark provided they have opposite helicities

G

in the following configuration:

A.10
o extra {I-x)"! ¢ )

-

_ A 456:;?:

Observe that the helicities have to be opposite because only in that
~.-case do we gain the power of X that we need to otain a leading
contribution to WL at the same time as we obtain (1~-><)-1 of (A.1)
from the spectator connection. We gain the extra (1—»:)-l from the "+"
"split® of (A.10}. Combining (A.10) and (A.5) we see that we gain one
power of (1-)()-1 from a "+" "split" for each pair of opposite helicity

fermions in the initial state, this time including the struck guark.

This number is easily seen to be

# pairs =
opposite helicity
guarks

8O =

{h -2 AT) (A.11)

where AT is the total helicity of the initial state. Combining powers

we get

. 2[2(n-1)-(n-1)-3(n-2;) 1+n-2

W oA ] phase space « (1-x)

L (A.12)
2n - 4 + ZAT

= (1-x)
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Appendix B
Relation to Operator Product Results

The technique most commonly empioyed to study higher twist
effects in deep dnelastic scattering 1is the operator product
expansion. There the tree level hard processes which are relevant at
twist 4 are [17] the two quark diagrams of Fig. 6a and the 4-quark
diagrams of Fig. 6b. In axial gauge the diagram of Fig. 6a(i)
contributes to twist 2 and higher and the diagrams 6a(ii) and (iii)
contribute to twist 4 and higher. A1l these diagrams are present in
the tree graphs of our calculation. We have not included 4-quark
diagrams such as 6b because they are suppressed - by a power of
ag(Qz). {They actually vanish in the weak binding case since the
gluon_is always cut and radiation on-shell-> on-shell is impossible.}
The operator product expansion automatically incorporates Lorentz
invariance, gauge iavariance and the symmetry properties of the
target.

In our direct calculation, symmetries and gauge invariance are
not so explicit. It should be pointed out, however, that the weak
binding calculation, when a1l spin flips centributions are included,
is completely Lorentz and gauge invariant. Gauge invariance follows
immediately from the fact that, when the initial quarks are on shell,
for fixed momenta of the final state quarks, the total ampiitude for

absorption of a photon is gauge invariant. The use of the running

b2



coupling constant does not spoil this conclusion, because the coupling
is the same for each gauge invariant subset of diagrams contributing
to the ampiitude. Once gauge invariance 1is established, lorentz
invariance follows immediately; because our calculation could have
been done as well in Feynman gauge, where the axial vecter n does not
appear, and then, the only possible form of the answer is the one of
eq. {(1.1). The use of axial gauge is a mere convenience and large
portions of our calculations were also performed in Feynman gauge as
an explicit check of our axial gauge results.

It is interesting to point out a difference between our result
and that of Soldate, Ref. [13]. By calculating the matrix elements of

the various operators, using targe x formalism, he finds as xBj > 1

—

- 2
HT xB.+1 (1 xB.)

J ]
2 - Q

v

while we find

: “Xgi) . x (1-xg.)?
2 ~ 2 Q 2 gz
The disagreement seems to derive from our use of the running coupling
constant in the caleculation; if we used a constant o, the coefficient
T2 vanishes.

As a final point note that we have obtained resuits for the
absolute normaiization of our higher twist effects through the use of
an explicit wave function calculated for large xBj using the formalism
of Ref. {5]. 1In this sense our results are less general than those of

the operator product formalism but do provide an explicit

normalization of the cortributions which appear therein.
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TABLE I : Py, (k)

all others=0
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Table II
Matrix elements of one and three y-matrices

o, B = helicity in p+ + = frame

o

v, (a) q u, (k) k b "
Notation: — T S r < =~ - o —e— = ¥
Ja /dp Jk' /Jp
RO k MO q by oA
T Ry A
Jk /b Jq /Np =YYy
Overall
Factor o=p=+ a‘—'ﬁ:- o=+ _B=- o=- ,ﬁ:.‘.
q + Kk
g —>——o—— B 2 p+ 1 1 0 0
a - ¢k 2p’ AV AV A A vV
o + » B k+q+ qk+m2 kq+m2 "I'!l[ k-q] ‘H'I'I[ k- q]
g A Kk A A
4 ———— 2" a/a’ kK 0 m(-1)
q kK
q 3 v v
o — Zp* k/k+ a/q -m(l:—li} 0
q k
g V + A K
& ——e—e—e— B 8p 1 0 0 0
g A + V k
§ —>——s—v—+—— B 8p 0 1 0 9
g A + - k A
+
o ———— § 8p+ ] k/K' ] -m/k
q V. + - kg kit 0 w/k 0
o —————— p
g - * A k A
+
g —+—+—+—+-—— 8 8 q/q* 0 0 m/q
q - + V &k v
+ +
0 ——————r— B 8[} 0O q/q -m/q 0
q ¢ k q p k
43 - - + B = - ——
a B v A g v Ak
o + — * + B =0 + * - - > B




TABLE III
Numerator y—Matrix Algebro Results:
«*Contributions

+
*‘w—ﬁiﬁl*f

¢+ 2

I g—] 4P kT
o _ 7 {l—xla

A

+ v VA
+ g |! tog=1 4p*ll-alqk
—L {1-x}
+ﬁ+_:5:+ .2

. x—i_Bp kT
] ™ a{l=x)

+

+‘y—f—?§—\’ LA +i 2
—1_ 2P7ky

| X
1 7 =%

M
+~ Contributions
v + -
* * x~1 4 k$ v A
| o ——1 . gk
S R p*t{1-x)2
A

F=%=%~% For all the above

A543 A7

T
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-
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TABLE IV
NUMERATOR RESULTS

" Non Flip Contributions
{charge and colour factors omitted)

AV

ot

: (i-x)3 {a+B) z(i-2)

v
o v A
LA =] 160" a SL2
—t -
I ' ~ {iI-x)3 a+B8 z{l-2)
+ 1 # )
+ v
+ ‘{*‘;‘:ﬁj +
vy T | 8p* TiL
N | % - X 4
Ay ~ {1-x)3 z(1-2)
P + el
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions

The initial and final Fock states of a general bound state of

fermions.

Tree graphs for the 2-guark pion valence state at large xBj'
Results for a "pion" target: Plotted as a function of

m2
P -
A mom(l XB

= 2¢l My 2e L, ool 25 S
X 3 are m%$ SL/m 52, T2/m 52 and <kT>/m ,

i 2

where mzsg is in units of (GeV)?, all other quantities
are dimensionless. Multiply Sg by I Az for a particular
q

type of pion.

Enumeration of the tree graphs appropriate at large xBj for

the 3-quark valence proton state.

Results for a proton target. Plotited are m452, mst and
SEXm Sg as a function of x, where mqsp, mzsﬁ are in units

of aev“, while SE{mZSS is dimensionless.

Tree level hard processes contributing to deep inelastic

scattering,
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