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ABSTRACT 

We apply to nucleon decay the knowledge about the short-distance structure of 

baryon wave functions gleaned from QCD form factor calculations and the J/$ --) pp 

decay rate. We review the uncertainties arising when current algebra and PCAC are 
a- 
used to relate N + z+ meson decay rates to (OlqqqjN) matrix elements. We show 

that the relevant matrix elements are not directly related to those of the leading twist 

operators “measured” in conventional high momentum transfer physics, but argue for 

-an indirect relation based on models that fit both form factor and J/q decay data. 

We use these inputs to calculate the p * e+s” decay rate in minimal SU(5) and 

other grand unified theories (GUTS) for a specified value of the heavy vector boson 
mass mx. Our results combined with the recent experimental lower limit on this mode 

indicate that rnx > 2 X 10 l5 GeV in the minimal SU(5) GUT, and we derive analogous 

bounds for super-symmetric GUTS. Our calculated lifetime for a given value of rnx is 

considerably shorter than previous estimates made using non-relativistic SU(6) or the 

bag model, a difference traceable to the different normalizations of 2 and 3 quark wave 

functions at short distances. 
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1. Introduction 

-- 

A crucial prediction of many GUTS [1,2] is that nucleons should decay: the next 

important questions are how often, and into what decay modes? Conventional cal- 

culations [3] of nucleon decay rates can be divided into 3 parts. The first is the 

specification of the baryon decay operator due to heavy particle exchange at short 

distances, which is very dependent on the GUT model invoked. The second part is the 

renormalization of this operator at short distances up to 0( 1) fermi, whose calculation 

is well-understood [4]. Finally there is the calculation of the hadronic matrix elements 

of the baryon decay operator renormalized at the long hadronic distance scale of 0( 1) 

fermi. This calculation is quite difficult, since it involves hadron dynamics in the 

non-perturbative strong coupling regime. Many different authors [3] have used many 

“different approximations to estimate these hadronic matrix elements, with results that 

are not always identical. In this paper we propose a new way of calculating nucleon 

decay matrix elements which uses the understanding (5) of baryon wave functions at 

‘short and light-like separations obtained from QCD calculations of baryon form factors 

and the J/+ --) pp decay rate [6]. 

Our starting point is the observation that these quantities are closely related: 

high-momentum transfer processes gives us knowledge of the baryon wave function 

at light-like separations Z* -+ 0, thereby giving us information about the nucleon 

decay amplitudes which are sensitive to physics as zP + 0. One might hope to short- 

circuit long-distance uncertainties by inter-relating directly the perturbative QCD 

calculations of high momentum transfer processes involving baryons to the nucleon 

decay amplitudes. Unfortunately, this does not turn out to be possible, since the 

two classes of process involve slightly different aspects of the baryon wave function. 

This could have been anticipated from the knowledge that baryon decay operators are 

of higher twist, whereas form factors, etc., are related to lowest-twist operators [7]. 

_- 
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However, it is possible to make an indirect connection between the two short distance 

phenomena by using trial wave functions that fit [6] the form factor and J/$ --) pp 

decay data. The results of exploiting this connection are somewhat surprising. 

Section 2 of this paper states and discusses the assumptions of current algebra 

and chiral symmetry [8,9] which justify the relation of nucleon N + antilepton ? + 

pseudoscalar meson P decay amplitudes to qqq annihilation amplitudes (OlqqqlN). We 

thereby sidestep the uncertainties in qq -+ 92 annihilation amplitudes which control 

N + ?+ P decays in non-relativistic SU(6) and bag model calculations [3]. The chiral 

Lagrangian formalism is then used to tabulate N -+ 2 + P decay rates as functions of 

the mwlN) in a number of interesting GUTS such as minimal conventional SU(5) [2] 

and minimal supersymmetric SU( 5) [ 10,111, as well as in a more general supersymmet- 

“ric context [12]. In sect. 3 we discuss the structure of the (OlqqqlN) operator matrix 

elements, and show that the leading contributions are proportional to the annihilating 

quark masses, while there are non-leading contributions related to antisymmetric parts 

-of the nucleon wave function. Symmetry arguments and explicit diagrammatic calcu- 

lations suggest that the quark mass factors should be interpreted as constituent quark 

masses rather than as short distance current quark masses. This same diagrammatic 

analysis points up the differences between the short (1 fermi > d > l/mx) distance 

renormalization of the lowest twist qqq operators appearing in baryon form factors and 

the renormalization of the higher twist operators relevant to nucleon decay [7]. The 

different structures of these operators preclude a direct connection between baryon 

form factors and nucleon decay rates. However, an indirect connection can be made 

by using models [6] for hadron wave functions which fit high-momentum transfer data 

and enable one to calculate the matrix elements of higher twist operators, as is done 

in sect. 4. For any specified strength of the nucleon decay interaction, e.g., the value 

of rnx in the minimal conventional SU(5) GUT, we find a much larger nucleon decay 

3 



rate than has previously been calculated [3] on the basis of non-relativistic SU(6) or 

the bag model. We find that the recent [13] experimental limit ~(p -+ e+r’) > 103* 

years implies that mx > 2 X 10 l5 GeV in the context of the minimal SU(5) model [2). 

This lower limit is profoundly embarrassing for this theory, in which rnx m (1 to 2) x 

1015 X Am, so that a value of Am > 1 GeV would be required for consistency 

with the negative result [13] of the IMP experiment. In sect. 5 we discuss possible 

reasons for the discrepancy between our calculations and the previous non-relativistic 

SU(6) and bag model results. Is one or the other computation an incorrect deduction 

from the underlying formalism ? Perhaps the nucleon decay rate cannot be related 

reliably to “known” aspects of the non-relativistic SU(6) wave function? Possibly the 

wave-function for three quarks annihilating at a point which we need, “know” from 

high momentum studies, and use here is not simply related to the two-quark overlap 

function “known” from non-relativistic SU(6) studies? Maybe the non-perturbative 

nucleon wave-function has an unexpectedly large high-momentum tail? Alternatively 

_ -.-and more radically, perhaps the entire short-distance wave function programme is in- 

applicable to baryon processes at presentday momentum transfers [14]? This would 

require over 99% of the baryon form factor measured at &* = O(10) GeV* to be due 

to non-leading effects, and is an alternative we deem unpalatable. A less radical alter- 

native is that we have overestimated the magnitude of the relevant quark masses, but 

the analyses of sections 2 and 3 strongly suggest that we should use constituent quark 

masses rather than current quark masses. The apparent discrepancy between the phe- 

nomenologies of non-relativistic SU(6) and of light-cone hadronic wave functions has 

an interest beyond the nucleon decay calculations which constitute the central thrust 

of this paper. 

‘--.* 
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2. Current Algebra, PCAC and Nucleon Decay 

Nucleon decay calculations [3] involve GUT dynamics modified by short distance 

(d < 1 fermi) corrections calculated within the Standard Model, and hadronic matrix 

elements whose values depend on the incompletely understood long-distance dynamics 

of &CD. Models for these matrix elements that have been considered in the litera- 

ture include quasi-free q + p p z decay [fig. l(a)], two-particle qq --+ ij 1 annihilation 

[fig. l(b)] and three particle qqq -+ ? annihilation preceded by meson emission [fig. 

l(c)]. These models are constrained by current algebra and PCAC which are model- 

independent but only apply directly to kinematic limits which may be too idealized 

to be useful. If one ignores this objection, current algebra and PCAC relate [8,9] all 

nucleon -+ antilepton + pseudoscalar meson (N + 2 + P) decay amplitudes to two 

-basic three-quark annihilation matrix elements, illustrated in fig. l(d): 

(2.lb) 

where Q, p, 7 are two component spinor indices and i, i, k are color indices. The ex- 

istence of these current algebra and PCAC relations may appear surprising at first 

sight, since in the three-quark annihilation matrix elements (2.1) all three quarks in 

the nucleon must be at the same point, whereas they may be at different points in the 

models of figs. l(a) and l(b). Furthermore, the matrix elements (2.1) pick out the pure 

3q Fock state component of the nucleon in the light-cone gauge, whereas components 

with extra gluons and ~q pairs can contribute to figs. l(a) and l(b). In this section 

we discuss why the current algebra and PCAC relations may be reliable despite this 

apparent paradox, and tabulate nucleon decay rates as functions of Q and p in some 

favoured GUT models. 
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The strategy for applying current algebra and PCAC to nucleon decay parallels 

closely the traditional calculations of nonleptonic hyperon decays Y + N + R. The 

essential differences due to the replacement of the final state nucleon N by an an- 

tilepton 1 are twofold: (a) the extrapolation from the soft pseudoscalar limit to the 

physical region is much longer, and (b) the Lorentz structure of the decay amplitude 

is determined by the GUT model used and the point-like nature of the antilepton. In 

the case of nonleptonic hyperon decays the decay amplitude takes the general form 

N(a + h)Y (2.24 

with the terms proportional to a and b corresponding to S and P-wave decay amplitudes 

respectively. Current algebra and PCAC provide no useful information about P-wave 

%mplitudes, but interrelate different S-wave amplitudes in the soft pseudoscalar limit 

&/rnN + 0. This is likely to be a good approximation to the real world since 

my- rnN << mN. On the other hand, in the case of nucleon decay one has a decay 

amplitude 

1 (A + &5)N (2.2b) 

where the ratio of amplitudes A/B is fixed by the short distance GUT dynamics and is 

unaffected by long distance effects since the antilepton is assumed to be structureless. 

Therefore the calculation in the soft pseudoscalar limit can be carried over from the 

S-wave amplitude to the P-wave amplitude. Unfortunately this limit is a priori less 

relevant since mN-mj w mN so that &/mN m l/2 for baryon decay. Therefore one 

may question whether current algebra and PCAC can give any more than qualitative 

impressions of the magnitudes of baryon decay amplitudes. 

We can provide three arguments that the current algebra and PCAC calculation 

may in fact be at least semi-quantitative. The soft pseudoscalar limit would be a priori 
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unreliable if at the end of the extrapolation we found a significant suppression factor 

in the matrix elements cy and ,8 (2.1) for some good symmetry or dynamical reason. 

However, the chiral sV(3)~ X w(3)R symmetry we are exploiting does not forbid 

couplings to baryons of the three-quark operators relevant to nucleon decay. These 

qqq operators will have definite sU(3),5 X su(3)R transformation properties but the 

nucleon only has definite transformation properties under SU(3)L+R. If one uses the 

chiral Lagrangian formalism as in Claudson et al. [Q] one can always write down an 

SU(3)L x SU(3) R invariant term which starts with a (OlqqqlN) matrix element and 

continues with higher order pseudoscalar couplings, just as long as the qqq operator 

is an octet of conventional vectorial SU(~)L+R. This argument for the absence of a 

group-theoretical suppression factor is buttressed by the perturbative calculations of 

c_spct. 3. There we find no suggestion that (OlqqqlN) matrix elements vanish in the limit 

of vanishing current algebra quark mass. Instead they seem likely to be proportional to 

constituent quark masses which do not vanish in the chiral limit. Finally we note that 

-in addition to these brave words there is a dynamical argument which supports the 

reliability of the current algebra estimate. Virtual contributions to decay amplitudes 

from radial recurrences of the nucleon are likely to be suppressed by factors in their 

wave-functions and by energy denominators. This argument is borne out by a specific 

non-relativistic SU(6) dynamical model [15]. * Estimates of pole diagrams suggest 

that the two amplitudes of fig. l(b) and fig. l(c) should be in the ratio of 1:0.8, 

whereas the chiral limit yields a ratio of I:gA % 1:1.2. Since we will only be interested 

in bounding 

T(N + 2 + P) l/* 
(l+“gA”)* 1 

this magnitude of this extrapolation error does not faze us. 

P-3) 

* Reservations about other aspects of this model calculation are expressed in subse- 
quent sections. 
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The current algebra and PCAC calculations require isolating the rapidly vary- 

ing pole terms of fig. l(c) and computing the remaining contact terms using soft 

pseudoscalar theorems. The most convenient formalism for deriving all these results 

systematically is the chiral Lagrangian framework developed in ref. [Q]. We have used 

the general results of Claudson et al. [Q] to obtain nucleon decay rates N ---) ? + P 

in terms of o and p (2.1) for the following three presently favoured classes of GUT 

models. 

(A) Minimal GUTS such as SU(5) with the low energy effective Lagrangian [4] 

.?.- 
+ cijk(a& 7’djL,)(& 7p dkR) 

+ Lijk(s& 7’ ujL)(2fit 7pskL -ii; 7pSkR) (2.4~~) 

.~ + cijk(a& y’djL)($R 7p akR> 

+ herm. conj. + O(sin 0,) 
I 

where i, i, k are colour indices and ex = AGx where Gx = g$/4 &rn$ and A is 

a short-distance enhancement factor. 

(B) Minimal supersymmetric SU(5) GUTS with the dominant low energy effective 

Lagrangian [11,12]: 

-e where (Y, /3, 7, 6 are two component spinor indices and &‘s is described in sect. 5. 
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(C) The alternative form of low energy effective Lagrangian permitted by supersym- 

metry [12]: 

where e = e, JL and G$ are described in sect. 5. The amplitudes for N + 2 + P 

in terms of Q, p and cx, Gs, G$ are given in Table 1. The task of the next two 

sections of this paper is to compute the coefficients (Y and p (2.1) using the technology 

of baryon wave functions at short distances. 

3. “Short Distance Enhancement” and “Light-Cone Suppression” Factors 
a- 

In this section we study the leading gluonic radiative corrections to the Born term 

contributions to both the proton decay amplitude and to the proton’s magnetic form 

factor. These corrections lead to a “short distance enhancement factor” for the proton 

decay amplitude [4] and a “light-cone suppression” for the form factor [5]. The Feyn- 

man graphs which contribute to these factors are similar, particularly if one considers 

the pole contribution to the decay amplitude obtained from fig. l(d), and hence we 

would like to explain why these factors are different. 

We start by considering the magnetic form factor of the proton which has already 

been studied using light cone perturbation theory [5]. Asymptotically it can be written 

as 

1 

f'(Q*) = / [dz] [do] K&(x;, Q) %(zi, Yi, Q) 43&?/i, Q) (34 
0 

where the Xi E (kp + kf)/(pO + p3) GE k+/p+ : 0 < zi < 1 are the quark light-cone 

momentum fractions, the kli are their transverse momenta relative to the nucleon 
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momentum, and [dz] z dxldx2dx3 6(x1 + x2 +x3 - 1). Apart from the canonical l/Q4 

behaviour, the only dependence on the momentum transfer Q in T’ is through the 

two powers of aJQ*) seen in fig. 2. The quantity 43q(Zi, Q) is related to the hadronic 

wave function +3q(xi, kli) (strictly speaking, $J is the Fourier transform of the positive 

energy projection of the Bethe-Salpeter wave function evaluated with the constituents 

at equal light-cone “time” r E t + Z) by 

where p = ll- g n/ (n, is the number of flavours) and 57~ is the anomalous di- 
a- 
mension associated with the quark field renormalization. In the leading logarithmic 

approximation an integral equation can be written for $J which leads to the solution 

.) 
hq(xi, Q) = X1X*X3 5 an),(xj)(10g$)-7n 

n=O 
(3.3) 

where the 4, (xi) are calculated functions of the (Xi) and the 7n are calculated [5] 

positive anomalous dimensions. Asymptotically it is the lowest anomalous dimension 

7= 2/3/3 for which 4 (Xi) = 1 which contributes, so that 

Q* -*/38 
h&xi, Q) Q2+ Cxlx*x3(lOg~) * +co 

(3.4 

Thus we find that at large Q* the canonical l/Q4 behaviour of the form factor is 

modified by factors of oz(Q*) (in 2”) and log% 
( > 

--*I38 
from each of the two 4’s in 

Eq.(3.1), so that* F(Q*) - &a;(Q2)(log~)-4’3’. The region of configuration 

-- 
* There is an accidental cancellation of the leading term for the proton magnetic 
form factor which does not apply to other nucleon form factors. 
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space which is relevant for the leading behaviour is that in which the separations 

between the three quarks are light-like [17]. Peskin [7] has verified that the exponents 

7n of eq. (3.3) indeed correspond to the eigenvalues of the anomalous dimension matrix 

of the leading twist three-quark operators. All of these contribute to phenomenology at 

presently accessible momentum transfers, and are taken into account in the calculations 

presented in this paper. 

In momentum space the leading behaviour of the form factor comes from the region 

where the transverse momenta are strongly ordered, so that for example in fig. 3(a) 

“TL << kg1 < -. . << Q*. The helicity of the quarks is not changed by the radiative 

corrections, so that a typical factor in the integrand is [see fig. 3(b)] 

“1 (G+l)7’ uf(ei) “1 tri+l)7p ul(ri) 2c!j-i+l - . 

a fi & R = CtlcL 
P-5) 

a- 

where &+I *v - fl;+, and I Eli,1 ] >> ] eYi ]. In addition there is a factor of l/$i+l 

from the energy denominators, so that the integrand over each transverse momentum 

‘is logarithmically divergent as expected. Note that in order to obtain the leading 

behaviour the masses may be neglected. 

We now study the pole contribution to the proton decay amplitude p + e+7r” using 

the same light-cone perturbation theory techniques. From the short distance technique 

study of this process [4] we expect to find that the canonical l/m% behaviour of this 

amplitude will be modified by an enhancement factor O(log(m$/A*))‘Yo, where the 

exponent 7~ corresponds to the anomalous dimension of the 3-quark operators of 

lowest dimension. We shall try to understand, using light-cone perturbation theory, 

why different correction factors arise in the two processes we are studying. 

A typical contribution to the proton decay amplitude p + e+?r” is proportional 

: to fig. l(d), in which @(xi, &l.) has to be convoluted with the four-fermion baryon 

number violating vertex. Thus this vertex takes over the role played by 2’~ in the 
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form factor calculation. We list the values of the four-fermion vertex in momentum 

space for the different helicities of the quark in Table 2. From this table we observe a 

number of differences from the form factor calculation. For example we have 

t ,+~+-~5fl(p*) ‘i(p) 1 @“(Pl) 1 5 QP3) -.- 

If- P; 2 @fl a 
74-7 )---- 

= + ,” + + 
p Pl pep3 [ P+Pfi - P:Pl I[ P3+P2_L - PZP,, 1 

where for any momentum k we define k* E k” f k3 and k? z kz &ik,. If we keep the 

ground state SU(6) wave function for 91, it will be symmetric in momenta p2 and p3, 

which gives zero when convoluted with (3.6). This fact is reflected in the estimation 

of the decay rate in sect. 4. However, we can imagine convoluting (3.6) with a wave 

function which is antisymmetric in momenta p2 and p3, corresponding perhaps to an 
a.- 
excited state of the proton. In that case we see that (from individual “time”-ordered 

graphs) we will obtain divergences which are quadratic, and not just logarithmic, since 

we obtain two powers of transverse momentum from the four-fermion vertex. These 

quadratic divergences must cancel in the sum of all “time”-ordered graphs, and we 

now present an explicit demonstration of such a cancellation. 

As our example we take the Feynman diagram of fig. 4(a). We can derive the 

light-cone perturbation theory graphs by starting with the Feynman diagram and 

doing the k- integration by contours. However, in addition to evaluating the residues 

of the various poles in k- , each pole corresponding to a particular “time”-ordered 

graph, we have to evaluate the contribution from the contour at infinity since the 

k- integration is logarithmically divergent. This last contribution has no analogue 

in light-cone perturbation theory. To avoid this problem we put back the X-boson 

propagator [see fig. 4(b)], i.e. we no longer treat the four-fermion vertex as local. Now 

/ d2kl + (m%) / 
&kl 

k* + ,* 
I x 

P-7) 

--. 
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so that what we previously called quadratic divergences will now manifest themselves as 

real logarithmic ultraviolet divergences. The four ‘%ime”-ordered graphs corresponding 

to the Feynman diagram of fig. 4(b) are drawn in fig. 5. The coefficient of the 

ultraviolet divergence in each of the four graphs is as follows: 

diagram 5(a) - - 
1 

P+(P - P3)+ ’ 

diagram 5(b) - ’ 
P+(P - P3)+ ’ 

diagram 5(c) - 
1 

P+(Pl + P3)+ ’ 

diagram 5(d) - - ’ 
P+(Pl + P3)+ ’ 

(3.8~) 

(3.8b) 

(3.8~) 

(3.8d) 

so that the divergences cancel as required. The leading terms which remain are 

“i logm$ as expected. We see no reason to expect these to be the same as the 

log&* terms in the form factor calculation and they are not - hence the different 

anomalous dimensions for the two processes. ._ 
As we have already noted, the expression (3.6) has no overlap with the ground state 

SU(6) wave function. Taking the proton to be predominantly in this ground state, we 

are forced to take one of the other entries in Table 2 for our four-fermion vertex, one 

which has a component symmetric in the momenta. For example we can take 

--741-7 “i (Pl) 1 

lf- 6 
5 Ut(P2) “Ii (P) 7p ‘tl _ 75) Ul(P3) 

)- - 
2mlm2 

j/i&/F2 JT=- P:P; . 
(3-Q) 

The right-hand side of eq. (3.9) has no dependence on transverse momenta and hence 

one might have expected that integrating over the transverse momentum we would 

obtain 4(X;, m$) again and hence the same anomalous dimension as in the form fac- 

tor calculation. However, this is not the case because we can no longer neglect the 

contributions in which the helicities of the quarks change. So for example in the di- 

agrams of fig. 6 we not only have the combination of fig. 6(a) in which the helicities 

‘-..a, 
_- 
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of the quarks do not change, but we also have the contributions from the graphs of 

figs. 6(b), 6(c), and 6(d) in which they do. In other words, since we cannot avoid 

picking up two factors of the quark masses we must keep all possible terms in which 

these factors arise. Indeed, the contribution from the diagrams of fig. 6(a) is can- 

celled by those of the other graphs of fig. 6 in which we keep only the masses in the 

k-dependent spinors, the contribution of fig. 6(a) being equal to that of fig. 6(b) and 

equal to minus each of the contributions figs. 6(c) and 6(d). An examination of the 

Feynman diagrams which sums all the contributions of fig. 6 shows that this had to 

happen. Thus the only remaining contribution is that in which we keep both factors 

of the mass from the ezternal spinors in fig. 6(b) and neglect the masses everywhere 

in the loop. The coefficient of logmX * from this remaining contribution corresponds 

to the short distance enhancement factor and has no simple relation to the suppres- .2- 

sion factor in the form factor. This analysis can be iterated to more and more loops, 

and in each case the only surviving contribution (in the leading logarithm approxi- 

--mation) will be that in which the two factors of quark mass come from the external 

spinors. Iterating this procedure until the momenta in the external quarks are small, 

we find that the masses should be interpreted as masses m,(Q) appearing in the quark 

Dirac equation B - 
( mq(Q))dQ) = 0 at low momenta Q, and not as short distance 

quark masses. We therefore interpret these external quark mass factors as constituent 

quark masses, though this involves an intuitive leap from perturbation theory to in- 

clude non-perturbative effects which we cannot justify formally. Note that analogous 

constituent quark mass factors appear implicitly in non-relativistic SU(6) model calcu- 

lations, while some bag models prefer constituent quark masses considerably smaller 

than those favoured by these SU(6) models. 

‘_ 

-- 

We have seen, within the context of light-cone perturbation theory, how it is that 

the correction factors due to gluonic radiative corrections are different in the proton 

14 



decay amplitude and in the form factor. Nevertheless these factors are calculable in 

both cases, and in the next section we shall estimate the proton decay rate using a 

model wave function $3q(zi, kli) for small 41; which has already led to successful 

predictions for the proton form factor and other related quantities. 

4. Light-cone Wave Functions and Nucleon Decay 

As we have discussed in sect. 2, the calculation of nucleon decay within the chi- 

ral framework depends on the normalizations of the three-quark annihilation matrix 

elements o and p defined by eqs. (2.1). These matrix elements can conveniently be 

expressed as integrals over the three-quark valence Fock state wave-function of the 

baryon defined in the free quark-gluon Hamiltonian basis with quark helicities Xi. As 

=?n sect. 3, we introduce an ultraviolet cutoff Q which is defined such that all interme- 

diate states with l$ > Q2 are excluded from the Fock state wave-function $3&Q). 

Using the normalization convention of ref. [5], any amplitude involving the nucleon 

-has the form 

where T( xi, Icli, Q, Xi) is the irreducible scattering amplitude with the nucleon re- 

placed by three free quarks. By definition, T(Q) contains no reducible qqq propagators 

with transverse momentum l$ < Q2, since such contributions are already included 

in the wave function +3&Q). In th e case of nucleon decay in a GUT the irreducible 

amplitude T(Q) for N + z is computed from the four-spinor matrix elements listed 

in Table 2. The gluon loop corrections to the tree graph amplitudes with A2 <l$ < 

rn$ sum to the leading anomalous dimensions of the operators responsible for nucleon 

decay. To leading logarithmic order the matrix element acquires the enhancement 
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factor 

The central unknown in the nucleon decay amplitude in any given GUT is the form 

and normalization of the nucleon 3-quark wave-function +3g(zi,klCi, Q, Xi) at a typical 

hadronic scale QH. 

Eventually, +(zi,kli, QH, Xi) may be computed from lattice gauge theory or some 

other method of solving QCD in the non-perturbative regime. However, one can al- 

ready constrain [6] to some extent the normalization and size parameters of the valence 

wave function by using existing phenomenological information about high momentum 

transfer reactions. Especially useful are the J/$J --) pp decay rate, the nucleon mag- 

‘;lktic form factor, and the z -+ 1 limit of the deep inelastic nucleon structure function. 

Recent preliminary data [18] on 77 -+ pp agree to within a factor of 2 with predictions 

1191 for mpp = 2.3 to 2.9 GeV based on a nucleon wave function consistent with the 
_ - 

other phenomenological constraints. 

The procedure used is to adopt the following parametrization for the spin, flavour 

and momentum space structure of the nucleon wave function at the hadronic scale 

QH: 

$+g(zi, Icli y QH, Xi) 
3 k2 -+mf 

= B exp[-b2 C (--l-‘zt 
i= 1 . 

)] (4.3) 

which falls off exponentially in the off-shell light-cone “energy” k k- p- - i=l i > . If we 

-- 

ignore the u--d quark mass difference the wave function (4.3) is symmetric in the quark 

light-cone momentum variables. This symmetry is natural if the nucleon quark wave 

function is purely S-wave in the centre-of-mass. By assumption, the parametrization 

(4.3) is also independent of the quark spins. Given a symmetric form in momentum 
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space, the flavour-spin dependence following from SU(6) symmetry is [5] 

multiplied by the antisymmetric colour factor @/ &. 

The distribution amplitude corresponding to (4.3) is 

&g(Xi, &HI Ai) s /(n dk) ?kg(zir kli, QH, Ai) 

= B@122X3 exp )I 
(4.5) 

P-6) 

It was shown in ref. [6] that the parametrization 

Bz = 0.35 GeV4 (4.7) 

b2m2 = 0.012 (4.8) 

is roughly consistent with the J/$J + pp branching ratio, the normalization of the 

proton magnetic form factor Q4Ga(Q2) at Q2 = O(10) GeV2, and the normaliza- 

tion of the deep inelastic nucleon structure function at x > 0.6. The normalizations 
N 

(4.7, 4.8) correspond to a probability Paq = l/4 for finding the nucleon in the va- 

lence 3q state, while the valence radius is R3q = 0.23fm. Given the relatively small 

uncertainties in the empirical inputs [e.g. B(J/11, --) pp) = (0.22 f 0.02)%] and the 

approximate success of predictions based on (4.6), it seems to us reasonable to believe 

that the parameters B$ (4.7) and b2m2 (4.8) may be uncertain by at most a factor of 

two. 

Since the momentum space wave-function (4.3) is assumed to be symmetric, each of 

the 3-quark decay amplitudes listed in Table 2 gives zero contribution to (OlqqqlN) (2.1) 

except for the matrix elements proportional to products of pairs of quark masses mimj. 

Thus the nucleon decay rate is proportional to the fourth power of the (constituent) 
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quark mass. For example, in minimal conventional SU(5) [2] the interaction Lagrangian 

[4] (24a) contributing to p -+ e+Ir’ gives an effective Lagrangian density 

where 

4m2 
cr =QI 

mP 

with 

Is /(n dk) dxi ?kq(xi,QH,kli) A=/ dxldx2 $$ 

(4.9) 

(4.10a) 

(4.10b) 

The results of Table 2 indicate that the two matrix elements (2.1) are related by ]p] = 
a-~ 
]a]. We assume that the constituent quark mass mq = !j mp. The parameters of 

equations (4.7, 4.8) yield 

I = 0.07 GeV2 , cr = 0.03 GeV3 . (4.11) 

The decay rate for p + e+lr” can then be computed using chiral symmetry [8,9] as in 

Table 1: 

l?(p -b e+?rO) = cr2 c; ~2~ (I+ SA) ~(1-$) 

Taking A = 2.9 * and cy = 0.03 GeV3 we find 

(4.12) 

(4.13) 

* Here we include the SU(2) gauge boson exchange contributions to the renormal- 
ization group scaling between rnx and rnw, since these are numerically significant 
[20]. We truncate the perturbative renormalization factor A at a hadronic scale 

-_ QH = 1 GeV, and evaluate it using Am (3 flavours) = 140 MeV. 
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which means that 

rnx > 2 X 10” GeV (4.14) 

on the basis of the experimental lower limit ~(p ---) e+?r’) > 1.0 X 1O32 years established 

by the IMB group [13]. 

An alternative way of stating the result (4.14) is 

Gx = A& 
4fi rn$ 

< 3.5 X 1O-32 GeVw2 . (4.15a) 

Corresponding limits can be imposed on the coefficients Gs, Gk of the operators (2.4b, 

2.4~) using the results of Tables I and 2 in conjunction with experimental lower limits 

on other nucleon decay modes: 
2. - 

Ref.[22] : r(rr --) ti K”) > 8 X 1030 yrs * es < 0.4 X 10B3’ GeVD2 (4.15b) 

Ref.[21] : ~(p -+ DK+) > 2 X 103’ yrs * Gf < 0.8 X 10B3’ GeVm2 (4.15c) 

Ref.[22] : r(p -+ p+K’) > 2.6 X 1031 yrs =+ GF < 0.9 X 10B30 GeVs2 (4.15d) 

The credibility and significance of these results are discussed in the last section. 

5. Discussion 

Before considering the significance of the results (4.14, 4.15) for GUT models, it 

is well to assess their credibility. The estimate (4.13) gives a nucleon partial lifetime 

which, for a given value of mx, is about a hundred times shorter than estimates [3] 

based on non-relativistic SU(6) and the bag model. This difference can largely be 

traced to the fact that the valence nucleon wave function is quite small and dense, 

as is manifested by the normalizations (4.7, 4.8) and the corresponding valence radius 

Rzq w 0.23fm. In contrast, non-relativistic SU(6) and bag models would suggest that 
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a natural hadronic scale is 0( 100 MeV) or 0( 1) / m, which gives dimensional estimates 

differing greatly from the estimates based on high momentum phenomenology [5,6]. 

A possible attitude [14,23] is to dispute all the exclusive QCD phenomenology, and 

assert that while it is doubtless valid in principle, less than 1% of the nucleon mag- 

netic form factor observed at Q2 = 0( 10) GeV2 (or of the J/$ --) pp decay rate) 

can be ascribed to the true short distance hadronic wave function. Such a viewpoint 

would fly in the face of the successful prediction [19] of 77 + pp, as well as of the re- 

lated successful predictions for exclusive high momentum processes involving mesons. 

These are successfully normalized by the known pion decay constant fn, a parameter 

closely analogous to the Q and ,8 (2.1) discussed here. We question whether the non- 

relativistic SU(6) or bag technology has been so severely tested in the range of interest. 

Jjost constraints on the SU(6) wave function involve the overlap of at most 2 quarks in 

the nucleon, rather than the three relevant to nucleon decay. The baryon 3q valence 

wave function may be more concentrated in configuration space (i.e. have a larger 

_ -high momentum tail) than might be credited on the basis of non-relativistic SU(6) 

phenomenology. An alternative possibility is that our estimate using light-cone wave 

function phenomenology is erroneous, most probably because we use a constituent 

quark mass mq = i mp in our matrix elements. We have already mentioned in sect. 3 

that graphical analysis in perturbation theory, as well as the symmetry arguments of 

sect. 2, suggest no motivation for using short distance current quark masses instead 

of constituent masses. Indeed, we have verified graphically in section 3 that the rele- 

vant quark mass factors are effectively low momentum masses, which it is natural to 

interpret as constituent masses. For these reasons we think our numerical estimates 

presented in sect. 4 and the bounds (4.14, 4.15) are credible. What are their implica- 

tions for GUT models? 
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It has been calculated [3] that in minimal conventional SU(5) 

rnx = (1 to 2) X 1015 X Am (5.1) 

where Am is defined through two loops in a momentum range with four operational 

quark flavours. Most data analyses place Am < 400 MeV, while lattice QCD cal- 

culations suggest Am = 100 to 200 MeV, with an uncertainty resulting from the 

non-inclusion of quark loops. The limit Am > 1 GeV inferred from equations (4.14) 

and (5.1) certainly seems unacceptably high. While embarrassing for the conventional 

minimal SU(5) GUT [2], this limit would not exclude philosophically similar models 

such as those based on SO(10) [23] in which the linkage (5.1) between rnx and Am 

can be relaxed. Of course, the bound (4.14) does not apply to supersymmetric GUTS 

3x0] in which nucleons prefer to decay into fi K (111 and perhaps [12] into p+K or e+K 

as well. The constraint (4.15b) applies to minimal supersymmetric SU(5) in which [12] 

_ - - 2&G&As +F(m+m2,mg) >I (5.2~) 

where 

Fh, m2, m3) = 
1 

[ 
m4 mT tn--,- m8 mi 

mt-rng rni-rng m2 mf-m,Z 
en, . 

m3 1 (5.2b) 

and where As is an sU(3) X SU(2) X V( 1) renormalization group enhancement factor 

[ll] equal to 0.41 for the choices QH = 1 GeV, Am (3 flavours) = 140 MeV. The 

significance of the bound (415b) is difficult to assess because we know neither the 

superheavy Higgs mass mHx appearing in eq. (5.2), nor the relevant supersymmetric 

particle masses rni, m,, me. If we make the plausible guess [12] 

rnwrnw 
[ 
F(mg, rng rnw) + F( rng mj, rnw) 1 = 0( 1) (5.3) 



then (4.15b) requires 

rnx 2 7 x 10” GeV 

which is considerably larger than the calculation (31 

(5.4) 

m,y = (4 to 8) X 1016Am (5.5) 

of the superheavy gauge boson mass in minimal supersymmetric SU(5), though one 

should bear in mind the uncertainties of the approximation (5.3). Finally if we apply 

the constraints (4.15c,d) to the estimate [12] of the coefficient of the operator (2.4~): 

2diiG;=Az 
x GF m&mW 

mRanck 31612 flmij, q, m& + Wq, mi, mw) 1 (54 
-where A: 21 12, then the plausible guess (5.3) tells us that 

x s 5 x 1o-7 (5.7) 

whereas we might [12] have expected X = 0( 1). 

While there are intangible uncertainties involved in our calculations, our estimates 

of nucleon decay rates based on the phenomenology of hadronic wave functions at high 

momenta make nucleon decay seem even more embarrassingly overdue. 
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Table 1: Amplitudes for nucleon decay into an antilepton plus pseudoscalar. 

Here &‘x , Gs and Gf are the coupling constants for GUTS, minimal supersym- 
metric GUTS and alternative supersymmetric GUTS defined in eq. (2.4)while cw and 
/I are the three-quark annihilation matrix elements defined in eq. (2.1). The quantity 
f = 139 MeV is th e pion (or kaon) decay constant, and D = 0.76 and F = 0.48 are 
are taken from a recent Cabibbo fit to hyperon decays [16]. The spinors p,r,, E;, etc. 
are ordinary Dirac spinors multiplied by chiral projection operators (1 f 75)/Z. Our 
results for conventional GUTS agree with that of Claudson et al. [O], and our results 
for minimal supersymmetric GUTS agree with those of Chadha and Daniel (91. 

p -b e+n” 

P-+e+rl 

P-‘fier + 

p + e+K” 

p+PeK + 

p + $K” 

p-‘plrK + 

n -b e+w- 

‘n+PeTO 

n ---) PeTj 

n+DeKO 

n+QKO 

(40~iy/f)(l+D+F)(a~p~-22Etp~) 

(-4a Gx / & f)( I+ D - 3F)(z; pL - 2 EL+ pR) 

(--4mxlf)( ) l+D+F p&pL 

(m4?f)( ) 1-D+F z;pL 

(4&3$3f)(l+F) D&PL 

(-,~~~xI~)(,.D-F)(B~PL-~B~PR) 

+(2 dip $ / f)(l - D + F) &p~ 

(4 fi Q Gx /3f) D $R PL 

+(2 \/ZpGs I/)( 1+-D-t-F o;,pL ) 

+(4fiP%/f)(~+f) D;~PL 

(4 fi cm Gx / j)(l -I- D + F)(t$ nL - 2 ~2 no) 

(la&Ij)(l+D+F) i&nL 

(4ffcX/m)( ) l+D-3F p&nL 

(wm%)( ) l+D+F D&nL 

(4~~cm~~/f)(l-+-D/3-F) P;~~L, 

+(4 fiP &S l/)(1 + F) $R nL 

+(2 fiP 2;: / f)( 1-k D + F) $R nL 
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Table 2: Matrix elements needed for the evaluation of the proton’s lifetime. 

The notation is that of Brodsky and Lepage, Ref. 5; Xi and m; are the 
helicity and mass of the quark with momentum pi, and X is the helicity 
of the positron (whose mass is neglected). In the massless limit helicity 
1 (1) correspond to chirality L (R). For all momenta k, kf c k, f ilcy. 

Let: 01 E “$ (Pl) 7p f (I- r5) UA,(P2) 8: (PI rcL i (I- r5) Ux,(P3) 

Xl x2 x3 x 01 

t 1 1 1 * [P’Pi-* - &;I [&-5L - P:PiJ 

1 t 1 1 -$f& p+p: 

1 1 t 1 2ml m Jzm pip+ 

t t 1 1 2m2$ 
ppJ ( m - pLp+) 

t 1 t 1 2m3$ Jsm ( P+P;j- - PIP: 1 

(4 
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Let: 02 E “$ IPl) 7/J $ Cl- r5) UX,(PZ) q (PI rp f (1 + r5) QP3) 

Xl x2 x3 x 02 

t 1 t t * (PX* - P;,:,) (Pip; - P+P,I) 

t t 1 t 2m2w 

&%z p+pr 

1 t t t -$g&= p+p3+ 

t 1 1 t * [p;p: -w+] 

1 1 t t * [p+G -p:p;] 
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Let: 03 z “&h) ; (I- 75)uX,(p3) ai(d f (1-75bA2(Pd 

Xl x2 x3 x 03 

1 t t t &$& p+p: 

t t 1 t -$y& p+p3+ 

c- 

-1 
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Let: 04 zi “g (Pl) f (1 + r5) %&3) fJ: (P) f (1 + r5) u&2) 

h x2 x3 x 04 

t 1 1 1 .a p+p: 

1 1 t 1 -$g& p+pJ 

(4 

-1 
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FIGURE CAPTIONS 

1. Models for nucleon decay matrix elements: 

(a) quasi-free q --) ij tj 2 decay, 

(b) two-particle qq + ijz annihilation, 

(c) three-particle qqq -+ 2 annihilation proportional to 

(d) the basic three quark annihilation matrix element. 

2. Lowest order contribution to the magnetic form factor of the proton. 

3. (a) Feynman diagram which contributes to the leading behaviour 

of 43&i, a- 

(b) Typical single gluon insertion. 

4. Feynman diagram contributing to proton decay. In (a) we have a qqqt local 
E -~ 

operator whereas in (b) we have put the X-boson propagator in explicitly. 

5. Four light-cone perturbation theory diagrams contributing to proton decay. 

._ -Each of the diagrams is quadratically divergent. This divergence cancels in _ - 
their sum. 

6. Four Feynman diagrams contributing to proton decay. In light-cone pertur- 

bation theory each of the diagrams has two “time” orderings corresponding 

to 0 < k+ < pg and -pr < k+ < 0. 
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