POWER SUPPRESSED CONTRIBUTIONS TO

DEEP INELASTIC PROCESSES*

J. F. Gunion

Department of Physics
University of California, Davis, California
P. Nason and R. Blankenbecler

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Abstract

We present results of a direct calculation of leading power law corcections to the proton and pion structure functions at large x - to order $1 / Q^{4}$ for $V W_{2}^{p r o t o n ~ a n d ~} 1 / Q^{2}$ for W_{1} proton and to order $1 / Q^{2}$
 the leading $\sim(1-x)^{3}$ behavior as $x \rightarrow 1$ and substantial $(1-x)^{2} / Q^{2}$ corrections, a phenomenologically desirable form. We find a very large value for the coefficient of $1 / Q^{2}$ in $\left(\sigma_{L} / \sigma_{T}\right)^{\text {proton }}$. The $1 / Q^{2}$ correction to VW_{2} pion is of the form proposed by Berger and Brodsky but much smaller than their estimate after complete normalization constraints are imposed. In addition this correction is not purely longitudinal until ($1-x$) is very near zero.

Submitted to Physical Review D

[^0]While QCD is widely accepted as the theory of the strong interactions, detailed comparison with experiment is far from perfect. Even the deep inelastic structure function, which in principle provides one of the cleanest experimental tests, may have important power law corrections at various orders in $1 / Q^{2}$. Indeed it now seems clear that the leading asymptotic terms predicted by QCD do not explain the low to moderate Q^{2} structure function data nor the ratio, $R=\sigma_{L} / \sigma_{T}$ [1][2]. In a previous letter we presented partial results of a direct calculation of the leading power law corrections to W_{2} proton and $v W_{L}$ proton at large x near 1 and large Q^{2} [3]. In the present paper we extend these calculations considerably. We calculate not only the leading $\sim(1-x) / Q^{2}$ correction to the $\sim(1-x)^{3}$ behavior of W_{2} proton but also the $\sim \frac{1}{(1-x) Q^{4}}$, the $\sim(1-x)^{2} / Q^{2}$ and scaling $(1-x)^{4}$ corrections. We find that: 1) the (1-x)/Q ${ }^{2}$ correction is small with negative coefficient, as previously reported; 2) the $\frac{1}{(1-x) Q^{4}}$ correction is small and positive; 3) both the $(1-x) / Q^{2}$ and $\frac{1}{(1-x) Q^{4}}$ corrections would vanish for a constant strong coupling constant i.e., in a sense they derive from higher order corrections; 4) the $(1-x)^{2} / Q^{2}$ correction is positive and of substantial magnitude; and 5) the $(1-x)^{4}$ correction is negative/positive for a proton/neutron target with large coefficient. Our asymptotic result for $v W_{L}^{p r o t o n} / W_{2}$ proton is, as previously reported, very large and x independent as $x \rightarrow 1$. (We note that the earlier calculations did not include helicity flip
contributions whereas those discussed here inciude all contributions in a given order.) This result for $W_{L}{ }^{\text {proton }} / W_{2}{ }^{\text {proton }}$ suggests that very large Q^{2} is required before a meaningful asymptotic series for σ_{L} / σ_{T} can be developed. The size of all terms is fixed, in our approach, by the approximately known normalization of the leading $(1-x)^{3}$ temm of $W_{2}^{\text {proton }}$.

In the present paper we have also "repeated" the calculations of Berger and Brodsky [4] for the $\sim(1-x)^{2}$ and $\sim(1-x)^{0} / Q^{2}$ terms in $\mathcal{W W}_{2}$ pion and the $(1-x)^{0}$ term in W_{L} pion. We have, however, included helicity flip and other quark mass effects. In addition all normalizations are fixed by that of the $(1-x)^{0} / 0^{2}$ correction to $\mathrm{WW}_{2}^{\text {pion }}$ is much smaller than suggested in Ref. [4] and that it is not purely longitudinal until x is extremely near 1.

We would like to emphasize that our purpose here is to perform a calculation within the context of the standard QCD picture of hadrons and not to give a detailed fit to data. At large \times QCD predicts that the valence Fock states must dominate the hadron structure function. Our results for the valence Fock state will thus be valid for x sufficiently near 1 . At moderate x it is likely that higher Fock states will be important. It is quite possible that the very large higher twist effects that we obtain for the valence states are also present for those higher Fock states. Our anaiysis will be based on the extension of the Brodsky-Lepage formalism [5] first employed by Berger and Brodsky [4] in their calculation of higher twist contributions for pion beams. We begin in Section I by giving kinematic preliminaries. In Section II we repeat the pion calculation using our techniques and discuss possible subtleties and difficulties in the original results. In Section III we turn to the proton target.

Section I

We begin by giving a few kinematic preliminaries. The structure functions for deep inelastic scattering are defined through

$$
\begin{equation*}
w_{\mu \nu}(p, q)=-\left[g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right] w_{1}+\left[p_{\mu}-q_{\mu} \frac{p \cdot q^{2}}{q^{2}}\right]\left[p_{\nu}-q_{\nu}-\frac{p \cdot q^{2}}{q^{2}}\right] w_{2} \tag{1.1}
\end{equation*}
$$

We use light cone notation; for general vectors v and u we define

$$
\begin{align*}
& v^{+}=v^{0}+v^{3} \\
& \vec{v}_{\mathrm{T}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
& v^{-}=v^{0}-v^{3} \tag{1.2}\\
& v^{2}=v^{+} v^{-}-\Delta V=v^{+} v^{-}-v_{T}^{2} \\
& \hat{v}=v^{1}+i v^{2} \quad u \cdot v=\frac{v_{2}}{2}\left[u^{+} v^{-}+u^{-} v^{+}-\hat{U}-v(v)\right] \\
& V=v^{1}-i v^{2}
\end{align*}
$$

Note that use of \hat{v} and v for transverse momenta will simplify later Dirac algebra.

In a frame defined by

$$
\begin{aligned}
& q=\left(q^{+}, q^{-}, \vec{q}_{T}\right) \text { with } q^{+}=0, q^{-}=2 v / p^{+}, q_{T}^{2}=Q^{2} \\
& p=\left(p^{+}, p^{-}, \overrightarrow{0}_{T}\right) \text { with } p^{-}=M_{\text {target }}^{2} / p^{+}, v=p \cdot q
\end{aligned}
$$

we have

$$
\begin{equation*}
W_{2}=W^{++} / p^{+2} \quad W_{1}=Q^{2} p^{+2} \frac{W^{-}}{4 v^{2}} \tag{1.4}
\end{equation*}
$$

and the standard ratio of $\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$ is given by

$$
\begin{gather*}
R=\sigma_{L} / \sigma_{T}=\frac{r}{1-r} ; r=\frac{4 x_{B j}^{2}}{Q^{2}}\left[\frac{v W_{L}}{\nu W_{2}}\right] \\
x_{B j}=\frac{Q^{2}}{2 v} . \tag{1.5}
\end{gather*}
$$

We will calculate W^{++}and W^{--}by computing the amplitudes, A^{+}or $A^{-}-$for absorption of $a+o r-c o m p o n e n t$ photon by the target, squaring
the amplitude, and then integrating over final state phase space. In computing A^{+}or A^{-}we begin by imagining a superposition of multiparticle Fock states [5] for the incoming target. In the frame of eqn. (1.3) we define the amplitude for finding n (on-mass-shell) quarks and gluons with spin projection S_{z} along the z direction and momenta p_{i} as (See Fig. 1)

$$
\begin{equation*}
\psi_{S_{z}}^{(n)}\left(\alpha_{j}, \overrightarrow{\mathrm{p}}_{\mathrm{Ti}}, s_{i}\right), \alpha_{i}=\frac{\mathrm{p}_{i}^{+}}{p^{+}} \tag{1.6}
\end{equation*}
$$

where, by momentum conservation,

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i}=1 ; \sum_{i=1}^{n} \vec{p}_{T i}=0 \tag{1.7}
\end{equation*}
$$

The s_{i} specify the spin projections of the constituents. For $x_{B j} \rightarrow 1$ we will be concerned only with valence Fock states containing quarks or anti-quarks. For each fermion or antifermion constituent $\psi_{S_{z}}$ (n) multiplies the spin factor

$$
\frac{u\left(\overrightarrow{\mathrm{p}}_{\mathrm{i}}\right)}{\sqrt{p_{i}^{+}}} \sqrt{p^{+}} \text {or } \frac{\overline{\mathrm{v}}\left(\overrightarrow{\mathrm{p}}_{\mathrm{i}}\right)}{\sqrt{p_{i}^{+}}} \sqrt{p^{+}}
$$

The wave function is normalized according to

$$
\sum_{n} \int_{i} \prod_{i}^{n} \frac{d^{2} p_{T i} d \alpha_{i}}{2(2 \pi)^{3}} \psi_{S_{z}}^{(n)}\left(\vec{p}_{T i}, \alpha_{i}, s_{i}\right)^{2}
$$

$$
16 \pi^{3} \delta\left(1-\Sigma \alpha_{i}\right) \delta^{2}\left(\Sigma \vec{p}_{\mathrm{Ti}}\right)=1
$$

Our spinor normalization is such that $\sum_{s} u_{s}(p) \bar{u}_{s}(p)=\not p+m$.

Similarly, the final-state created by the absorption of a + or component photon will be specified by momenta and spinors

$$
\frac{\bar{u}\left(k_{i}\right)}{\sqrt{k_{i}^{+}}} \sqrt{p}+\text { or } \frac{\bar{v}\left(k_{i}\right)}{\sqrt{k_{i}^{+}}} \sqrt{ } p^{+}
$$

(See Fig. 1). In this normalization the phase space associated with an n-particle final state is ($x_{i} \equiv k_{i}^{+} / p^{+}$)

$$
\begin{gather*}
d \Gamma^{(n)} \equiv \sum_{s_{i}^{\prime}} \prod_{i=1}^{n} \frac{d x_{i} d^{2} k_{T i}}{2(2 \pi)^{3}} 16 \pi^{3} \delta^{2}\left(\sum_{i} \vec{k}_{T i}\right) \tag{1.9}\\
\quad \delta\left(1-\sum_{i} x_{i}\right) \frac{2 \pi}{p^{+4}} \delta\left[(p+q)^{-}-\sum_{i} k_{i}^{-}\right] .
\end{gather*}
$$

Our procedure will be to calculate W^{++}or W^{--}by first computing the amplitude A^{+}or A^{-}for a given quark in the initial state configuration specified by $\psi_{S_{z}}$ to absorb $a+$ or - component photon and yield a final state as specified above; this amplitude will include the integration over initial configurations $\overrightarrow{\mathrm{p}}_{\mathrm{Ti}}$ and α_{i} and a coherent sum over the initial quark spin states for the given S_{z}. We then obtain, for a given-struck quark

$$
\begin{gather*}
W^{++},--\left[\frac{1}{2}\right]\left[\frac{1}{2 \pi}\right] \sum_{s_{i}^{1}} \int \prod_{i=1}^{n} \frac{d x_{i} d^{2} k_{T i}}{2(2 \pi)^{3}} \\
16 \pi^{3} \delta^{2}\left(\sum_{i} \vec{k}_{T i}\right) \delta\left(1-\sum_{i} x_{i}\right) \tag{1.10}\\
\frac{2 \pi}{p^{+}} \delta\left[(p+q)^{-}-\sum_{i} k_{i}^{-}\right]\left|A^{+},-\right|^{2}
\end{gather*}
$$

where $A^{+},-$depends on $x_{i}, \vec{k}_{T i}$ and s_{i}^{\prime}.

Finally we sum over the possible quarks which can be struck by the deep inelastic photon. We do not allow for interference terms in which the photon is absorbed on different quarks of the target. These terms are suppressed by a factor of

$$
\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{s}\left(\frac{k_{T}^{2 "}}{1-x_{B j}}\right)}
$$

relative to the diagonal terms we retain. This is because the virtual photon momentum has to be routed through an explicit gluon exchange between the two interferring quarks (when visualizing the calculation as that of the imaginary part of .. the forward Compton amplitude). Our normalization is such that for a 1 particle state $v W_{2}=\delta\left(1-X_{B j}\right)$.

Calculational Framework

and
Application to Pion Structure Function

We now consider deep inelastic scattering on a pion target at large $x_{B j}$. In the $x_{B j} \rightarrow 1$ limit the bound state quark struck by the virtual photon is required to carry most of the " + " - component of longitudinal momentum. The simplest diagrams allowing this configuration are illustrated in Fig. 2, where we consider the $q \bar{q}$ Fock component (in the light-cone decomposition of Ref. [5]) - higher Fock components being suppressed by powers of $\left(1-x_{B j}\right)^{2}$. We will calculate the amplitude for virtual photon absorption in the $X_{B j} \rightarrow 1$ limit and later square and provide phase space factors to obtain the structure functions, as discussed in Sec. I.

In the frame of Eq. (1.3), the on-shell recoil momentum, $p-k$, of Figs. la-b is given by

$$
\begin{align*}
& (p-k)^{+}=(1-x) p^{+} \\
& (p-k)^{-}=\frac{m^{2}+k \frac{2}{T}}{(1-x) p^{+}} \tag{2.1}\\
& (\vec{p}-\vec{k})_{T}=-\vec{k}_{T}
\end{align*}
$$

where m is the spectator quark mass and $x=x_{B j}$ in leading order. From (2.1) we find that

$$
\begin{equation*}
k^{2}(x) \sim \frac{-\left(m^{2}+k_{T}^{2}\right)}{(1-x)} \tag{2.2}
\end{equation*}
$$

is forced far off-shell in the $x \rightarrow 1$ region. This purely kinematic result allows us to apply the Brodsky-Lepage formalism in the $x \rightarrow 1$ limit [5], [4].

In the procedure of Ref. [5] one notes that the transverse momenta of the initial quarks do not enter into the large off-shell momentum (2.2). Thus one may evaluate the tree graphs of Fig. 2a, 2b with collinear on-shell initial quark and antiquark lines and incoming spinors

$$
\frac{u\left(\alpha p^{+}\right)}{\sqrt{\alpha}} \text { and } \frac{\bar{v}\left[(1-\alpha) p^{+}\right]}{\sqrt{1}-\alpha}
$$

This tree graph result is then convoluted with the evolved wave function $\phi\left(\alpha\right.$, " $\left.Q^{2 "}\right)$ defined by (for simplicity we do not write the standard wave function renormalization factor)

$$
\begin{align*}
\phi\left(\alpha,{ }^{"} Q^{2 "}\right)= & \xi_{s_{1}^{s} 2} f^{" Q^{2 "}} \frac{\mathrm{~d}^{2} \mathrm{p}_{\mathrm{T} 1} \mathrm{~d}^{2} \mathrm{p}_{\mathrm{T} 2}}{\left[16 \pi^{3}\right]^{2}} 16 \pi^{3} \delta\left(\overrightarrow{\mathrm{p}}_{\mathrm{T} 1}+\overrightarrow{\mathrm{p}}_{\mathrm{T} 2}\right) \tag{2.3}\\
& \psi_{S_{Z}}\left(\vec{p}_{1}, \overrightarrow{\mathrm{p}}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right) \delta\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right),
\end{align*}
$$

where $\mathrm{p}_{1}^{+} \equiv \alpha \mathrm{p}^{+}, \mathrm{p}_{2}^{+} \equiv(1-\alpha) \mathrm{p}^{+}$and we require a spin 0 q \bar{q} Fock state for the pion. This "evolved" wave function is thus the integral over initial transverse momenta of the Fock state wave function with upper limit "Q2" set by

$$
\begin{equation*}
" Q^{2 "} \sim k^{2}(x) . \tag{2.4}
\end{equation*}
$$

This is the point beyond which the initial transverse momenta can no longer be neglected in calculating the tree graphs. It is the region below " $Q^{2 "}$ which gives the leading log contribution in the $x \rightarrow 1$ limit [5].
. In the limit of very large " $Q^{2 "}, \phi\left(\alpha, " Q^{2 "}\right)$ takes a particularly simple form [5] for a pion,

$$
\begin{equation*}
\phi\left(\alpha, " Q^{211}\right) \stackrel{" Q{ }^{2 " \rightarrow \infty}}{\sim} \alpha(1-\alpha) \cdot \frac{3 f_{\pi}}{\sqrt{n_{c}}} \tag{2.5}
\end{equation*}
$$

where $n_{c}=$ number of colors. At more moderate " Q " the wave function will not have reached its fully evolved form. In fact Berger and Brodsky [4] use the weak binding form

$$
\begin{equation*}
\phi\left(\alpha, " Q^{2 "}\right)=\delta\left(\alpha-\frac{1}{2}\right) \frac{f \pi}{4} \frac{3}{\sqrt{n_{c}}} . \tag{2.6}
\end{equation*}
$$

We have chosen the normalization of ϕ so that the normalization of the large Q^{2} pion form factor, proportional to $\int \frac{\phi(\alpha)}{\alpha}$ [5], is the same for (2.5) and (2.6). More sophisticated forms for ϕ are considered in Ref. [6]. We do not, in this paper, wish to explore all possibilities for the pion and so we will restrict our considerations to a ϕ of the form Eq. (2.6). We will employ $f_{\pi}=130 \mathrm{MeV}$.

The above wave function for momentum coordinates must be supplemented by the color wave function

$$
\begin{equation*}
\frac{\delta_{a b}}{\sqrt{n_{c}}} \tag{2.6}
\end{equation*}
$$

($a, b=$ quark, anti-quark colors respectively), and the pion spin wave function

$$
\begin{equation*}
\frac{1}{\sqrt{2}}(1+,->-\mid-,+>) \tag{2.6}
\end{equation*}
$$

both normalized to unity in the square. The + and - refer to infinite p^{+}helicity states, see Ref. [5].

The calculation will employ an axial gauge for the gluon specified by

$$
\begin{equation*}
\eta \cdot A_{\text {gluon }}=0, \eta=\left(0, \eta^{-}, 0,0\right) \tag{2.7}
\end{equation*}
$$

In this gauge the rules for the numerator of the giuon propagator, $-g_{\mu \nu}+\frac{\eta_{\mu} k_{v}+\eta_{\nu} k_{\mu}}{\eta \cdot k} \equiv P_{\mu \nu}(k)$, are specified in Table I.

We will also employ the Dirac algebra rules for matrix elements between on-shell spinors specified in Table II, adapted from Ref. 5 to our more convenient notation. We will employ "helicity" states where the helicity is that which a particle would have in the $\rho^{+} \rightarrow \infty$ limit, see Ref. [5]. We supplement these rules with the observation that the numerator structure of an off-shell spinor line may be written

$$
\begin{equation*}
k+m=\frac{k^{+}}{p^{+}} \sum_{\lambda} \frac{u_{\lambda}(\vec{k})}{\sqrt{k} \frac{v^{+}}{}{ }^{+} p^{+}} \frac{u_{\lambda}(\vec{k})}{\sqrt{k} / \sqrt{ } p^{+}}+\left(k^{2}-m^{2}\right) \frac{\gamma^{+}}{2 k^{+}} \tag{2.8}
\end{equation*}
$$

with a similar rule for anti-fermions. Graphically

Here the spinors are on stell spinors. The k^{-}component is placed on shell and the γ^{+}term of (2.8) compensates for this correction. Note that this trick combined with the axial gauge of Table I implies that only + and Λ or V matrix elements need ever be considered for w^{++}, for W^{--}a limited number of - elements are required.

One finds that the amplitudes have the form

$$
\begin{gather*}
A^{+} \sim a^{+}(1-x)+b^{+} / Q+c^{+} / Q^{2} /(1-x) \\
A^{-} \sim a^{-} Q \tag{2.10}
\end{gather*}
$$

up to sub-leading terms in $(1-x)^{-1}$. The numerator algebra for non-flip contributions appears in Tabie III. We, of course, only retain those contributions capable of contributing to the leading terms as $x \rightarrow 1$. The phase space δ function has the expansion

$$
\begin{align*}
\delta\left(x-x_{B j}\right) & -\delta^{\prime}\left(x-x_{B j}\right)-\frac{2 \vec{k}_{T} \cdot \vec{q}_{T}}{Q^{2}}-\delta^{\prime}\left(x-x_{B j}\right) \frac{m^{2}+k_{T}^{2}}{\vec{Q}^{2}(1-x)} \\
& +\frac{1}{2!} \delta^{\prime \prime}\left(x-x_{B j}\right)\left(\frac{2 \vec{k}_{T} \cdot \vec{a}_{T}}{\vec{Q}^{2}}\right)^{2} . \tag{2.11}
\end{align*}
$$

We square the amplitude, (2.10), multiply by the expansion, (2.11), and collect all terms of given powers in $1 / 0$ and $1 /(1-x)$. (Observe that the derivatives of $\delta\left(x-x_{B j}\right)$ lead to extra inverse powers of $\left.(1-x).\right)$ The resulting forms are

$$
\begin{gather*}
v W_{2} \stackrel{x \rightarrow 1}{\sim}(1-x)^{2}+\text { constant } / Q^{2} \\
v_{1}{ }_{2} \stackrel{x \rightarrow 1}{\sim} \text { constant } \tag{2.12}
\end{gather*}
$$

More generally (Appendix A) one can show that the leading terms for n-body fermion Fock states behave as [7]

$$
\begin{equation*}
v W_{2} \stackrel{x \rightarrow 1}{\sim}(1-x)^{2 n-3+2|\Delta \lambda|} \tag{2.13}
\end{equation*}
$$

where $\Delta \lambda$ is the helicity of the initial target spin state minus the helicity of the quark (or antiquark) probed by the virtual photon. - The corresponding rule for W_{L} is

$$
\begin{equation*}
v W_{L} \stackrel{x \rightarrow 1}{\sim}(1-x)^{2 n-4+2 \Lambda_{T}} \tag{2.14}
\end{equation*}
$$

where Λ_{T} is the helicity of the initial target spin state.
We now discuss the details required to obtain the full result including 'tormalization and spin-flip terms. The color wave function (2.6)' and coupling constants yield a factor of $-\mathrm{g}_{\mathrm{S}}^{2} \mathrm{C}_{\mathrm{F}}$. In addition we convolute with the initial wave function and sum over spin configurations, see (2.6)". We define

$$
\begin{align*}
& I_{A}=\int \frac{\phi\left(\alpha,{ }^{\prime \prime} Q^{2 \prime}\right)}{\alpha} d \alpha=\frac{f^{m}}{2} \frac{3}{\sqrt{n_{c}}} \tag{2.15}\\
& I_{B}=\int \frac{\phi\left(\alpha, " Q^{2 "}\right)}{\alpha^{2}} d \alpha=2 I_{A} .
\end{align*}
$$

where the rightmost equalities hold for the form of the wave function given in (2.6). These are the only two independent wave function weightings which appear once the symmetry under $\alpha \leftrightarrow(1-\alpha)$ of $\phi(\alpha)$ is employed. Denoting, for example, $A_{+-,+-}$as the amplitude for an initial t- helicity to absorb a photon and yield a final t- helicity state we define amplitudes for fixed final helicity states as

$$
\begin{align*}
& A_{+-}=\frac{1}{\sqrt{2}}\left(A_{+-,+-}-A_{-+,+-}\right) \\
& A_{++}=\frac{1}{\sqrt{2}}\left(A_{+-,++}-A_{-+,++}\right) \tag{2.16}\\
& A_{-+}=\frac{1}{\sqrt{2}}\left(A_{+-,-+}-A_{-+,-+}\right) \\
& A_{--}=\frac{1}{\sqrt{2}}\left(A_{+-,--}-A_{-+,--}\right)
\end{align*}
$$

corresponding to the coherent helicity 0 initial pion state. We obtain (taking the charge of the struck quark to be unity for the moment)

$$
\begin{aligned}
& A_{+-}^{+} \stackrel{x \rightarrow 1}{\sim} \frac{1}{\sqrt{2}}\left(-C_{F} \alpha_{S} 4 \pi\right) \frac{4 p^{+}(1-x)}{\left(m^{2}+k_{T}^{2}\right)^{2}}\left[-\left(I_{A}+I_{B}\right)-\frac{m^{2} I_{B}}{\left(k_{T}^{2}+m^{2}\right)}-\frac{Y Q}{Q^{2}(1-x)}\left(I_{B}-I_{A}\right)\right] \\
& A_{-+}^{+} \stackrel{x \rightarrow 1}{\sim}-\left(A_{+-}^{+}\right)^{*}
\end{aligned}
$$

$$
\left.A_{++}^{+} \stackrel{x \rightarrow 1}{\sim} \frac{1}{\sqrt{2}}\left(-C_{F} \alpha_{s} 4 \pi\right) \frac{4 p^{+}(1-x)}{\left(m^{2}+k_{T}^{2}\right)^{2}} \quad \stackrel{V}{\left[\frac{k I_{B}}{\left(m^{2}+k_{T}^{2}\right.}\right)}-\frac{m \text { V }}{Q^{2}(1-x)}\left(I_{B}-I_{A}\right)\right]
$$

$$
\begin{equation*}
A_{--}^{+} \quad \underset{\sim}{x \rightarrow 1}+\left(A_{++}^{+}\right)^{\star} \tag{2.17}
\end{equation*}
$$

$$
A_{+-}^{-} \stackrel{x \rightarrow 1}{\sim} \frac{1}{\sqrt{2}}\left(-C_{F_{s}^{\alpha}} 4 \pi\right)\left(\frac{V}{p}\right)\left[\frac{\vee \wedge}{\left(m^{2}+k_{T}^{2}\right)}\right]=-\left(A_{-+}^{-}\right)^{\star}
$$

$$
A_{++}^{-} \stackrel{x \rightarrow 1}{\sim} \frac{1}{\sqrt{2}}\left(-C_{F}^{\alpha} s_{s} 4 \pi\right)\left(\frac{4}{p^{+}}\right)\left[\frac{V}{\left(m^{2}+\mathrm{K}_{T}^{2}\right)}\right]=+\left(A_{--}^{-}\right)^{\star} .
$$

Note that no terms of the form c^{+}in Eq. (2.10) appear. We next square and incorporate final state phase space, see (1.9) and (1.10).

We obtain, using the expansion (2.11),

$$
\begin{align*}
& v W_{2}= \frac{v}{4 \pi} \int d \Gamma \tag{2.18}\\
& \stackrel{x \rightarrow 1}{\sim}\left|\frac{A^{+}}{p^{+}}\right|^{2} \\
& \stackrel{\sim}{\sim} C_{F}^{2} \int d k_{T}^{2} \alpha_{S}^{2}\left\{\frac{1}{\left(k_{T}^{2}+m^{2}\right)^{2}}\left[\left(I_{A}+I_{B}\right)^{2}+\frac{m^{2}}{\left(k_{T}^{2}+m^{2}\right)}\left(3 I_{B}^{2}+2 I_{A} I_{B}\right)\right]\left(1-x_{B j}\right)^{2}\right. \\
&\left.+\frac{1}{Q^{2}} \frac{1}{\left(k_{T}^{2}+m^{2}\right)}\left[4 I_{A}^{2}-\frac{m^{2}}{\left(k_{T}^{2}+m^{2}\right)}\left(\left(3 I_{B}^{2}-4 I_{A}^{2}-2 I_{A} I_{B}\right)+\frac{\left(6 I_{B}^{2}+4 I_{A} I_{B}\right) m^{2}}{k_{T}^{2}+m^{2}}\right)\right]\right\}
\end{align*}
$$

and

$$
\begin{gather*}
v W_{L}=\frac{Q^{2}}{4 v} \frac{1}{4 \pi} \int d \Gamma^{(2)}\left|P^{+} A^{-}\right|^{2} \tag{2.19}\\
\stackrel{X_{B j}}{\sim}{ }^{\sim} 4 C_{F}^{2} \int \frac{d k_{T}^{2} \alpha_{S}^{2}}{\left(m^{2}+k_{T}^{2}\right)} I_{A}^{2} .
\end{gather*}
$$

The simplified results of Berger and Brodsky Ref. [4],

$$
\begin{equation*}
v W_{2} \stackrel{x_{B j}{ }_{\sim}^{1}}{\sim} 36 C_{\bar{F}}^{2} I_{A}^{2} \cdot f_{\tilde{m}^{2}} \frac{d k_{T}^{2}}{k_{T}^{4}} \alpha_{S}^{2}\left\{\left(1-x_{B j}\right)^{2}+\frac{4}{9} \frac{k_{T}^{2}}{\left.Q^{2}\right\}} \quad \propto\left(\sigma_{L}+\sigma_{T}\right)\right. \tag{2.20}
\end{equation*}
$$

$$
v W_{L} \stackrel{x_{B j} \rightarrow 1}{\sim} 4 C_{F}^{2} I_{A}^{2} \int_{m^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}} \alpha_{S}^{2} \propto \frac{Q^{2}}{4 x_{B j}^{2}} \sigma_{L}
$$

are obtained by neglecting \mathbb{m}^{2} 's except as an integration cutoff and by using $I_{B}=2 I_{A}$ as appropriate for the wave function (2.6). In this approximation the higher twist contribution to $V W_{2}$ (proportional to $1 / Q^{2}$) is purely longitudinal. We will see that evaluation of the more general expressions (2.18) and (2.19) does not yield this result until $X_{B j}$ is very near 1 - the longitudinal content of the $1 / Q^{2}$ correction to $v W_{2}$ is sensitive to the m^{2} scale and to the wave function through I_{A} and I_{B}. We evaluate the full expressions (2.18) and (2.19) for the approximate wave function (2.6), and employ a moving coupling constant

$$
\begin{equation*}
\alpha_{s}=\alpha_{s}^{\text {mom }} \quad\left(\alpha \frac{k^{2}+m^{2}}{(1-x)}\right) \tag{2.21}
\end{equation*}
$$

with $\alpha=\frac{1}{2}$ for (2.6); α_{s} is thus the two-loop momentum-subtracted moving coupling evaluated at the off-shell momentum carried by the gluon in the graphs of Fig. 2. This procedure possibly reduces [8] the higher order corrections to these graphs when they are evaluated in axial gauge. Note that the term in $v_{2} W_{2}$ proportional to $4 I_{A}^{2} / Q^{2}$. $1 /\left(k_{T}^{2}+m^{2}\right)$ is logarithmically divergent without the moving α_{s} whereas the additional higher twist terms with explicit numerator m^{2} powers converge. For $X_{B j}$ very near 1 this near divergence enhances the first term and leads to a purely longitudinal higher twist correction. However, for practical $x_{B j}$ values, the results are very different. The numerical results are best expressed as a function of the variable

$$
\begin{equation*}
x=\frac{m^{2}}{\Lambda_{\operatorname{mom}}^{2}\left(1-x_{B j}\right)} \tag{2.22}
\end{equation*}
$$

where $\Lambda_{\text {mom }}^{2}$ is the QCD scale of α_{s} in (2.21).
Defining

$$
\begin{align*}
& v W_{2}^{\pi} \stackrel{x_{B j} \rightarrow 1}{\sim}\left(1-x_{B j}\right)^{2} S_{2}^{\pi}+\frac{1}{Q^{2}} T_{2}^{\pi} \equiv v W_{2}^{L T}+v W_{2}^{H T}- \tag{2.23}\\
& v W_{L} \quad \stackrel{x_{B j} \rightarrow 1}{\sim} S_{L}^{\pi}
\end{align*}
$$

(LT = leading twist, HT = higher twist) we note that the quantities $m^{2} S_{2}^{\pi}, S_{L}^{\pi}$, and T_{2}^{π} are independent of m^{2} at fixed x. In Fig. 3 we plot, for unit quark charge, $m^{2} S_{2}^{\pi}, T_{2}^{\pi} / m^{2} S_{2}^{\pi}$, and $\left\langle k_{T}^{2}\right\rangle / m^{2}$ where $\left\langle k_{T}^{2}\right\rangle$ is defined with respect to the integrand of Eq. (2.18).

The graph begins at $x \geq 10$ where the perturbative calculation becomes valid. First it is necessary to comment on the normalization of S_{2}^{π}. Data at large $X_{B j}$ may be extracted from pion-nucleon Drell-Yan pair production using the deep inelastic determination of the nucleon structure function ${ }^{[9]}$. This indirect extraction uses a k-factor of 2. The $\left(1-x_{B j}\right)^{2}$ fits to $\mathrm{UW}_{2}^{L T}$ yield an approximate coefficient

$$
\begin{equation*}
S_{2}=\frac{v W_{2}^{L T}}{\left(1-x_{B j}\right)^{2}} x_{B j}=.9 \tag{2.24}
\end{equation*}
$$

From Fig. 3 (corrected for charge squared factor of 5/9) we see that an $m^{2} / \Lambda_{\text {mom }}^{2}$ value of roughly

$$
\begin{equation*}
\frac{\mathrm{m}^{2}}{\Lambda_{\text {mom }}^{2}}=1 \tag{2.25}
\end{equation*}
$$

corresponding to $x=10$ at $x_{B j}=.9$ is required to obtain (2.24). For $\Lambda_{\text {mom }}=.1 \mathrm{GeV}$, in rough agreement with recent determinations [1], [2], [10], we obtain $\mathrm{m}^{2}=0.01 \mathrm{GeV}^{2}$.

To interpret this m^{2} value it is helpful to calculate the average transverse momentum squared of the struck quark, $<k_{T}^{2}>$. It varies slowly with $x_{B j}$ as shown in Fig. 3 . For examplé

$$
\left\langle k_{T}^{2}\right\rangle= \begin{cases}1.6 \mathrm{~m}^{2} & x=10 \tag{2.26}\\ 3.3 \mathrm{~m}^{2} & x=400\end{cases}
$$

Thus $m^{2}=.01 \mathrm{GeV}^{2}$ corresponds to an intrinsic transverse momentum (at large $x_{B j}$) of order $100-200 \mathrm{MeV}$, well within the conventional phenomenological range. We will discover that this same approximate m^{2} - value also yields the correct normalization for the nucleon structure function.

From Fig. 3 we see that the normalization of $v W_{2}^{L T} /\left(1-x_{B j}\right)^{2}$ decreases slowly as $x_{B j} \rightarrow 1$ due to the effects of the moving coupling constant. On the other hand the $1 / Q^{2}$ "higher twist" component becomes potentially important in precisely this region. From Fig. 3 we see that the predicted-values for T_{2}^{π} are quite small for $m^{2}=.01 \mathrm{GeV}^{2}$. Nonetheless

$$
\begin{equation*}
\frac{v W_{2}^{H T}}{v W_{2}^{L T}}=\frac{T_{2}^{\pi}}{Q^{2} S_{2}^{\pi}\left(1-x_{B j}\right)^{2}}{ }^{x_{B j}}=.99=0.5 \tag{2.27}
\end{equation*}
$$

At $x_{B j}$ values below. $9 \mathrm{vW}_{2}^{\mathrm{HT}}$ becomes negative but is, in any case, negligible.

The longitudinal structure function, $v W_{L}^{\pi}$, is predicted to be independent of $x_{B j}$ in the limit $x_{B j} \rightarrow 1$ and will thus also become increasingly important in this region. A useful guide is

$$
\frac{v W_{L}}{v W_{2}^{L T}} \sim m^{2}=.01 \quad \begin{cases}.2 & x_{B j}=.9 \tag{2.28}\\ 1 & x_{B j}=.95:-\end{cases}
$$

Clearly the larger $X_{B j}$ is the larger Q^{2} must be in order for these leading approximations to yield

$$
\begin{equation*}
r=\frac{4 x_{B j}^{2}}{Q^{2}} \frac{v W_{L}}{v W_{T}}<1 \tag{2.29}
\end{equation*}
$$

as required by positivity, see Eq. (1.5).
Our results differ from those of Ref. [4]. First our explicit calculations when normalized by comparing to data constrain \mathfrak{m}^{2} to be in a range inconsistent with $\left\langle\mathrm{k}_{\mathrm{T}}^{2}\right\rangle \sim 1 \mathrm{GeV}^{2}$ as chosen in the first article of Ref. [4]. The small m^{2} value leads to a small higher twist coefficient. The exact form of the $\mathrm{VW}_{2}^{\mathrm{HT}}$ and W_{L} calculations, including m^{2} numerator algebra contributions, is also more complicated than the Ref. [4] approximation and tends to prevent the higher twist contribution from being purely longitudinal. Indeed the "transverse" part of $\mathrm{VW}_{2}^{\mathrm{HT}}$ is generally negative in our calculation. Only for very small values of ($1-\mathrm{x}_{\mathrm{Bj}}$) will Eqs. (2.18) and (2.19) yield a purely longitudinal higher twist component in VW_{2}, for it is only by a power of

$$
\left[\ln \left(\frac{1}{1-x_{B j}}\right)\right]^{-1}
$$

that the $m^{2}\left(k_{T}^{2}+m^{2}\right)^{-2}$ contributions are suppressed relative to the $\left(\mathrm{K}_{T}^{2}+m^{2}\right)^{-1}$ terms in $\mathrm{wW}_{2}^{H T}$ and W_{L}.

The second work quoted in Ref. [4], includes a rough estimate of W_{L}^{π}. While their formula for W_{L}^{π} is exactly the same as ours, they evaluate it by first relating it to the meson form factor, $F_{\pi}\left(Q^{2}\right)$, and then inputting the phenomenological form determined by low Q^{2} experimental data for F_{π}. In contrast, in the striet $X_{\overrightarrow{B j}} \rightarrow 1$ limit, our Eq. (2.19) is equivalent to employing the asymptotic QCD form for the meson form factor. Thus our result $W_{L}^{\pi^{+}}=.05 \mathrm{GeV}^{2} \cdot \frac{5}{9} / Q^{2}$ at $x_{B j}=.9$ is approximately a factor of 4 below their estimate, which is probably appropriate at smaller $X_{B j}$.

Regarding other possible meson "targets" we note that 0 helicity vector mesons yield exactly the same results as for pions up to an overall normalization factor. Transversely polarized vector mesons exhibit some distinct qualitative differences:
a) $\quad v W_{L}$ behaves as $(1-x)^{2}$ instead of $(1-x)^{0}$.
b) $\quad \mathrm{WW}_{2}^{\mathrm{HT}}$ receives no matrix element contributions. For instance the diagram of Table III which is a leading matrix element higher twist : contribution for the pion helicity configuration, is zero for a $++\rightarrow++$ helicity configuration. Thus the higher twist contributions for transversely polarized vector mesons come entirely from the δ-function expansion (2.22) and will yield a negative coefficient.

The Proton Structure Function; Preliminaries

The calculation of the proton structure function proceeds in close analogy to the pion case. However, the number of diagrams for the proton valence three quark state is much larger. Our classification appears in Fig. 4. The kinematics are illustrated in the A diagram of Fig. 4. The vectors $\&$ and $p-k-\ell$ are on shell and we define [in (+, -, T) notation]

$$
\begin{align*}
& \ell=\left(z(1-x) p^{*}, \frac{e_{T}^{2}+m^{2}}{z(1-x) p^{+}}, \ell_{T}\right) \tag{3.1}\\
& p-k-\ell=\left[(1-z)(1-x) p^{+}, \frac{\left(\vec{l}_{T}+\vec{k}_{T}\right)^{2}+m^{2}}{(1-z)(1-x) p^{+}},-\left(\vec{l}_{T}+\vec{k}_{T}\right)\right] \\
& \vec{L}_{T}=\vec{l}_{T}+\vec{k}_{T} .
\end{align*}
$$

In this case

$$
\begin{equation*}
k^{2}(x) \stackrel{x \rightarrow 1}{\sim}-\frac{e_{T}^{2}+m^{2}}{z(1-x)}-\frac{L_{T}^{2}+m^{2}}{(1-z)(1-x)} \tag{3.2}
\end{equation*}
$$

is again forced far off-shell and perturbative calculations based on the formalism of Ref. [5] are appropriate. In this region higher Fock states, beyond the valence, are suppressed by powers of $1 / k^{2}(x)$ in the amplitude. We define an evolved wave function for the three quark state as

$$
\begin{gather*}
\phi\left(\alpha, \beta, " Q^{2 "}\right)=\sum_{s_{1}{ }^{s} 2^{s} 3} \int^{" Q^{2 "}} \frac{d^{2} p_{T 1} d^{2} p_{T 2}}{\left(16 \pi^{3}\right)^{2}} \psi_{S_{z}}\left(\vec{p}_{1} \vec{p}_{2} \vec{p}_{3}^{s} 1^{5} 2^{s} 3\right) \tag{3.3}\\
\delta\left(s_{1}+s_{2}+s_{3}-s_{z}\right)
\end{gather*}
$$

with " Q^{2} " set by $1 /\left(1-x_{B j}\right)$ as in (2.4). At very large " $Q^{2 "}$ the form of ϕ for a helicity $+\frac{1}{2}$ proton state,

$$
\begin{align*}
-\frac{1}{\sqrt{6}}(2 \mid u+ & u+d->-|u+u-d+>-| u-u+d+>) \tag{3.4}\\
& + \text { symmetrization }
\end{align*}
$$

is (neglecting logarithmic structure)

$$
\begin{equation*}
\phi\left(\alpha, \beta, " Q^{2 "}\right) \stackrel{" Q^{2 n} \rightarrow \infty}{\sim} C \alpha \beta(1-\alpha-\beta) \tag{3.5}
\end{equation*}
$$

Our calculations, however, are to be compared with data at modest "Q" values; in this region ϕ is unlikely to have attained its fully evolved form. Other possibilities include a simple weak binding form

$$
\begin{equation*}
\phi \approx B \delta\left(\alpha-\frac{1}{3}\right) \delta\left(\beta-\frac{1}{3}\right) . \tag{3.6}
\end{equation*}
$$

A form for ψ based on off-energy-shell dynamics, which leads to good agreement with moderate Q^{2} nucleon form factor data and $\psi \rightarrow p \bar{p}$ decay, has been proposed by Brodsky et al.[11]

$$
\begin{equation*}
\psi_{3 q}\left(\alpha, \beta, \vec{p}_{T i}\right)=A \exp \left[-b^{2}\left\{\frac{p_{T 1}^{2}+m^{2}}{(1-\alpha-\beta)}+\frac{p_{T 2}^{2}+m^{2}}{\alpha}+\frac{p_{T 3}^{2}+m^{2}}{\beta}\right\}\right] \tag{3.7}
\end{equation*}
$$

independent of spin. The corresponding ϕ is

$$
\begin{equation*}
\phi(\alpha, \beta)=A_{\phi} \alpha \beta(1-\alpha-\beta) \exp \left\{-b^{2} m^{2}\left(\frac{1}{1-\alpha-\beta}+\frac{1}{\alpha}+\frac{1}{\beta}\right)\right\} \tag{3.8}
\end{equation*}
$$

where the choices

$$
\begin{array}{r}
A_{\phi}^{2}=.35 \mathrm{GeV}^{4} \\
-\quad \mathrm{b}^{2} \mathrm{~m}^{2}=.012 \tag{3.10}
\end{array}
$$

yield their best fit. The corresponding valence state probability is $\lesssim \frac{1}{4}$. Note that all choices of ϕ are symmetric under $\alpha \leftrightarrow \beta \leftrightarrow 1-\alpha-\beta$. Various integral weightings of ϕ will appear in our diagram evaluations. Those appearing in $v W_{2}^{L T}$ and $v W_{L}$ are

$$
\begin{align*}
& I_{A}=\int \phi(\alpha, \beta) d \alpha d \beta \frac{1}{\beta(\alpha+\beta)^{2}} \\
& I_{B}=\int \phi(\alpha, \beta) d \alpha d \beta \frac{1}{\alpha \beta(1-\alpha)} \tag{3.11}\\
& I_{C}=\int \phi(\alpha, \beta) d \alpha d \beta \frac{1}{\beta^{2}(\alpha+\beta)} \\
& I_{D}=\int \phi(\alpha, \beta) d \alpha d \beta \frac{1}{\alpha \beta^{2}}
\end{align*}
$$

In comparing results for different wave functions we normalize B and C of - equations (3.5), (3.6) so that the I_{A} values for these wave functions are the same as for (3.8). Since the I_{A} weighting dominates the nucleon form factor calculation this will lead to the same form factor normalization for all three cases.

As in the pion calculations the moving coupling constants will be evaluated at the momentum transfer carried by the associated gluon. The wave function momentun fractions α, β or $\gamma=\alpha+\beta$ appear in these arguments and are evaluated at their average values for the particular type of integral $I_{A} \ldots I_{D}$ which weights a given contribution. We denote these average values by

$$
{ }^{\langle\alpha\rangle} I_{A},{ }^{\langle\beta\rangle} I_{A},{ }^{\langle\gamma\rangle} I_{A} \text { etc. }
$$

The color wave function for the proton is taken as (normalized to unity)

$$
\begin{equation*}
\frac{1}{\sqrt{6}} \varepsilon_{a b c} \tag{3.12}
\end{equation*}
$$

which yields a color factor of

$$
\begin{equation*}
\text { Color Factor }=\frac{4}{9}=\frac{1}{3} C_{F} \tag{3.13}
\end{equation*}
$$

for each amplitude diagram of Fig. 4. Note also that the tree graph involving the three-gluon vertex is zero for the color wave function of (3.12).

We are now ready to discuss amplitude evaluations. for the moment we consider oñly terms with leading $x \rightarrow I$ behavior in a given order of $1 / Q$. For UW_{2} we list those forms capable of yielding

$$
U W_{2} \sim\left\{\begin{array}{l}
(1-x)^{3} \tag{3.14}\\
(1-x) / Q^{2} \\
1 / Q^{4}(1-x)
\end{array}\right.
$$

while for $v W_{L}$ we will only keep terms contributing in order $1 / Q^{0}$ (i.e., to σ_{L} / σ_{T} in order $1 / Q^{2}$)

$$
\begin{equation*}
v W_{L} \sim(1-x)^{3} . \tag{3.15}
\end{equation*}
$$

These are

$$
\begin{align*}
& A^{+} \underset{\sim}{\sim}{ }^{\sim} a^{+}\left(1^{-}-x\right)+\frac{b^{+}}{Q}+\frac{C^{+}}{\left[Q^{2}(1-x)\right]}+\frac{d^{+}}{Q^{3}(1-x)^{2}}+\frac{e^{+}}{Q^{4}(1-x)^{3}} \\
& A^{-} \stackrel{x \rightarrow 1}{\sim} a^{-}(1-x) Q . \tag{3.16}
\end{align*}
$$

Final state phase space provides one power of (1-x) so that upon computing $(1-x)|A|^{2}$ we obtain

$$
\begin{aligned}
& v W_{2} \stackrel{x \rightarrow 1}{\alpha} a^{+2}(1-x)^{3}+\ldots \\
& v W_{L} x_{\alpha}^{1} a^{-2}(1-x)^{3}
\end{aligned}
$$

in agreement with (2.13) and (2.14).

The results for A^{+}are easily summarized. First, the possible power suppressed corrections, with leading $X_{B j} \rightarrow \mathbf{1}$ behavior listed in (3.16), to the dominant a^{+}term do not arise; i.e., $\mathrm{b}^{+}=\mathrm{c}^{+}=\mathrm{d}^{+}=\mathrm{e}^{+}=0$. There are numerous terms contributing to A^{+}of order

$$
\begin{equation*}
A_{\text {non-leading }}^{+} \stackrel{x \rightarrow 1}{\sim} \frac{(1-x)}{Q}, \frac{1}{Q^{2}}, \ldots \tag{4.1}
\end{equation*}
$$

but those are not as important in the strict $X_{B j} \rightarrow 1$ limit of UW_{2} as the various $1 / Q^{2}$ and $1 / Q^{4}$ corrections arising purely from the expansion of the "-" - component momentum conservation phase space delta function. We refer to this as the absence of leading higher twist "matrix element" contributions in the $x_{B j} \rightarrow 1$ limit. This absence is related to the extra power of (1-x) in A^{-}relative to the pion calculation, compare (3.16) to (2.10), which in turn arises from the non-zero helicity of the incident photon. However, terms of the form (4.1) will be computed later and will be found to be phenomenologically more important than the terms we consider now.

In the gauge (2.7) only a very few diagrams contribute to the a^{+} term of Eq. (3.16). The Feyman graph numerator results for the non-zero γ-matrix configurations are listed in Table V, for the non-flip helicity configuration $+-+\rightarrow++$.

We have defined the variables

$$
\begin{equation*}
T=\frac{2_{T}^{2}+m^{2}}{Z} \quad U=\frac{L_{T}^{2}+m^{2}}{(1-z)} \quad S=U+T \tag{4.2}
\end{equation*}
$$

Only diagrams $2 A, 5 A$ and $4 A$ of Fig. 4 contribute as $x \rightarrow 1$. The corresponding denominator products are

$$
\begin{align*}
& \left(d_{2 A}\right)=\frac{(1-x)^{4}}{\beta^{2}(\alpha+\beta) U S^{3}} \\
& \left(d_{5 A}\right)=\frac{(1-x)^{4}}{\alpha^{2}(\alpha+\beta) T S^{3}} \tag{4.3}\\
& \left(d_{4 A}\right)=\frac{(1-x)^{4}}{\alpha \beta(1-\beta) U T^{2} S} .
\end{align*}
$$

The moving coupling constants appearing in the various diagrams are evaluated at the average off-shell momentum transfers carried by the two gluons. The absolute values of these momenta transfers are

2A: $\frac{(\alpha+\beta) S}{(1-x)}, \frac{\beta U}{(1-x)}$
5A: $\frac{(\alpha+\beta) S}{(1-x)}, \frac{\alpha T}{(1-x)}$
4A: $\frac{\alpha T}{(1-x)}, \frac{\beta U}{(1-x)}$.
Combining Table V, Eqs. (3.11), (3.13), (4.3) and (4.4) and using $\alpha \leftrightarrow$ β symmetry of ϕ, we obtain

$$
\begin{array}{r}
A_{+-+}^{+},+-+\underset{\sim}{x \rightarrow 1}-8 p^{+}(1-x)\left(\frac{1}{3} C_{F}\right)(4 \pi)^{2} \frac{\hat{\ell} 1}{z(1-z)} \\
{\left[2 I_{A}\left(\frac{\gamma A S \cdot \beta A U}{U S^{2}}+\frac{\gamma A S \cdot \beta A T}{T S^{2}}\right)-I_{B} \frac{\beta B T \cdot \alpha B U}{U T S}\right]} \tag{4.5}
\end{array}
$$

$$
\equiv A \hat{\ell} \mathrm{~L} .
$$

We have introduced the notation (defining $\gamma \equiv \alpha+\beta$)

$$
\begin{align*}
& \gamma A S \equiv \alpha_{S}\left[\langle\alpha+\beta\rangle{ }_{I_{A}} \cdot S /(1-x)\right] \\
& \alpha B U \equiv \alpha_{S}\left[\langle\alpha\rangle{ }_{I_{B}} \cdot U /(1-x)\right] \tag{4.6}
\end{align*}
$$

$$
\beta C U \equiv \alpha_{S}\left[\langle\beta\rangle{ }_{I_{C}} \cdot v /(1-x)\right]
$$

etc.
At this point note that A vanishes if the weak binding wave function (3.6), which implies $I_{B}=2 I_{A}$, is chosen and if the α_{s} 's are taken to be constant.

The leading helicity flip contributions are easily summarized. First, the upper line may not flip without losing a power of (1-x), see Eq. (2.13). Helicity flip for the middle line leads to the replacement in equation (4.5) of $\hat{\ell}$ by ($-m$). Helicity flip for the lower line leads to $V \rightarrow-m$. Helicity flip for both lines results in \hat{Q} $\mathrm{L} \rightarrow \mathrm{m}^{2}$.

The results for initial helicity configuration ++- are obtained from the above by $T \leftrightarrow U, \alpha \leftrightarrow \beta$, and $\overrightarrow{\mathrm{I}}_{T} \rightarrow-\vec{X}_{T}$ interchange which leaves A in (4.5) unchanged. The initial -++ helicity configuration does not contribute to the leading $x \rightarrow 1$ behavior.

For the spin wave function (3.4) we thus obtain the final state spin amplitudes:

$$
\begin{align*}
& A_{++-}^{+} \sim \frac{1}{\sqrt{6}}\left(c A_{++-,++-}^{+}+d A_{+-+,++-}^{+}\right)=\frac{1}{\sqrt{6}} \mathrm{~A}\left(\mathrm{Cl} \mathrm{~L}+\mathrm{dm}^{2}\right) \\
& A_{+-+}^{+} \sim \frac{1}{\sqrt{6}}\left(c \cdot A_{++-,+-+}^{+}+d A_{+-+,+-+}^{+}\right)=\frac{1}{\sqrt{6}} A\left(\mathrm{~cm}^{2}+d Q L\right) \\
& A_{+--}^{+} \sim \frac{1}{\sqrt{6}}\left(\mathrm{c} \mathrm{~A}_{++-,+--}^{+}+\mathrm{d} \mathrm{~A}_{+-+,+--}^{+}\right)=\frac{1}{\sqrt{6}} \mathrm{~A}(\mathrm{cml} \hat{\mathrm{C}}-\mathrm{dm} \hat{\ell}) \tag{4.7}\\
& A_{+++}^{+} \sim \frac{1}{\sqrt{6}}\left(c A_{++-,+++}^{+}+d A_{+-+,+++}^{+}\right)=\frac{1}{\sqrt{6}} \mathrm{~A}(\mathrm{~cm} \ell-\mathrm{dmL})
\end{align*}
$$

leading to

$$
\begin{align*}
|M|^{2} & \equiv\left|A_{++-}^{+}\right|^{2}+\left|A_{+-+}^{+}\right|^{2}+\left|A_{+--}^{+}\right|^{2}+\left|A_{+++}^{+}\right|^{2} \\
& =A^{2} \frac{\left(c^{2}+d^{2}\right)}{6}\left(\ell_{T}^{2}+m^{2}\right)\left(L_{T}^{2}+m^{2}\right) . \tag{4.8}
\end{align*}
$$

For a proton, (3.4) implies that for each struck u quark (of + helicity)

$$
\begin{equation*}
c=2, d=-1 \tag{4.9a}
\end{equation*}
$$

while for the struck d quark (of + helicity)

$$
\begin{equation*}
c=-1, d=-1 \tag{4.9b}
\end{equation*}
$$

The above does not include the charge squared factor. Using the weightings (4.9) we obtain (after including the charge factors)

$$
\begin{equation*}
|M|_{\text {proton }}^{2}=|A|^{2}\left(\frac{7}{9}\right)\left(\ell_{T}^{2}+m^{2}\right)\left(L_{T}^{2}+m^{2}\right) . \tag{4.10}
\end{equation*}
$$

For a neutron target the $7 / 9$ is replaced by a (3/9) yielding the well-known $3 / 7$ ratio for ($\mathrm{WW}_{2}^{\mathrm{LT}}$ neutron $/\left(\mathrm{WW}_{2}^{\mathrm{LT}}\right)_{\text {proton }}$ [12].

Note that the helicity filip terms in net, merely change the helicity-non-flip factor, $\ell_{T}^{2} L_{T}^{2}$, which would have appeared in (4.10) to $\left(e_{T}^{2}+m^{2}\right)\left(L_{T}^{2}+m^{2}\right)$. This is, of course, much simpler than what happens in the pion case. This simplicity is quickly traced to the fact that the line struck by the photon cannot flip helicity in the proton case (without extra (1-x) suppression) whereas it may in the pion case.

The final state phase space factor for the proton 3-quark Fock state is dr ${ }^{(3)}$ given in (1.9). We have

$$
d T^{(3)}=\sum_{\begin{array}{c}
\text { final } \\
\text { helicities }
\end{array}} \frac{d^{2} \ell_{T} d^{2} L_{T}(1-x) d z d x}{\left[16 T 1^{3}\right]^{2}} 2 \pi \delta\left(2 v-\frac{S}{1-x}-\frac{\left(\vec{k}_{T}+\vec{q}_{T}\right)^{2}+m^{2}}{x}\right) .
$$

As before we will expand the δ function, this time up to order $1 / Q^{4}$. Because the matrix element $|M|^{2}$ is even under both ${\overrightarrow{l_{T}}}_{T} \rightarrow-\vec{z}_{T}$ and $\vec{L}_{T} \rightarrow-\vec{L}_{T}$ we can use the simplified form

$$
\begin{align*}
& d \text { (3) }{ }^{\mathrm{XBj}_{\sim}^{\rightarrow 1}} \underset{\sim}{\frac{\pi}{v}} \sum_{\substack{\text { final } \\
\text { felicity }}} \int \frac{d x d z(1-x) \pi d L_{\mathrm{T}}^{2} \pi d \ell_{\mathrm{T}}^{2}}{\left[16 \pi^{3}\right]^{2}} \\
& \text { states } \\
& \left\{\delta\left(x-x_{B j}\right)-\frac{S}{Q^{2}(1-x)} \delta^{\prime}\left(x-x_{B j}\right)+\left[\frac{L_{T}^{2}+Q_{T}^{2}}{Q^{2}}+\frac{1}{2} \frac{S^{2}}{Q^{4}(1-x)^{2}}\right] \delta^{\prime \prime}\left(x-x_{B j}\right)\right. \\
& -\frac{\left(L_{T}^{2}+\ell_{T}^{2}\right) S}{Q^{4}(1-x)} \delta^{\prime \prime \prime}\left(x-x_{B j}\right)+\frac{1}{4} \frac{\left(L_{T}^{4}+\ell_{T}^{4}+4 L_{T}^{2} \ell_{T}^{2}\right)}{Q^{4}} \delta^{\prime \prime \prime \prime}\left(x-x_{B j}\right) \\
& \left.+0\left(\frac{1}{Q^{6}}\right)\right\} \tag{4.12}
\end{align*}
$$

We finally obtain $\cup W_{2}$ as

$$
\begin{equation*}
v W_{2}=\frac{v}{4 \pi} \int d r^{(3)}\left|\frac{\mathrm{A}^{+}}{\mathrm{p}^{+}}\right|^{2} . \tag{4.13}
\end{equation*}
$$

First let us examine the x integral. The important x dependence in (4.13) is a series of terms of the form

$$
\begin{align*}
I\left(x_{B j}\right) \equiv & \int d x(1-x)^{3} \alpha_{s}\left(\frac{C_{1}}{(1-x)}\right) \alpha_{s}\left(\frac{C_{2}}{1-x}\right) \alpha_{s}\left(\frac{C_{3}}{1-x}\right) \alpha_{s}\left(\frac{C_{4}}{1-x}\right) \tag{4.14}\\
& \left\{\delta\left(x-x_{B j}\right)-\frac{S}{Q^{2}(1-x)} \delta^{\prime}\left(x-x_{B j}\right)+\left[\frac{L_{T}^{2}+Q_{T}^{2}}{Q^{2}}+\frac{S^{2}}{Q^{4}(1-x)^{2}}\right] \delta^{\prime \prime}\left(x-x_{B j}\right)\right. \\
& -\frac{\left(L^{2} T^{+} \frac{2}{T}\right) S}{Q^{4}(1-x)} \delta^{\prime \prime \prime}\left(x-x_{B j}\right)+\frac{1}{4}\left(\frac{\left(L_{T}^{4}+4 L \frac{2}{T} \ell_{T}^{2}+Q_{T}^{4}\right)}{Q^{4}} \delta^{\prime \prime \prime \prime \prime}\left(x-x_{B j}\right)\right\} .
\end{align*}
$$

We note that for

$$
\begin{equation*}
\alpha_{s} \equiv \frac{a}{\ln \left(\frac{c}{1-x}\right)} ; \quad a=\frac{4 \pi}{11-\frac{2}{3} \eta_{F}} \tag{4.15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\alpha_{\mathrm{s}}^{\prime} \equiv \frac{\mathrm{d} \alpha}{\mathrm{dx}}=-\frac{\alpha_{\mathrm{s}}^{2}}{\mathrm{a}(1-x)} . \tag{4.16}
\end{equation*}
$$

The $1 / Q^{2}$ correction terms which involve $\int(1-x)^{2} \delta^{\prime}\left(x-x_{B j}\right)$ and $\int(1-x)^{3}$ $\delta^{\prime \prime}\left(x-x_{B j}\right)$ receive their leading contribution by differentiating the explicit (1-x) power the maximal number of times. - Contributions obtained by differentiating one of the α_{s}^{\prime} s are suppressed by a single α_{s} relative to these leading contributions. In contrast, the $1 / Q^{4}$ correction terms involve integrals of the form

$$
f(1-x) \delta^{\prime \prime}\left(x-x_{B j}\right) ; \quad \int(1-x)^{2} \delta^{\prime \prime \prime}\left(x-x_{B j}\right) \text { or } \int(1-x)^{3} \quad \delta^{\prime \prime \prime \prime}\left(x-x_{B j}\right)
$$

which would be zero unless one of the δ function derivatives is partially integrated against a moving coupling, α_{s}. Thus the leading $1 / Q^{4}$ term will involve an integral over 5 powers of α_{s}, versus four. Defining

$$
\begin{equation*}
\Sigma \alpha_{s}=\sum_{i=1}^{4} \alpha_{s}\left(\frac{c_{i}}{1-x}\right), \Pi \alpha_{s}=\prod_{i=1}^{4} \alpha_{s}\left(\frac{c_{i}}{1-x}\right) \tag{4.17}
\end{equation*}
$$

Eq. (4.14) reduces to

$$
\begin{align*}
& I\left(x_{B j}\right)=\left.\left(1-x_{B j}\right)^{3} \Pi_{S} \alpha_{s}\right|_{x=x_{B j}} \\
& \quad+\left.\frac{\left(1-x_{B j}\right)}{Q^{2}}\left[6\left(L_{T}^{2}+\ell_{T}^{2}\right)-2 S\right] \Pi \alpha_{s}\right|_{x=x_{B j}} \tag{4.18}\\
& \quad+\left.\frac{1}{a Q^{4}\left(1-x_{B j}\right)}\left[\frac{S^{2}}{2}-2\left(L_{T}^{2}+\ell_{T}^{2}\right) S+\frac{6\left(L_{T}^{4}+\ell_{T}^{4}+4 L_{T}^{2} \ell_{T}^{2}\right)}{4}\right]\left(\Pi \alpha_{s} \cdot \Sigma \alpha_{s}\right)\right|_{x=x_{B j}}
\end{align*}
$$

Writing the leading power law contributions as

$$
u W_{2} \stackrel{X_{B j}}{\sim} S_{2}\left(1-x_{B j}\right)^{3}+\frac{T_{2}}{Q^{2}}\left(1-x_{B j}\right)+\frac{U_{2}}{Q^{4}\left(1-x_{B j}\right)}+\cdots
$$

We obtain the following explicit expression for $s_{2}^{\text {proton }}$ from (4.13), (4.5), (4.10) and (4.12):

$$
\begin{align*}
S_{2}^{P-}= & 2^{4}\left(\frac{7}{9}\right)\left(\frac{1}{3} C_{F}\right)^{2} \int_{0}^{1} d z \frac{\int_{\frac{m^{2}}{2}}^{\infty} T d T \int_{\frac{m^{2}}{1-z} U d U}^{\infty}}{} \tag{4.20}\\
& {\left[2 I_{A}\left(\frac{y A S \beta A U}{U S^{2}}+\frac{y A S}{T S^{2}}\right)-I_{B} \frac{\beta B T \alpha B U}{U T S}\right]^{2} . }
\end{align*}
$$

The expression for T_{2} is easily obtained, following the procedure just outlined in (4.18) by multiplying the integrand of (4.20) by

$$
\left[6\left\{U(1-z)+T z-2 m^{2}\right\}-2 S\right]
$$

The expression for U_{2} is similarly obtained by following the procedure of (4.18). It is clear that \dot{U}_{2} vanishes unless we employ moving coupling constants. That this is also true of T_{2} is less obvious; nonetheless it can be verified by analytic calculation that T_{2} is indeed identically zero for constants α_{s}. Thus both T_{2} and U_{2} are sensitive to the manner in which we have approximated higher order corrections to our tree graphs through evaluating the moving coupling constants as specified in Eq. (2.26). For constant α_{s} the leading power law corrections to $U W_{2}$ behave as $(1-x)^{2} / Q^{2}$ and $1 / Q^{4}$, thus establishing contact with the results of Ref. [13]; see Appendix B for further comparison.

Our complete results are easily summarized. First we note that the ratios T_{2} / S_{2} and U_{2} / S_{2} are very insensitive to the wave function
choice. Only the normalization of S_{2} exhibits any sensitivity. For a given choice of m the S_{2} normalization values of $x=10$ are in the ratio $S_{2}\left[\right.$ Eq. (3.5)]: $S_{2}\left[\right.$ Eq. (3.6)]: $S_{2}[$ Eq. (3.8)] $=.147: .022: .051$
i.e., the normalization changes by a factor of 7 for different wave function choices. This sensitivity is due to the tendency for cancellation between the I_{A} and I_{B} terms of (4.20$)$. Indeed for the wave function (3.6) S_{2} is identically zero for constant α_{s} ! We present results for the proton, with wave function choice (3.6), in Fig. 5. There we plot the m independent [at fixed x, see (2.22)] quantity $m^{4} S_{2}^{\text {proton }}$ as a function of x. The results for T_{2} / S_{2} and U_{2} / S_{2} show that they vary slowly with $x_{B j}$, i.e., with x.

$$
\begin{align*}
& \frac{T_{2}}{S_{2}}=-m^{2} \begin{cases}7 & x=10 \\
4 & x=400\end{cases} \tag{4.22}\\
& \frac{U_{2}}{S_{2}}=m^{4} \begin{cases}70 & x=10 \\
24 & x=400\end{cases}
\end{align*}
$$

Results for a neutron target are easily summarized. We find $S_{2}^{n} / S_{2}^{p}=$ $3 / 7$ as obtained in [12] while $\mathrm{T}_{2} / \mathrm{S}_{2}$ and $\mathrm{U}_{2} / \mathrm{S}_{2}$ are target independent. The $3 / 7$ ratio above is, of course, a direct consequence of the fact that only struck quarks with + helicity before and after photon absorption contribute to S_{2}, See (4.7) - (4.9).

In order to determine an approximate m^{2} value we (as in the pion case) look at the overall normalization of the leading twist contribution, $S_{2}^{\text {proton. Data at }} X_{B j}>.9$ is not available. We adopt the procedure of extrapolating the plots of Fig. 5 to small x and find that the approximate experimental result

$$
\begin{equation*}
W_{2}^{\text {proton }} \stackrel{x_{B j} \sim \sim_{\sim}^{.7}}{\sim} .5\left(1-x_{B j}\right)^{3} \tag{4.24}
\end{equation*}
$$

requires

$$
\begin{equation*}
\mathrm{m}^{2} \leq .006 \mathrm{GeV}^{2}, \tag{4.25}
\end{equation*}
$$

where $\Lambda_{\text {mom }}^{2}=.01 \mathrm{GeV}^{2}$ has again been employed. We note that this is roughly the same size for m^{2} as required in the pion case, Eq. (2.24). In fact for future discussion we will employ $\mathrm{m}^{2}=.01 \mathrm{GeV}^{2}$. Once again we calculate $\left\langle k_{T}^{2}\right\rangle$ as a function of m^{2}. For the proton we obtain

$$
\left\langle k_{T}^{2}\right\rangle= \begin{cases}2.8 m^{2} & x=10 \tag{4.26}\\ 3.9 m^{2} & x=400\end{cases}
$$

which, for $m^{2} \leq .01$, yields a very reasonable intrinsic transverse momentum.

It should be apparent from (4.22), (4.23) and (4.19) that none of the leading corrections to $\mathrm{vw}_{2} \mathrm{proton}$ are very sizeable for the value m^{2} $\leq .01$ determined from overall normalization. In a later section we will discuss nonleading corrections to WW_{2} of the form given below by V_{2} and X_{2} :

$$
\begin{align*}
& \stackrel{x}{W_{2}}{ }_{B j}^{\sim} \\
\sim & S_{2}\left(1-x_{B j}\right)^{3}+\frac{T_{2}}{Q^{2}}\left(1-x_{B j}\right)+\frac{U_{2}}{Q^{4}\left(1-x_{B j}\right)} \tag{4.27}\\
& +V_{2}\left(1-x_{B j}\right)^{4}+x_{2} \frac{\left(1-x_{B j}\right)^{2}}{Q^{2}}+\ldots
\end{align*}
$$

These corrections receive contributions both from explicit matrix elements and from kinematical terms generated through δ function and other expansion corrections to the leading S_{2} term. In addition neither V_{2} nor X_{2} vanishes for constant α_{5}.

$v W_{L}$

First, however, let us turn to a discussion of the longitudinal structure function $U W_{L}$. For spin $1 / 2$ quarks $\cup \vec{W}_{L}$ scales. The determination of $\cup W_{L}$ requires computing the amplitude A^{-}. In this case, as $\mathrm{X}_{\mathrm{Bj}} \rightarrow 1$ all three initial helicity configurations - +-+, ++- and -++and all 8 final helicity configurations contribute to the behavior $V W_{L}{ }_{\sim}^{x_{B j} \rightarrow 1} S_{L}\left(1-x_{B j}\right)^{3}$. In addition diagram types $1 A, 2 A, 3 A, 4 A, 5 A$ and 6 A all make contributions in axial gauge and most receive contributions from several γ-matrix configurations. (Note that in axial gauge B and C type photon attachments, see Fig. 4, do not contribute to the leading $X_{B j} \rightarrow 1$ behavior.) It is neither useful nor practical to tabulate in detail all the contributions. Instead we confine ourselves to writing out the amplitudes for $+-+\rightarrow+-+,++-\rightarrow++-$ and -++ $\rightarrow-++$, and then illustrate how to combine these to obtain $\cup W_{L}$. We use the short-hand notation for the α_{s} 's given in (4.6).

The structures of the non-flip amplitudes for the three possible helicity states are

$$
\begin{equation*}
A_{+-+,+++}^{-}=A Q \hat{\ell}+B q \vee \wedge \hat{l} \tag{5.1}
\end{equation*}
$$

with $A_{++-,++-}^{-}$obtained by $\vec{l}_{T} \leftrightarrow \vec{l}_{T}, z \leftrightarrow(1-z), \alpha \leftrightarrow \beta$ from $\bar{A}_{+-+,+++}$, and

$$
\begin{equation*}
A_{-++,-++}^{-}=\bar{A} \hat{\wedge} \ell \ell+\bar{C} \hat{q} \mathrm{~L} . \tag{5.2}
\end{equation*}
$$

We define

$$
\begin{align*}
& A=\frac{4(1-x)(4 \pi)^{2}}{p^{+} z(1-z)}\left[(1-z) E+L_{T}^{2} H\right] \\
& B=\frac{4(1-x)(4 \pi)^{2}}{p^{+} z(1-z)} F \tag{5.3}
\end{align*}
$$

and obtain (charge and color factors are omitted)

$$
\begin{align*}
E \stackrel{X \rightarrow 1}{\sim} & \left\{\frac{2 I_{C}}{S U} \beta C U \gamma C S+\frac{I_{A}}{S U} \beta A U \gamma A S\right. \\
& -\frac{I_{C}}{S^{2}} \beta C U \gamma C S+\frac{I_{B}}{T U} \beta B U \alpha B T \tag{5.4a}
\end{align*}
$$

$$
-\frac{I_{B}}{T S} \beta B U \alpha B T+\frac{2 I_{D}}{T U} \beta D U \alpha D T
$$

$$
\left.+\frac{2 I_{A}}{T S} \beta A T \gamma A S+\frac{I_{C} U}{T S^{2}} \beta C T \gamma C S+\frac{I_{B}}{T S} \beta B T \alpha B U\right\}
$$

$$
\begin{equation*}
F \stackrel{x \rightarrow 1_{2}}{\sim} \frac{I_{C}}{U S^{2}} \beta C U \gamma C S+\frac{I_{A}}{U S^{2}} \beta A U \gamma A S \tag{5.4b}
\end{equation*}
$$

$$
\left.+\frac{I_{A}}{T S^{2}} \beta A T \gamma A S-\frac{I_{B}}{T U S} \beta B T \alpha B U\right\}
$$

$$
H \stackrel{x \rightarrow 1}{\sim} \frac{I}{A}_{\frac{U^{2} S}{}}^{U^{2} A U} \gamma A S-\frac{I_{C}}{U S^{2}} \beta C U \gamma C S
$$

$$
-\frac{2 I_{A}}{U S^{2}} \beta A U \gamma A S-\frac{I_{B}}{U^{2} T} \alpha B T \beta B U
$$

$$
+\frac{I_{B}}{U T S} \alpha B T \beta B U-\frac{I_{C}}{T S^{2}} \beta C T \gamma C S
$$

$$
\begin{equation*}
\left.-\frac{2 I_{A}}{T S^{2}} \beta A T \gamma A S+\frac{I_{B}}{S T U} \beta B T \alpha B U\right\} \tag{5.4c}
\end{equation*}
$$

For the -++ case we define

$$
\begin{align*}
& \bar{A}=\frac{4(1-x)(4 \pi)^{2}}{p^{+} z(1-z)}\left[(1-z) \bar{E}+L_{T}^{2} \bar{H}\right] \\
& \bar{C}=\frac{4(1-x)(4 \pi)^{2}}{p^{+} z(1-z)}\left[z \bar{G}+e_{T}^{2} \bar{F}\right] \tag{5.5}
\end{align*}
$$

and obtain

$$
\begin{align*}
\bar{E}= & \left\{\frac{2 I_{C}}{S U} \beta C U \gamma C S+\frac{I_{A}}{S U} \beta A U \gamma A S\right. \\
& -\frac{I_{C}}{S^{2}} \beta C U \gamma C S+\frac{I_{B}}{T U} \beta B U \alpha B T \\
& -\frac{I_{B}}{T S} \beta B U \alpha B T+\frac{2 I_{D}}{T U} \beta D U \alpha D T \tag{5.6a}\\
& -\frac{2 I_{C}}{T S} \beta C T \gamma C S+\frac{I_{C} U}{T S^{2}} \beta C T \gamma C S \\
& \left.+\frac{I_{B}}{T S} \alpha B U \beta B T\right\} \\
\bar{F}= & \left\{\frac{I_{C}}{U S^{2}} \beta C U \gamma C S+\frac{I_{B}}{U T S} \beta B U \alpha B T\right. \\
& +\frac{I_{A}}{T^{2} S} \beta A T \gamma A S-\frac{I_{C}}{\overline{T S}} \beta C T \gamma C S \tag{5.6b}\\
& \left.-\frac{I^{2}}{U T^{2}} \beta B T \alpha B U-\frac{I_{B}}{U T S} \beta B T \alpha B U\right\} \\
\bar{G}= & -\bar{E}(T \leftrightarrow U) \tag{5.6c}\\
\bar{H}= & -\bar{F}(T \leftrightarrow U) . \tag{5.6d}
\end{align*}
$$

The full result for W_{L} is obtained, in this helicity non-flip case, by combining the absolute squares of the amplitudes for the various helicity configurations and charge choices according to the wave function weighting (3.4) and using (1.4) and (1.10) to obtain

$$
\begin{align*}
& v W_{L}=\frac{Q^{2}}{4 v} \int d r^{(3)}\left(p^{+}\right)^{2} \frac{\left|A^{-}\right|^{2}}{4 \pi} \tag{5.7}\\
& \stackrel{x_{B j}}{\sim}{ }^{2} S_{L}\left(1-x_{B j}\right)^{3}
\end{align*}
$$

where, for S_{L}, we keep only the leading term in dT ${ }^{(3)}$ of Eq. (4.12).
The result for $U W_{L}^{p r o t o n}$ obtained by keeping only these helicity non-flip terms was given in Ref. [3] for the wave function (3.8). Helicity flip terms, which are explicitly proportional to the mass m, are important, however, for all χ values we have considerd. They result in a moderate increase in the value of S_{L}^{p}. For instance for the wave function (3.6) we obtain (in units of GeV^{4})

$$
m^{2} S_{L}^{p}=\left\{\begin{array}{lll}
\text { Non-Flip } & \text { All } & \\
3.310^{-2} & 8.310^{-2} & x=10 \tag{5.8}\\
3.710^{-3} & 1.010^{-2} & x=400
\end{array}\right.
$$

Our complete answer will include the helicity flip terms and employ the wave function (3.6). We have investigated the sensitivity of the ratio $S_{L}^{p} / m^{2} S_{2}^{p}$ to the wave function choice in the helicity non-flip approximation. We find only a mild sensitivity throughout the entire χ range. For exampie

> Eq. (3.8)

Eq. (3.6)

$$
\frac{S_{L}^{p}}{m^{2} S_{2}^{p}} \simeq\left\{\begin{array}{lll}
3.610^{4} & 1.510^{4} & x=10 \tag{5.9}\\
4.510^{4} & 7.910^{4} & x=400
\end{array}\right.
$$

The complexity of the full result for W_{L} (obtained by using REDUCE) [14] is apparent in the "invariant amplitude" expansions of the amplitudes A^{-}for fixed final helicity states (the coherent sum
over initial helicity states having been performed). Each helicity ampiitude contains terms proportional to various vector quantities such as \hat{q}, X, \hat{L}_{2}, etc. as $i n(5.1)$ and (5.2). The coefficients of the vector quantities are the "invariant ampiitudes" - there is one invariant amplitude for each vector structure which appears in a given helicity amplitude. We list the vector structures which appear for each amplitude in leading order as $X_{B j} \rightarrow 1$:

$$
\begin{aligned}
& \left.\begin{array}{c}
- \\
A_{+++}
\end{array} \quad \begin{array}{lllll}
V & \wedge & V & \wedge & V \\
L & \ell, & \ell & L
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& A_{+--}^{-} \propto \begin{array}{r}
V \\
q
\end{array}\left(\hat{\lambda} \hat{L}, \hat{L}^{2}, \hat{Q}^{2}\right) \tag{5.10}\\
& \left.A_{+-+}^{-} \propto \begin{array}{r}
V
\end{array} \hat{(\hat{\ell},} \hat{L}, \hat{L}^{2} \quad \ell, \hat{\ell}^{2} \mathrm{~L}\right) \\
& \left.\begin{array}{ccc}
\\
A_{-++} & \wedge & V \\
q & (L, & V
\end{array}\right)
\end{align*}
$$

$$
\begin{aligned}
& A_{--+}^{-} \propto \hat{q} \cdot\left(1, \begin{array}{lll}
\wedge & \vee & \wedge \\
\ell & \ell & \ell \\
\hline
\end{array}\right) \\
& A_{---} \propto \hat{q} \cdot(\hat{L}, \hat{\ell}) .
\end{aligned}
$$

$=-$

The invariant amplitudes multiplying these vector structures are, in general, lengthy expressions of which (5.4) and (5.6) are zero mass reductions. They are, of course, functions of T, U and Z at fixed m and $X_{B j}$ We compute the full vW from the squares of the above amplitudes using (5.7). We plot $m^{2} S_{L}^{p}$ as a function of x in Fig. 5, as well as the ratio $S_{L}^{P} / m^{2} S_{2}^{P}$. We see that at $x \leq 10$, corresponding for
$\Lambda_{\text {mom }}=.1 \mathrm{GeV}$ and $m=.1 \mathrm{GeV}$ to $\mathrm{x}_{\mathrm{Bj}} \leq .9$, this ratio is slowly varying with value

$$
\begin{equation*}
S_{L}^{p} / m^{2} S_{2}^{p} \sim 4 \times 10^{4} \tag{5.11}
\end{equation*}
$$

For larger $x, x_{B j}$ values the ratio increases.
The result corresponding to (5.11) for a neutron target is easily summarized as

$$
\begin{equation*}
\frac{S_{L}^{n}}{m^{2} S_{2}^{n}} \approx 2 \frac{S_{L}^{p}}{m^{2} S_{2}^{p}} \tag{5.12}
\end{equation*}
$$

(good to 3% over the range $x=10$ to 400) or, using the result

$$
\begin{equation*}
\frac{s_{2}^{n}}{s_{2}^{p}}=\frac{3}{7} \tag{5.13}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{S_{L}^{n}}{S_{L}^{p}} \cong \frac{6}{7} \tag{5.14}
\end{equation*}
$$

While (5.13) is an exact result, following from the fact that the quark struck by the deep inelastic photon must have + helicity (for a + helicity proton) both before and after photon absorption in order to contribute to S_{2}, (5.14) is not an exact result. Both + and helicity quarks contribute to S_{L} and with different amplitudes. In addition there are leading contributions to S_{L} in which an initially negative helicity quark is struck by the photon and fips helicity so as to contribute to the same final state helicity amplitude as an initially positive helicity struck quark. This results in inter-
ference between terms arising from initial quarks of different helicities.

The value (5.11) corresponds to (see Eq. 1.5)

$$
\begin{equation*}
\frac{\sigma_{L}}{\sigma_{T}}{ }^{x_{B j}}=.9 \quad 1.6 \times 10^{5} \frac{\frac{m}{}^{2}}{Q^{2}} \tag{5.15}
\end{equation*}
$$

implying that very large Q^{2} values are required before an asymptotic series for this ratio becomes appropriate. We do not see any justification in the large $x_{B j}$ region for the usual statement that a small < $k_{T}^{2}>$ value guarantees a small value for the $1 / Q^{2}$ coefficient in $\sigma_{L} / \sigma_{\mathrm{T}}$. While the scale of this $1 / Q^{2}$ coefficient is set by the same quantity m^{2}, the complexity of the proton wave function, the tendency \therefore for cancellation in the expression (4.5) leading to $v W_{2}$, and to a lesser extent the slow convergence of the integrals for $v W_{L}$ (which, except for α_{S} variation would be logarithimically divergent) lead to the very large numerical multiplier of (5.15).

Section VI.

$$
\left(1-x_{B j}\right)^{4} \text { and }\left(1-x_{B j}\right)^{2} / Q^{2} \text { Corrections to } \cup W_{2}
$$

To obtain the corrections V_{2} and X_{2} to the leading terms of $\cup W_{2}$, see Eq. (4.27), requires a major effort involving REDUCE [14]. Our procedure is to isolate terms in A^{+}which behave as

$$
\begin{equation*}
A^{+} \underset{\sim}{x}{ }^{2}(1-x)+f^{+}(1-x)^{2}+g^{+} \frac{(1-x)}{Q}+\frac{h^{+}}{Q^{2}} \tag{6.1}
\end{equation*}
$$

Here a^{+}is the leading term already discussed and we recall that the possible "leading" matrix element terms b^{+}through e^{+}of (3.18) are found to be zero.

Contributions to V_{2} arise through $a^{+}-f^{+}$interference in $\left|A^{+}\right|^{2}$ [recall phase space provides an additional (1-x)] as well as through trivial corrections to the $\left|a^{+}\right|^{2}$ leading term arising from the full x dependence in $\mathrm{dI}^{(3)}$ of Eq. (4.11). The same diagram and $y^{(2)}$-matrix configurations that contribute to a^{+}(see Table V) contain terms of the f^{+}type as a result of keeping non-leading corrections in (1-x) to the numerator and denominator algebra. However, there are also many new configurations of the A type that contribute to f^{+}. (In axial gauge, B and C type diagrams do not contribute to f^{+}.) Since we are concerned with an interference $a^{+}-f^{+}$contribution, only the same final helicity configurations (+-+, ++-, +--, +++) that contribute to the leading term a^{+}need be retained for f^{+}. The structure of f^{+}is revealed by the vector structures which appear

$$
\begin{align*}
& f_{+-+}^{+} \propto\left(L^{2} \quad \ell^{2}, \quad \hat{L} \ell, \quad L \hat{\ell}, 1\right) \\
& f_{++-}^{+} \propto\left(\hat{L}^{2} \ell^{2}, \hat{L} \ell, \quad \mathrm{~L} \ell, 1\right) \tag{6.2}\\
& f_{+-}^{+} \quad \approx\left(\begin{array}{cccccc}
\hat{L^{2}} & \ell, & \vee & \hat{l} & \hat{l}^{2}, & \hat{L}, \\
\ell
\end{array}\right) \\
& f_{+++}^{+} \propto\left(\begin{array}{ccccc}
V & \wedge & \wedge & V & V \\
L^{2} & \ell, & L & \ell^{2}, & L, \\
\ell
\end{array}\right) .
\end{align*}
$$

Each vector structure is multiplied by an associated invariant amplitude. In general these invariant amplitudes are lengthy expressions. For the interference contribution V_{2} we compute $a^{+} f^{+}{ }^{+}+$ $a^{+}{ }^{*} f^{+}$summed over final helicity states and integrated against the leading term in $d \Gamma^{(3)}$. We combine this with the trivial corrections to the $a^{+} 2$ term due to non-leading corrections to $d \Gamma^{(3)}$ to obtain the full result for V_{2}. As for T_{2} and V_{2} we find that the ratio V_{2} / S_{2} is a-slowly varying function of x. We find, for the wave function (3.6),

$$
\frac{v_{2}^{p}}{s_{2}^{p}}= \begin{cases}-96 & x=10 \tag{6.3}\\ -168 & x=400\end{cases}
$$

Unlike T_{2} / S_{2} and $\mathrm{U}_{2} / \mathrm{S}_{2}$ the above ratio does, however, change in going to a neutron target. We find

$$
\frac{V_{2}^{n}}{S_{2}^{n}}= \begin{cases}15 & x=10 \tag{6.4}\\ 14 & x=400\end{cases}
$$

Note that the coefficients of the $\left(1-x_{B j}\right)^{4}$ correction are very large especially in the case of the proton and that, in fact, very large x
values (i.e., $X_{B j}$ very near 1) are required for the combined S_{2} and V_{2} terms of the $\left(1-x_{B j}\right)$ power series to yield a positive result for $v W_{2}^{p}$.

Thus the behavior $v W_{2}^{p} \sim\left(1-x_{B j}\right)^{3}$ in the currently accessible $x_{B j}<.9$ region could have little to do with off-shell counting arguments that apply to the leading $\left(1-x_{B j}\right)^{3}$ term discussed here. Positivity, of course, implies that the negative $\left(1-x_{B j}\right)^{4}$ term is partially cancelled (at moderate $X_{B j}$) by higher power terms. This could leave an effective $\left(1-x_{B j}\right)^{3}$ power at moderate $x_{B j}$ values. Nonetheless our calculations show that the power counting result for the leading S_{2} term can only be strictly trusted at $X_{B j}$ values much nearer to I than those currently accessible to experiment.

On a related point, note that (6.3) and (6.4) imply that
$\checkmark W_{2}^{\mathrm{n}} / \nu W_{2}^{\mathrm{p}}$ should approach the canonical value of $S_{2}^{\mathrm{n}} / S_{2}^{\mathrm{p}}=3 / 7$ [12] from above. If anything, current data around $x_{B j}$ of .9 suggest that $v W_{2}^{n} / \nu W_{2}^{p}$ is below the value of $3 / 7$. Thus the asymptotic results for the $\left(1-x_{B j}\right)^{4}$ term obtained here would appear to obtain only at $x_{B j}$ still nearer to 1 .

In what follows we will adopt the optimistic point of view that the $\left(1-x_{B j}\right)^{4}$ term is largely compensated by terms with still higher powers. The $S_{2}\left(1-x_{B j}\right)^{3}$ term is the least damped ($1-x_{B j}$) behavior and a type of "duality" may hold in which this leading term also represents a good average of the sum of all terms. The higher power corrections, T_{2} and U_{2}, discussed so far also have leading ($1-x_{B j}$) behavior at their respective orders of $1 / Q^{2}$. Our next computation will show a substantial correction to the $1 / Q^{2}$ term at level $\left(1-x_{B j}\right)^{2}$,
compared to the leading $\left(1-x_{B j}\right) / Q^{2}$ form. This correction could also be partially compensated by terms with still higher ($1-x_{B j}$) powers. However, recall that the $\left(1-x_{B j}\right) / Q^{2}$ term vanishes for constant α_{s} whereas the $\left(1-X_{B j}\right)^{2} / Q^{2}$ correction does not. In a sense the $\left(1-x_{B j}\right)^{2} / Q^{2}$ term is the first "non-trivial" higher power correction at order $1 / Q^{2}$.

We now turn to the $\frac{\left(1-x_{B j}\right)^{2}}{Q^{2}}$ correction term, X_{2}, of equation (4.27).
Referring to (6.1) we find several possible sources for X_{2} :
(a) $a^{+}-g^{+}$interference combined with a $\frac{1}{Q} \delta^{\prime}\left(x-x_{B j}\right)(1-x)$ phase space correction, see (4.11);
(b) $\mathrm{a}^{+}-\mathrm{h}^{+}$interference combined with the leading ($\left.1-\mathrm{x}\right) \delta\left(\mathrm{x}-\mathrm{x}_{\mathrm{Bj}}\right)$ phase space term;
(c) $\left|a^{+}\right|^{2}$ terms combined with phase space terms of the form $\frac{(1-x)}{Q^{2}} \delta^{\prime}\left(x-x_{B j}\right)$ or $\frac{1}{Q^{2}}(1-x)^{2} \delta^{11}\left(x-x_{B j}\right)$;
(d) $a^{+}-f^{+}$interference combined with $\frac{1}{Q^{2}} \delta^{\prime}\left(x-x_{B j}\right)$ or $\frac{1}{Q^{2}}(1-x)$ $\delta^{\prime \prime}\left(x^{-x_{B j}}\right)$ phase space terms.

All of these possible sources do, in fact, contribute. As for f^{+}we confine ourselves to specifying the invariant amplitude content of the new forms g^{+}and h^{+}, of (6.11), which contribute under (a) and (b). We find

$$
\mathrm{g}_{+-+}^{+} \propto \frac{Y}{Q}\left(\hat{\ell}, \hat{\mathrm{~L}}, \hat{\ell}^{2} \mathrm{~V}, \hat{\ell} \mathrm{~L}^{2}\right)
$$

$$
\begin{aligned}
& \left.+\begin{array}{c}
\hat{\underline{a}} \\
\hat{Q} \\
(\ell, \\
\ell
\end{array}, \hat{L}, \hat{L} \ell^{2}, \quad \hat{\ell} L^{2}\right) \\
& g_{++-}^{+} \propto \frac{V}{Q}\left(\hat{L}, \hat{l}, \hat{L}^{2} \quad \ell, \hat{l}^{2} \quad \mathrm{~L}\right)
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{g}_{+++}^{+} \propto \frac{Y}{Q}(1, \hat{\ell} \mathrm{~L}, \ell \vee \mathrm{~L}) \\
& \left.+\begin{array}{c}
\hat{A} V V V \\
+\frac{\partial}{Q}\left(\ell L, L^{2},\right. \\
\ell^{2}
\end{array}\right) \tag{6.5}\\
& g_{+--}^{+} \propto \hat{\hat{Q}}(1, \hat{Q} \hat{L}, \ell \hat{L}) \\
& \begin{array}{r}
V \hat{Q} \hat{Q}\left(\hat{L}, \hat{L}, \hat{L}^{2}, \hat{l}^{2}\right)
\end{array} \\
& \left.h_{+-+}^{+} \propto \hat{V} \hat{L} \ell, 1\right) \\
& \hat{h}_{++-}^{+} \propto \hat{(\hat{L} \ell, 1)} \\
& h_{+++}^{+} \propto \begin{array}{cc}
V & V \\
(L, & \ell)
\end{array} \\
& \hat{h}_{+--}^{+} \propto(\hat{L}, \hat{\ell}) \text {. }
\end{align*}
$$

The computation of the invariant amplitudes is performed using REDUCE [14]. The expressions for those appearing in the g^{+}amplitudes are lengthy while the ones contributing to the n^{+}amplitudes are not as involved. The entire calculation of the interference and phase space corrections listed under (a) - (d) is also performed by REDUCE with a final numerical integration yielding the results below. We employ the wave function (3.6) and obtain

$\frac{x_{2}^{p}}{m^{2} S_{2}^{p}}=$	$\begin{cases}696 & x=10 \\ 898 & x=400\end{cases}$
$\frac{x_{2}^{n}}{m^{2} S_{2}^{n}}=$	$\begin{cases}63 & x=10 \\ 213 & x=400 .\end{cases}$

We see that as in earlier cases the ratios are target sensitive but vary fairly slowly as a function of x. The values given in (6.6) imply that the $\left(1-x_{B j}\right)^{2} / Q^{2}$ correction to the leading $\left(1-x_{B j}\right)^{3}$ behavior of $\cup W_{2}$ can be quite substantial. For $m^{2}=.01 \mathrm{GeV}^{2}$ and $\wedge_{\text {mom }}=.1 \mathrm{GeV}$, we have at $X_{B j}=0.9$

$$
\begin{equation*}
\frac{\frac{1}{Q^{2}} x_{2}^{p}\left(1-x_{B j}\right)^{2}}{s_{2}^{P}\left(1-x_{B j}\right)^{3}}=\frac{6.96 \mathrm{GeV}^{2}}{Q^{2}\left(1-x_{B j}\right)}=\frac{69.6 \mathrm{GeV}^{2}}{Q^{2}} \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\frac{1}{Q^{2}} x_{2}^{n}\left(1-x_{B j}\right)^{2}}{S_{2}^{n}\left(1-x_{B j}\right)^{3}}=\frac{.63}{Q^{2}\left(1-x_{B j}\right)}=\frac{6.3}{Q^{2}} \tag{6.8}
\end{equation*}
$$

The proton X_{2}^{P} correction is clearly very sizeable. Assuming that the 6.6 GeV^{2} coefficient of (6.7) is not substantially varying as x_{Bj} decreases outside the range $x_{B j} \geq .9$ (in which our calculation is perturbatively justified) we would obtain a $\sim 50 \%$ correction at $Q^{2}=25$ $\mathrm{GeV}^{2}, \mathrm{X}_{\mathrm{Bj}}=.5$.

We also remark that we have simply not attempted to extract the $\frac{1}{Q^{4}}$ correction to the leading $S_{2}\left(1-x_{B j}\right)^{3}$ term. Such a calculation is possible and we would again anticipate a large coefficient since there are many contributing sources from both non-leading phase space corrections and direct matrix element terms.

Section VII.

Summary

In this paper we have explored in detail the predictions of perturbative QCD, using the approach of Refs. [4], [5] and [6], for the behavior of the deep inelastic structure functions for large $X_{B j}$. We have computed the terms given below which derive entirely from the valence quark wave function states of the pion or nucleon target:

$$
\begin{align*}
& \mathrm{vW}_{2}^{\pi} \stackrel{x_{B j} \rightarrow 1}{\sim} S_{2}^{\pi}\left(1-x_{B j}\right)^{2}+T_{2}^{\pi} / Q^{2} \tag{7.1}\\
& v W_{L}^{\pi} \sim S_{L}^{\pi} \tag{7.2}\\
& v W_{2}^{N} \sim S_{2}^{N}\left(1-x_{B j}\right)^{3}+T_{2}^{N} \frac{\left(1-x_{B j}\right)}{Q^{2}}+U_{2}^{N} \frac{1}{Q^{4}\left(1-x_{B j}\right)} \\
& +V_{2}^{N}\left(1-x_{B j}\right)^{4}+x_{2}^{N} \frac{\left(1-x_{B j}\right)^{2}}{Q^{2}} \tag{7.3}\\
& \cup W_{L}^{N} \sim S_{L}^{N}\left(1-x_{B j}\right)^{3} . \tag{7.4}
\end{align*}
$$

Since we are interested in the limit $Q^{2} \rightarrow \infty$ followed by the limit of large $x_{B j}$ we have systematically neglected terms of order $\alpha_{S}^{2}\left[" k_{T}^{2 "} /\left(1-x_{B j}\right)\right]$ and $\alpha_{S}\left(Q^{2}\right)$ relative to terms of order
 In particular the neglect of terms of order $\alpha_{s}\left(Q^{2}\right)$ implies that we need only consider diagrams, for the forward Compton amplitude, in which the photon enters and exits on the same quark line. Equivalently, in our calculations we sum incoherentiy the absolute
squares of the tree graph wave function amplitudes (A^{+}or A^{-}) for each type of quark in the bound state.

Aside from the initial wave function choice, for which we have taken the "weak-binding" forms (2.6) and (3.6) - (There is no substantial sensitivity here, as discussed.) - there are two parameters in our calculation. The first is $\wedge_{\text {mom }}$ for which we have taken the value

$$
\begin{equation*}
\Lambda_{\text {mom }}=.1 \mathrm{GeV} \tag{7.5}
\end{equation*}
$$

in rough agreement with the lower range of existing determinations. (We use the lower range because our results indicate the likelihood of substantial higher twist contamination in these determinations.) The second is the quark mass, which provides the infra-red cut off for internal transverse momentum wave function integrals. The normalizations of S_{2}^{N} and S_{2}^{π} scale as $1 / m^{4}$ and $1 / m^{2}$ respectively and thus provide a sensitive measure of m^{2}. Comparing these quantities to approximate experimental determinations shows that

$$
\begin{equation*}
\mathrm{m}^{2} \lesssim .01 \mathrm{GeV}^{2} \tag{7.6}
\end{equation*}
$$

yields the correct normalization for both. The average transverse momentum of the quark struck by the deep ineiastic probe is exemplified by the results (4.26) which we approximate for discussion as

$$
\begin{equation*}
\left\langle\mathrm{k}_{\mathrm{T}}^{2}{ }^{\mathrm{N}} \sim 3 \mathrm{~m}^{2}\right. \tag{7.7}
\end{equation*}
$$

roughly independent of $x_{B j}$. The important point to note is that with (7.6) this is a small number entirely consistent with indirect determinations using fragmentation and similar data. Using (7.5) and
(7.6) we find that all α_{s} arguments which appear in our calculations are well into the perturbative domain, provided $x_{B j}>.9$.

Given such a small result for m^{2} or $\left\langle\mathrm{K}_{T}^{2}\right\rangle$ it has become customary to think that the $1 / Q^{2}$ power law corrections (which scale as m^{2} relative to leading terms) are then very likely to be small, especially corrections of this type which have no "extra" dynamical origin such as diquark [15] or other non-perturbative internal wave function structure. In this paper we have found that for a pion target this optimistic scenario appears to hold, whereas for a nucleon target one must anticipate large power law corrections.

For the pion target we found $\left(x_{B j} \geq 0.9\right)$
$-\quad \frac{S_{L}^{\pi}}{m^{2} S_{2}^{\pi}} \geq .2$
and for

$$
\begin{equation*}
r \equiv \frac{4 x_{B j}^{2}}{Q^{2}} \frac{W_{L}}{W_{2}}, \tag{7.9}
\end{equation*}
$$

related to σ_{L} by

$$
\begin{equation*}
\frac{\sigma_{L}}{\sigma_{T}}=\frac{r}{1-r} \tag{7.10}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
r^{\pi} x_{B j} \geq .9 \frac{.8 m^{2}}{\geq} Q^{2}\left(1-x_{B j}\right)^{2} \tag{7.11}
\end{equation*}
$$

For T_{2}^{π} we find a negligible resuit for $x_{B j} \approx .9$ rising rapidly to the asymptotic value (independent of wave function choice)

$$
\begin{equation*}
\lim _{X_{B j} \rightarrow 1} \frac{T_{2}^{\pi}}{4 S_{L}^{\pi}}=1 \tag{7.12}
\end{equation*}
$$

for which the $1 / Q^{2}$ correction is purely longitudinal, as obtained in Ref. [4] in the absence of helicity flip and mass corrections. At accessible $X_{B j}$ values our results imply that the $1 / Q^{2}$ correction, T_{2}^{π}, to W_{2}^{π} is not pure longitudinal and is in any case negligible once the relationship between the normalizations of S_{2}^{π} and T_{2}^{π} through m^{2} is taken into account. The estimate of W_{L}^{π} contained in the second work of Ref. [4], appropriate to moderate $x_{B j}$, is a factor of 4 larger than our result at $x_{B j}=.9$, see Fig. 4. Both evaluations are substantially lower than the original estimate in the first work of Ref. [4].

The most dramatic example of a large proton target power law correction is the result for r of (7.9). The leading term in the asymptotic series for r^{p} is found to be ($x_{B j} \geq 0.9$)

$$
\begin{equation*}
r^{p} \sim \frac{4}{Q^{2}} \frac{S_{L}^{p}}{S_{2}^{p}} \gtrsim 1.6 \times 10^{5} \mathrm{~m}^{2} / Q^{2} \tag{7.13}
\end{equation*}
$$

see (5.9). Since positivity requires $r \leq 1$ the higher terms in this asymptotic series must be important until $\mathrm{Q}^{2}>1000 \mathrm{GeV}^{2}$. Certainly one can find no justification for the statement that small < $\mathrm{k}_{\mathrm{T}}^{2}$ > guarantees a small result for σ_{L} / σ_{T}. We have attempted in Sec. V to present enough calculational details that the sources of such a large result for S_{L}^{N} become apparent. These include: a large number of contributing diagrams; no cancellation tendency, whereas the S_{2}^{N} calculation exhibits some cancellation (which would, in fact, be
complete for constant α_{s} and a weak binding wave function); and slower integration convergence.

The interplay of these effects is quite subtle. For example, in going from the weak binding wave function (3.6) to the form (3.8), the cancellation effect is reduced and S_{2}^{p} increases, see (4.21); nevertheless, at $x=10, r^{p}$ also increases. Thus it does not seem that the large value of r^{p} can be substantially reduced by minimizing the cancellation in s_{2}^{p}.

The terms T_{2}^{N} and U_{2}^{N} which have the most dominant $X_{B j} \rightarrow 1$ behavior at the $1 / Q^{2}$ and $1 / Q^{4}$ level, respectively, in the series for W_{2}, are found to be modest in size. As discussed they would be zero in the approximation of constant moving coupling constant. With the choice - (2.21) we find (at $x_{B j} \sim$-9)

$$
\begin{align*}
& \frac{\mathrm{T}_{2}^{N}}{\frac{2}{N}} \mathrm{~S}_{2}^{\mathrm{N}} \simeq-4 \mathrm{~m}^{2} \tag{7.14}\\
& \frac{U_{2}^{N}}{\mathrm{~S}_{2}^{N} \simeq 70 \mathrm{~m}^{4}}
\end{align*}
$$

see (4.22) and (4.23). At $Q^{2}=10 \mathrm{GeV}^{2}$ and $X_{B j}=.9$ one obtains

$$
\begin{align*}
& \frac{T_{2}^{N} \frac{\left(1-x_{B j}\right)}{Q^{2}}}{S_{2}^{N}\left(1-x_{B j}\right)^{3}} \simeq-.4 \\
& \frac{U_{2}^{N} \frac{\left(1-x_{B j}\right)^{-1}}{Q^{4}}}{S_{2}^{N}\left(1-x_{B j}\right)^{3}} \simeq+.7 \tag{7.15}
\end{align*}
$$

which can hardly be called small corrections. Nonetheless, they are smaller than the values preferred by Barnett in a fit of this type [2] which assumes a higher twist correction form

$$
\begin{equation*}
\left[1-\frac{7 m^{2} x_{B j}}{Q^{2}\left(I-x_{B j}\right)}+600 m^{4} \frac{x_{B j}^{2}}{Q^{4}\left(1-x_{B j}\right)^{2}}\right] \tag{7.16}
\end{equation*}
$$

He obtains a good fit for $m=.138 \mathrm{GeV}$ while the $X_{B j}$ and $x_{B j}^{2}$ factors reduce the "effective" $1 / Q^{2}$ and $1 / Q^{4}$ coefficients (in the $X_{B j}$ range of the fit) to values nearer those given in (7.14), it is clear that (7.16) suggests a larger positive $1 / Q^{2}$ or $1 / Q^{4}$ correction than predicted by T_{2} and U_{2} alone.

We have computed the coefficient of one possible term which could provide a correction of the desired type. We find a $1 / Q^{2}$ correction of the form

$$
\begin{equation*}
\frac{x_{2}^{p} \frac{\left(1-x_{B j}\right)^{2}}{Q^{2}}}{S_{2}^{p}\left(1-x_{B j}\right)^{3}} \stackrel{x_{B j \sim}^{\sim} \cdot 9}{\sim} \frac{700 m^{2}}{Q^{2}\left(1-x_{B j}\right)} \tag{7.17}
\end{equation*}
$$

(This ratio, unlike earlier ratios, is target sensitive - the neutron result is $\sim 1 / 10$ as large.) Though less leading as $X_{B j} \rightarrow 1$ than the $1 / Q^{2}$ T_{2} correction, the large coefficient implies that the X_{2}^{p} correction completely dominates the T_{2}^{P} correction for $X_{B j} \leq .9$. We have not computed the $\left(1-x_{B j}\right)^{2} / Q^{4}$ term which is the natural competitor to the $U_{2} / Q^{4}\left(1-x_{B j}\right)$. There is a large number of sources for this form and it could easily dominate the latter.

Note that (7.17) is the only term we calculate that has a target mass contribution. Defining:

$$
x_{2}^{p}=x_{2}^{p \text { twist- } 4}+x_{2}^{p} \text { Target Mass }
$$

we find, using ξ scaling

$$
x_{2}^{p} \text { Target Mass }=3 M_{T}^{2} s_{2}^{p}
$$

Thus, in our weak binding model with $m=.1 \mathrm{GeV}, \mathrm{M}_{\mathrm{T}}=.3 \mathrm{GeV}$, and the target mass contribution to (7.17) is negligible. The correct procedure to determine the full value of x_{2}^{p} is to subtract the weak binding value of X_{2}^{p} Target Mass and to add back in X_{2}^{p} Target Mass with the correct value of $M_{T}=.937 \mathrm{GeV}$. (this assumes that X_{2}^{p} twist $-4 / S_{2}^{p}$, like V^{p}, is not strongly dependent on the wave function; we have not been able to verify this explicitly, since the complexity of computing X_{2}^{p} / S_{2}^{p} for other than weak binding is prohibitive.). This results in a 40% increase in x_{2}^{p} when $m^{2}=.01 \mathrm{GeV}^{2}$. Thus target mass corrections alone underestimate the full x_{2}^{p} by a factor of more than 3.

Although the term (7.17) seems quite large we would like to point out that it is of precisely the form and general magnitude considered by Barnett [2] in his favored fits. Barnett adopted the "higher twist" correction factor

$$
\begin{equation*}
\left[1+x_{B j}^{3} W_{o}^{2} / W^{2}\right] \tag{7.18}
\end{equation*}
$$

where $W^{2}=Q^{2} \frac{\left(1-x_{B j}\right)}{X_{B j}}$. As $X_{B j} \rightarrow 1$ this form is identical to our X_{2} correction provided $W_{0}^{2}=X_{2} / S_{2}$. For an average nucleon target, $N \equiv \frac{p^{+n}}{2}$ (as considerd in [2]), we use (6.6) and $S_{2}^{n} / S_{2}^{p}=3 / 7$ to yield our prediction,

$$
\begin{equation*}
\left(W_{0}^{2}\right)^{N}=x_{2}^{N} / S_{2}^{N}=509 \mathrm{~m}^{2} . \tag{7.19}
\end{equation*}
$$

Barnett analyzed [2] three sets of data - EMC, CDHS, SLAC-MIT - and obtained the following values of W_{0}^{2} in (7.18) in combined "Leading-order QCD" + "Higher-Twist" fits:
$\left(W_{0}^{2}\right)^{N}=\left\{\begin{array}{lll}12.5 \pm 4.3 \mathrm{GeV}^{2} & \Lambda_{\mathrm{L} 0} \simeq .075 \mathrm{GeV} & \text { EMC } \\ 8.3 \pm 5.3 \mathrm{GeV}^{2} & \wedge_{\mathrm{L} 0} \simeq .130 \mathrm{GeV} & \text { CDHS } \\ 4.4 \pm .47 \mathrm{GeV}^{2} & \Lambda_{\mathrm{LO}} \simeq .048 \mathrm{GeV} & \text { SLAC-MIT }\end{array}\right.$
full target mass corrections are included though ξ scaling and should not be added to X_{2} / S_{2} in (7.19).
Especially in the SLAC-MIT case the x^{2} of the fit with the correction (7.18) was much better than the pure QCD fit. The $\left(W_{o}^{2}\right)^{N}$ value obtained is somewhat sensitive to the $\mathrm{x}_{\mathrm{Bj}}{ }^{3}$ factor assumed in (7.18) but clearly (7.20) brackets the value (7.19) predicted by our calculation with our preferred value $m^{2} \simeq .01 \mathrm{GeV}^{2}$. The values of $\Lambda_{\mathrm{L}} 0$ (LO $=$ leading order) in (7.20) correspond to small values of $\Lambda_{\text {mom }}$ of order $\Lambda_{\text {mom }}=.1 \mathrm{GeV}$ as adopted in our work.

At our request Barnett has repeated his fits with a complete correction form that agrees as $\mathrm{X}_{\mathrm{Bj}} \rightarrow 1$ with that predicted by our calculation for $N=\frac{\mathrm{p}+\mathrm{n}}{2}$,

$$
\begin{equation*}
\left\{1-\frac{7 m^{2}}{W^{2}\left(1-x_{B j}\right)}+509 \frac{x_{B j}^{n} m^{2}}{W^{2}}+70\left[\frac{m^{2}}{W^{2}\left(1-x_{B j}\right)}\right]^{2}\right\}, \tag{7.21}
\end{equation*}
$$

allowing for an adjustable power $X_{B j}^{\pi}$ on the dominant X_{2} type term. He considered EMC data and obtained [16]

$$
\begin{array}{ll}
\mathrm{n}=3 & \mathrm{~m}^{2}=.023 \mathrm{GeV}^{2} \Lambda_{\mathrm{L} 0}=.112 \mathrm{GeV} \tag{7.22}\\
\mathrm{n}=2 & \mathrm{~m}^{2}=.016 \mathrm{GeV}^{2} \Lambda_{\mathrm{L} 0}=.056 \mathrm{GeV} .
\end{array}
$$

Both fits have $x^{2} \simeq 134$ for 118 degrees of freedom compared to $x^{2}=$ 140 for a pure QCD fit and $x^{2}=133$ for the simpler form (7.18). As in (7.20) fits to CDHS and SLAC-MIT data would yield somewhat smaller m^{2} values. In these fits the T_{2} and U_{2} type terms of (7.21) play only a minor role in comparison to the X_{2} type term.

Since our calculation is based on the valence Fock state of the proton, it strictly applies only in the $x_{B j} \rightarrow 1$ limit. Thus the agreement between our results and Barnett's fits should be considered with caution. At moderate $X_{B j}$ higher Fock states could be important but we see no reason ~ to suppose that the corresponding higher twist corrections are any smaller than the ones computed here.

Thus, for the proton target, we have seen that the simplest possible perturbative wave function for the valence three quark state (in which the two gluon exchange graphs of Fig. 4 determine all distributions) yields very substantial power law corrections at large $X_{B j}$ to the naive parton model scaling predictions. These are in addition to those scaling law corrections due to QCD evolution or explicit non-perturbative ("diquark"? [15]) wave function effects. It seems improbable that such large corrections could be present for $x_{B j}$ $\geq .9$ (where our calculation is theoretically well-justified) and not at lower $x_{B j}$. Indeed simple extrapolations of the large $x_{B j}$ forms to moderate $X_{B j}$ are remarkably successful for the W_{2} structure function and yield an m^{2} value consistent with that determined by the normalization of the leading $\left(1-x_{B j}\right)^{3}$ term.

Acknowledgements

This work was supported in part by the Department of Energy on grants \#DE-AC03-76SF00515 and DE-AS03-76SF00034PA191. We would also like to thank S.J. Brodsky, M. Soldate, and R.M. Barnett for helpful conversations.

Appendix A

Counting Rules for VW_{2} and $W W_{L}$

First we examine possible sources of enhancement or suppression of the large x behavior in a general diagran with n fermions,

The $~+~ c o m p o n e n t ~ o f ~ t h e ~ m o m e n t u m ~ f o r ~ a n y ~ o n e ~ o f ~ t h e ~ o u t g o i n g ~ s p e c t a t o r s ~$ is proportional to one power of (1-x). It follows from the on shell conditions that the "-" component is proportional to $(1-x)^{-1}$, which impijes that all the "-" momenta components flowing throughout the tree graph are enhanced by $(1-x)^{-1}$. Since all the " + " components of the momenta flowing on the internal tree connecting lines are finite as $x \rightarrow 1$ the square of the off-shell momentum of each internal propagator grows as $(1-x)^{-1}$ - the corresponding propagator is suppressed by one power of ($1-x$). There are $2(n-1)$ internal propagators which results in a basic initial factor $(1-x)^{2(n-1)}$ for the tree graph.

This is modified by numerator algebra. Looking at Table II, we see that we may have possible enhancement from vertices of the type
helicity
$+$

final spectator

$$
\begin{equation*}
\alpha(1-x)^{-1} \tag{A.1}
\end{equation*}
$$

helicity \qquad final spectator
$6-83$
4563 A10

Since the value of these matrix elements carries an inverse power of the + component of the final momentum, each such vertex enhances the amplitude by a power of $(1-x)^{-1}$. Also the configuration

$$
\begin{equation*}
\text { or } \quad \alpha(1-x)^{-1} \tag{A.2}
\end{equation*}
$$

- carry $a(1-x)^{-1}$ enhancement, since they are proportional to the square of the momentum flowing in them [Eqs. (2.8), (2.9)]. Finally the gluon propagator numerator matrix element

is proportional (in axial gauge) to the component of the momentum carried by the gluon and is thus proportionai to $(1-x)^{-1}$.

The final state integral produces an extra suppression from the longitudinal momentum fraction integrals:

$$
\begin{equation*}
\int_{0}^{\infty} d x d z \ldots d z_{n-1} \delta\left(1-x-z \ldots-z_{n-1}\right) \propto(1-x)^{n-2} \tag{A.4}
\end{equation*}
$$

Consider now the A^{+}amplitude, which contributes to W_{2}. For
simplicity look at diagrams in which all the gluon lines are attached to the struck fermion line. We can always gain a factor of $(1-x)^{-1}$ (from the numerator algebra) for each gluon line which we can terminate with a $\hat{\gamma}$ on a negative helicity spectator line or with a $\hat{\gamma}$ on a positive helicity spectator line. We gain, in this way, a factor $(1-x)^{-(n-1)}$. Further enhancement is possible if we pair positive helicity spectators and negative helicity spectators as in

yielding an extra (1-x) ${ }^{-1}$ [Eq. (A.2)] for each such pair of opposite helicity spectators. The number of such pairs is easily seen to be

$$
\begin{equation*}
\text { \# pairs opposite }=\frac{1}{2}[(n-1)-2|\Delta \lambda|] \tag{A.6}
\end{equation*}
$$

where $\Delta \lambda$ is the difference between the total helicity of the initial state and the helicity of the struck quark. Note that we cannot pair a spectator with the struck quark itself because

since $\gamma^{+2}=0$. Summing up all the ($1-x$) powers yields

$$
\begin{align*}
(1-x) \text { power } & =2(n-1)-(n-1)-\frac{1}{2}[(n-1)-2|\Delta \lambda|] \tag{A.8}\\
& =\frac{1}{2}(n-1)+|\Delta \lambda|
\end{align*}
$$

for the A^{+}amplitude. Computing $\left|A^{+}\right|^{2} x$ phase space, (A.4), yields

$$
\begin{equation*}
v W_{2}{ }_{\alpha}^{x \rightarrow 1}(1-x)^{(n-1)+2|\Delta \lambda|+n-2}=(1-x)^{2 n-3+2|\Delta \lambda|} . \tag{A.9}
\end{equation*}
$$

For $v W_{L}$ the discussion is very similar, the only difference being that now we can get further numerator enhancement by pairing a spectator with the active quark provided they have opposite helicities in the following configuration:

Observe that the helicities have to be opposite because only in that case do we gain the power of $\frac{Y}{q}$ that we need to otain a leading contribution to W_{L} at the same time as we obtain (1-x) ${ }^{-1}$ of (A.1) from the spectator connection. We gain the extra $(1-x)^{-1}$ from the " + " "split" of (A.10). Combining (A.10) and (A.5) we see that we gain one power of $(1-x)^{-1}$ from a "+" "split" for each pair of opposite helicity fermions in the initial state, this time including the struck quark. This number is easily seen to be

$$
\begin{align*}
& \text { \# pairs } \tag{A.11}\\
& \text { opposite helicity } \\
& \text { quarks }
\end{align*}
$$

where Λ_{T} is the total helicity of the initial state. Combining powers we get

$$
\begin{align*}
&\left.W W \propto!A^{-}\right|^{2} \tag{A.12}\\
& \text { phase space } \propto(1-x)^{2\left[2(n-1)-(n-1)-\frac{1}{2}\left(n-2 \Lambda_{T}\right)\right]+n-2} \\
&=(1-x)^{2 n-4+2 \Lambda_{T}}
\end{align*}
$$

Appendix B

Relation to Operator Product Results

The technique most commonly employed to study higher twist effects in deep inelastic scattering is the operator product expansion. There the tree level hard processes which are relevant at twist 4 are [17] the two quark diagrams of Fig. 6a and the 4-quark diagrams of Fig. 6b. In axial gauge the diagram of Fig. 6a(i) contributes to twist 2 and higher and the diagrams $6 \mathrm{a}(\mathrm{ii})$ and (iii) contribute to twist 4 and higher. All these diagrams are present in the tree graphs of our calculation. We have not included 4-quark diagrams such as 6 b because they are suppressed - by a power of $\alpha_{s}\left(Q^{2}\right)$. (They actually vanish in the weak binding case since the gluon is always cut and radiation on-shell-> on-shell is impossible.) The operator product expansion automatically incorporates Lorentz invariance, gauge invariance and the symmetry properties of the target.

In our direct calculation, symmetries and gauge invariance are not so explicit. It should be pointed out, however, that the weak binding calculation, when all spin flips contributions are included, is completely Lorentz and gauge invariant. Gauge invariance follows immediately from the fact that, when the initial quarks are on shell, for fixed momenta of the final state quarks, the total amplitude for absorption of a photon is gauge invariant. The use of the running
coupling constant does not spoil this conclusion, because the coupling is the same for each gauge invariant subset of diagrams contributing to the amplitude. Once gauge invariance is established, Lorentz invariance follows immediately; because our calculation could have been done as well in Feynman gauge, where the axial vector η does not appear, and then, the only possible form of the answer is the one of eq. (1.1). The use of axial gauge is a mere convenience and large portions of our calculations were also performed in Feynman gauge as an explicit check of our axial gauge results.

It is interesting to point out a difference between our result and that of Soldate, Ref. [13]. By calculating the matrix elements of the various operators, using large x formalism, he finds as $x_{B j} \rightarrow 1$

$$
v W_{2}^{H T}{ }^{X_{B j}}{ }_{\sim}^{1} \frac{\left(1-X_{B j}\right)^{2}}{Q^{2}}
$$

while we find

$$
v W_{2}^{H T}{ }^{X_{B j} \rightarrow} \underset{\sim}{T} T_{2} \frac{\left(1-x_{B j}\right)}{Q^{2}}+x_{2} \frac{\left(1-x_{B j}\right)^{2}}{Q^{2}}
$$

The disagreement seems to derive from our use of the running coupling constant in the calculation; if we used a constant α_{s}, the coefficient T_{2} vanishes.

As a final point note that we have obtained results for the absolute normalization of our higher twist effects through the use of an explicit wave function calculated for large $x_{B j}$ using the formalism of Ref. [5]. In this sense our results are less general than those of the operator product formalism but do provide an expicit normalization of the contributions which appear therein.

References

[1] R.M. Barnett, D. Schlatter and L. Trentadue, PRL 46 (1981) 1659; D.W. Duke and R.G. Roberts, Nuc1. Phys. B166 (1980) 243; F. Eisele, M. Gluck, E. Hoffman and E. Reya, D0-Th 81/11 (1981).
[2] R.M. Barnett, Phys. Rev. D27, 98 (1983).
[3] J.F. Gunion, P. Nason and R. Blankenbecler, Phys. Letters 117B, (1982) 353.
[4] E.L. Berger and S.J. Brodsky, Phys. Rev. Lett., 42 (1979) 940. E.L. Berger, S.J. Brodsky, G.P. Lepage, Proceedings of the Drel1-Yan Workshop FNAL, (1983) 187.
[5] S.J. Brodsky and G.P. Lepage, Phys. Rev. D22 (1980) 2157.
[6] S.J. Brodsky, T. Huang, and G.P. Lepage, SLAC-PUB-2540. T. Huang, p. 1000, Proc. of High Energy Physics, 1980 (XX Intern. Conf., Madison, Wisc.).
[7] See S. Brodsky, SLAC Summer Institute on Particle Physics (1979) Appendix. The rule was developed by S. Brodsky, M. Scadron, J.F. Gunion, N. Fuchs, but a proof was never published.
[8] W. Celmaster and D. Sivers, Phys. Rev. D23, 227 (1981).
[9] See for example the NA3 determination of $f_{\pi}(x)$. D. Decamp, p. 147, Proc. of High Energy Physics - 1980 (XX Inter. Conf., Madison, Wisc.)
[10] See refs. [1], [2], and G. Wolf, p. C3-525 and F. Eisele, p. C3-337, Proc. of 21st Intern. Conf. on High Energy Physics, Paris, 1982.
[11] S.J. Brodsky, T. Huang, and G.P. Lepage, Quarks and Nuclear Forces Springer Traits in Modern Physics Vol. 100 Editors, D. Fries and D. Zeitnitz (1982) 81.
[12] G.R. Farrar, and D.R. Jackson, Phys. Rev. Lett. 35, 1416 (1975).
[13] M. Soldate, SLAC-PUB-2998, Nuc1. Phys. (to be published).
[14] A.C. Hearn, Stanford University Report No. ITP-247, 1968 (unpublished).
[15] L.F. Abbott, W.B. Atwood and R.M. Barnett, Phys. Rev. D22 (1980) 582; I.A. Schmidt and R. Blankenbecler, Phys. Rev. Di6 (1977) 1318; L.F. Abbott, E.L. Berger, R. Blankenbecler and G.L. Kane, Phys. Lett. 88B (1979) 157.
[16] R.M. Barnett private communication.
[17] R.L. Jaffe and M. Soldate, Phys. Lett. 105B, 467 (1981); S.P. Luttrell, S. Wada, and B.R. Webber, Nucl. Phys. B188, 219 (1981); E.V. Shuryak and A.I. Vainshtein, Nucl. Phys. B199, 451 (1982). R.L. Jaffe, Phys. Lett. 116B, 437 (1982); and in preparation. R.L. Jaffe and M. Soldate, Phys. Rev. D26, 49 (1982). R.K. Ellis, W. Furmanski, and R. Petronzio, CERN Report 3254. This contains a treatment of twist-4 based on transverse momentum effects as well.

Table il
Matrix elements of one and three y-matrices

$$
\alpha, \beta=\text { helicity in } \mathrm{P}^{+} \rightarrow \infty \text { frame }
$$

$$
\begin{aligned}
& \text { Overall } \\
& \text { Factor } \alpha=\beta=+\quad \alpha=\beta=-\quad \alpha=+, \beta=-\quad \alpha=-, \beta=+ \\
& \alpha \longrightarrow \xrightarrow{q} \xrightarrow{\mu} \stackrel{k}{\sim} \beta=\alpha \longrightarrow \xrightarrow{q} \beta
\end{aligned}
$$

TABLE III

> Numerator γ-Matrix Algebro Results: $2 \alpha^{+}$Contributions

s $^{-}$Contributions

$\mp-\mp= \pm- \pm$ For all the above
$5-83$
450347
TABLE IV
NUMERATOR RESULTS
\mathscr{a}^{+}Non Flip Contributions
(charge and colour factors omitted)

$$
x \rightarrow 1-\frac{16 p^{+}}{(1-x)^{3}} \frac{\alpha}{\alpha+\beta} \frac{S \hat{L} \hat{l}}{z(1-z)}
$$

$5-83$
456348

Fig. 1 The initial and final Fock states of a general bound state of fermions.

Fig. 2 Tree graphs for the 2 -quark pion valence state at large $x_{B j}$.

Fig. 3 Results for a "pion" target: Plotted as a function of
 Where $\mathrm{m}^{2} S_{2}^{\pi}$ is in units of $(\mathrm{GeV})^{2}$, all other quantities are dimensionless. Multiply S_{2}^{π} by $\sum_{q} \lambda_{q}^{2}$ for a particular type of pion.

Fig. 4 Enumeration of the tree graphs appropriate at large $x_{B j}$ for. the 3 -quark valence proton state.

Fig. 5 Results for a proton target. Plotted are $m^{4} S_{2}^{p}, m^{2} S_{L}^{P}$ and $S_{L}^{p} / m S_{2}^{p}$ as a function of x, where $m^{4} S_{2}^{p}, m^{2} S_{L}^{p}$ are in units of GeV^{4}, while $S_{L}^{p} / \mathrm{m}^{2} S_{2}^{P}$ is dimensionless.

Fig. 6 Tree level hard processes contributing to deep inelastic scattering.

Fig. 1

Fig. 2

Fig. 3
$(1-\alpha-\beta) p-\frac{\alpha^{2} 2^{a}}{\alpha p-1}$

20

Fig. 4

Fig. 5

Fig. 6

[^0]: * Work supported by the Department of Energy, contracts DE-AC03-76SF00515 and DE-AS03-76SF00034PA191.

