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ABSTRACT 

We study the three point function, I’(py,p$,p$, of the Wess-Zumino model 

in the limit where pi N p$ -+ 00. Contrary to the conclusions of some recent . -. 
publications, we find that this three point function can vanish sufficiently quickly 

in this limit for the Schwinger-Dyson equations to be consistent and without 

violating other known properties of the model. 
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Recently Krasnikov[l] and Krasnikov and Nicolai[‘L] have claimed to have 

shown that the Wess-Zumino model[3] is inconsistent. Their arguments rely on a 

comparison of the conditions imposed by the non-perturbative Dyson-Schwinger 

equation, spectral conditions and supersymmetric Ward identities and the renor- 

malization group and perturbation theory. < - e 

- One begins by deriving the Dyson-Schwinger equation from the Wess-Zumino 

Lagrangia.n: 

L ren =zLo+LI (1) 

with 
- 

and 

Lr = m(FA - f $qb) + g(FA2 - A$$) + h.c. w 

where all the fields and couplings are renormalised.Il] This is done by taking the 

quantum equation of motion for the E field obtaining 
- - 

(F(P) E (-P))-l= 2 + 9 / gq hA(P? (P - e, q 
(3) 

which is represented diagrammatically in Fig. 1. Equation (3) is valid for m = 0, 

this will be sufficient for our discussion below where we study certain ultraviolet 

aspects of the theory. The supersymmetric invariance of the model allows one to 

IllNo separate renormalisation for the coupling is requires (4). And it is assumed 
that there is no pathological behaviour i.e. 2 -i;r 0. 
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relate (via the corresponding Ward Identities), the (FE) propagator to the (AA) 

i propagator, specifically 

(F(P) E (-P))-l = $ (4PwP))-1 ? (4 

so that the Schwinger-Dyson equation becomes - - e 

rFAA P2,b --k12,k2 ( > 
lf2 (P - k12 (5) 

- (F(P)E(--p)) * (ww4)(F(P - w(~ -PI) * 

By the Kgllen-Lehmannspectral inequality 0 2 Z 5 1 the left hand side of the 

above equation is finite. Therefore for consistency the integral on the right hand 

side must converge. In reference [2] it was claimed that this is impossible and 

hence it was concluded that the model is inconsistent. We note that nothing is 

to be gained by analyzing the Schwinger-Dyson equations for the other propaga- 

tors, as these equations are related directly to (5) via the supersymmetric Ward 

-. . 
Identities. 

In this letter we reexamine the behaviour of the one particle irreducible three- - - 

point function I FAA(p2, (p --k)2, k2, m, 9, p) as- k2 + & for fixed p2. ,An imme- 

diate question which arises is whether the behaviour of IFAA as a function of 
- . . . . 

k2 is given by the renormalisation group equations or whether there are singu- 

larities as p2 and/or m2 -+ 0. At least in perturbation theory there are no such 

singularities. Consider for example the supergraph of Fig. 2(a). If we set p2 and 

m2 equal to zero then there are two propagators with denominators equal to q$ 

suggesting a singularity as qz --+ 0, however the numerator gives us a factor of 

q;. In each of the ordinary Feynman diagrams of Fig. 2(b) and 2(c) there is an 
- ~_ -. 
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infrared divergence, these divergences cancel in the sum. The absence of infrared 

divergences as p2 and/or m2 -+ 0 persists two higher orders in perturbation the- 

ory and we assume that it is also true non-perturbatively so that we can proceed 

with renormalisation group arguments. For our purposes it will be sufficient to 

set p = 0. Using the renormalisation group equations one can show that ~ - 6, 

- CFM(b, i2, k2, m(O), g(O), j4) = $$rFAA(o, 6-2tk2, Cztk2, eStm(t), g(t), p) . 

(6) 

Nicolai and Krasnikov now take the limit t + 00 and combine it with the result 

of Iliopoulos and Zumino[4] 

rFAA(p2 = k2 = 0, g, m) = 2g (7) 

to argue that the right hand side of (6) is equal to 2g(O), and hence that the left 

hand side does not vanish as k2 -+ 00. This step is delicate however since on the 

-. . 

right hand side of equation (6), not only the momentum but also the mass is going 

to zero. Moreover if g(t) approaches a fixed point as t --) 00 then the momentum 

and mass in IFAA(O, e-2tk2, e-2tk2, eetm(t), g(t),p) go to zero in the same way, 

and hence one cannot fairly say that one is taking the zero momentum limit. In 
- - 

perturbation theory even the lowest non-trivial order graphs which contribute 

to IFAA depend on the relative size of k2 to m2. For example in the limit 
- . . . . . k2->> m2 the only-super graph which contributes is that of Fig. 2(a) and gives a 

contribution proportional to 

k2 
/ 

d4ql d4q2 1 
cw8 

* 
(k - q1)2 + ic 

(8) 

-[*]y -i &f d3f5) 
- ~_ -. 
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whereas in the case m2 # 0, k2 = 0 (relevant for equation (7)) we get zero 

contribution from all the two loop supergraphs. In intermediate cases we get 

still different results. Thus we conclude that the application of equation (7) to 

equation (6) in the limit t -+ 00 is not valid. 

We would now like to see whether it is possible for I’cM (0, k2,rC?, m(O), g(O), p) 

to vanish ti k2 -+ 00, and in particular to vanish faster than logarithmically so 

that the integral in the right hand side of (5) is convergent. The running cou- 

pling constant g(t) does not vanish as t + 00, and we assume that it goes to an 

ultraviolet fixed point g* (as do Nicolai and Krasnikov). We rewrite equation (6) 

as - 

rFM(O, e2’k2, t?k2, m(O), g(O), cc) = S(t) g(0)I’FM(O, k2, k2 9 e-w), 9(t), cc) (9) 

and shall study this equation for sufficiently large values of momentum so that 

the masses can be neglected. Thus 

rFAA(eztk2) = f(g(t)) (10) 

where on the left hand wide only the dependence on the momentum is explicitly 

exhibited and f is some function of g(t). Thus _ 

F”(e2k2) = P(s)f’Mt)) (11) 
and therefore a priori, that is without knowing /‘(g(t)) and in particular ,8(g), 

it is clearly possible that IFAA vanishes like an inverse power of k2 as k2 + 00. 

A simple possibility with this consequence is that near the fixed point (g*) ,8(g) 

vanishes linearly, i.e. ,8(g) N A(g* - g). 

We have shown that rFAA(k2) can vanish sufficiently quickly as A2 -+ oo 

for the integrals in the Schwinger-Dyson equations for the propagators to be 
~_ -. 
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convergent. This behavior of I FAA(k2) leads naturally to the possibility that 

7(9*) = 0 without the propagator bearing a free propagator and hence the 

theory being a free theory. There is no inconsistency with the lack of asymptotic . 
freedom, nor with a renormalisation group analysis, for both the massless and 

massive Wess-Zumino models.. ,-- - m 
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FIGURE CAPTIONS 

1. Schwinger-Dyson equation for the inverse of the propagator (F(p) E (-p)). 

2. (a) A two loop supergraph contributing to the vertex 444 (where 4 is the 

chiral superfield consisting of A, $ and F). In the massless theory this is 

the only two loop graph. 

(b) and (c) T wo e F y nman graphs contributing to the vertex FAA. 

- . . .- 



i 

-I 
L@J+ =z+ 
F F 
5-83 
4565Al 

- - 
Fig. 1 _ 



k 
5-83 

Fig. 2 
- . . . . 


