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ABSTRACT 

.?? - The Casimir energy, the quantum correction part of the energy, of a class of 

space-dependent scalar field configurations is examined in a Coleman-Weinberg type 

Xd4-theory in the d-dimensional regularization scheme. For the cases when the scalar 

) field is dependent on only one space-coordinate and partially excludes its fluctuations 

from a region of space, we develop formulae effective for evaluating the full one-loop 

Casimir energy. As an application, we evaluate a simple case and find that the Casimir 

energy yields the familiar quantum correction to the volume energy, an extra surface 

energy whose coefficient is finite for d 5 4, and a finite, exponentially small attractive 

term. It is shown that the divergences for d 2 5 are due to sharp boundaries of the 

configuration. 
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1. INTRODUCTION 

This paper aims to examine the full one-loop Casimir energy for cases when a quan- 

tum field is partially excluded from a region of (infinite) space. The system consists 

of a massless real scalar field with a quadratic coupling (Coleman-Weinberg type). A 

background field provides a space-dependent mass to its fluctuation through the self- 

interaction. 

This type of the Casimir energy calculation differs from most of the ones found in 

the literature. Earlier historical examples include the Van de Waals force between elec- 

trically neutral conducting objects1 and Casimir’s suggestion2 for stabilizing the elec- 

tron in the classical model, a charged conducting sphere. Some years later, Boyer3 gave 

an explicit calculation of the latter case and showed that unfortunately the Casimir 

a- force provides a repulsive force and thus fails to stabilize the classical electron. A more 

recent application of the Casimir energy is found in the bag model of hadrons.4f5 The 

zero-point energies of the gluon and quark fields perfectly confined in a bag are ex- 

pected to explain a part of the potential (l/bag radius) necessary for phenomenology. 

There arises a problem of W divergences. Although some regularization schemes’ can 

be devised to remove the divergences, the real issue of how they should be dealt with 

physically remains unsolved. 7 This situation becomes somewhat clearer when one in- 

cludes the confining (or excluding) force as a part of the dynamics, since our knowledge 

of the renormalization procedures in the local field theory should allow us to distin- 

guish the divergences intrinsic to the theory from the divergences due to the special 

features of the configuration we deal with. An example of such a calculation is found 

in the two-dimensional soliton theory. 8 The classical solution gives space dependent 

mass to its fluctuations (it imperfectly confines the fluctuation). The Casimir energy, 

which gives a soliton mass correction, has been calculated and the W divergences have 

been shown to be removed by the renormalization in the original theory. For more 
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general configurations, investigations have been possible only at the lowest nontrivial 

order of the Feynman graph, or “multiple scattering” expansion.g In contrast, this 

paper deals with the full one-loop features of the Casimir energy, while having the 

“excluding force” as a part of the dynamics. 

Besides the interests mentioned above, the type of investigation given in this paper 

may be of practical interest in the physics of the very early universe.lO The current 

“new inflationary scenario” is based on the dynamics of Coleman-Weinberg type Higgs 

fields. The flatness of the effective potential around its origin supports the inflation 

in each fluctuation region, one of which then develops to our whole universe. The 

perturbations of the Higgs field in each fluctuation regions are the sources of our cur- 

rent inhomogeneity such as galaxies and clusters. People have calculated the spectrum 

a- of the perturbations using the effective potential in various models. For example, in 

the simple GUTS, the scale dependence is in agreement with the observation but the 

strength is not. One then naturally asks what is the validity of using only the quantum 
._ 

correction to the effective potential but not the momentum dependent part of the effec- 

tive action. For a completely consistent analysis of the spectrum, the quantum analysis 

of the finite size objects in a Coleman-Weinberg type theory is necessary. Therefore 

we believe that although the investigation of the paper is not directly applicable it 

could be a small step towards it. 

In the next section, we give some preliminaries including the method of the Casimir 

energy calculation using the phase shifts of the fluctuations. Section 3 gives an ex- 

pansion of the phase shifts which is useful in evaluating the Casimir energy. Applying 

these techniques, we present a calculation for an Higgs field with sharp boundaries in 

Sec. 4. Section 5 gives the discussion of the nature of the divergences that appear in 

the Casimir energy calculated in the preceding section. The conclusions are given in 

-_ Sec. 6. Even though the theory is of little physical interest unless the spacetime is 
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four-dimensional, we discuss the results in various dimensional space-times to clarify 

the divergence structures. 

2. THE PRELIMINARIES 

In this paper, we study the simplest Coleman-Weinberg type theory within the d- 

dimensional regularization scheme: We have a real scalar Higgs field with a tree-level 

potential 

V(4) =; ti4 (24 . 
The unrenormalized one-loop effective potential is given as follows (in Euclidean no 

tation), 
a- 

AV(h) = f 1 . (2.2) 

-- The above calculation is essentially a summation over all the zeroth-order zero-point 

energies of the excitation modes 3 = 4 - 4 c on the constant Higgs field background 

$c. In fact, by performing the integration over dl-dimensional “time” components and 

letting dl + 1, we obtain the following, 

where p2 s i=l pi. ‘El 2 Since with the potential (2.1) the fluctuation 4 has (mass):! = 

M2, (2.3) 6 Ives the first order quantum correction to the energy as, 

-_ AE = (d - 1 dimensional volume) . AV(4c) . (2.4 
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The Casimir energy is the sum of the zero point energies of the excitation modes 

in a space-dependent background field $c(~). Th e calculation is simplified when tic is 

“membrane-like,” that is, tic depends on only one space coordinate, say $1, and not 

on other d - 1 coordinates. In such a case, the excitation modes are labeled by the 

“moment an p1 - p&l. The Casimir energy is expressed as 

where Lc and pt denote the size of the space and the momenta in the directions 2 - 

d - 1 parallel to the membrane and p[tic](pl) the level density for the perpendicular 

momentum pl. l1 Generally, PI+~I(P~) consists of a discrete part and a continuous part, 

P[&](Pl) = c 2nb(Pl -P(,)) + Pc(P1) O(Pl - Pmin) - 
n 

P-6) 

The continuous part pc is known to be related to the phase shifts of the excited states.8 

For completeness, we describe the method below for the cases when &(-t) = 4c(z) 

and lim &(x1) = 0, h 1 
1x1 I+00 

w i e extentions to other cases are straightforward. First, we 

note that there are no bound states and pmin = 0 in such cases. We need to calculate 

the eigenfunctions jP(zl) that satisfy the following equation, 

(Pl > 0) (2.7) 

and have definite parities under ~1 + -xl. They can be written as follows in the 

asymptotic regions, zl -+ foe, 

i 

COS(PlZl f b4PlV2) 
fPl(4 = 

for even jP , 

Si4PlX2 f h4PlV2) for odd jP . 
(2.8) 

The level density is obtained by restricting the whole system to a large “box,” lxll 5 

&/2, which induces the periodic boundary condition, and then by taking the limit 

Ll---) 00: For each of the odd and even sectors, the boundary condition yields 

plLl + 6(pl) = 2nn (n = 0, 1,2,. . .) , (2.9) 
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which translates into the following level density, 

dn=& (Ll+f$$)dpl . 

Thus, the total level density is given by, 

pJp1) = & k, + & (64Pl) + UPl))] - 

(2.10) 

(2.11) 

3. THE PSEUDO-REFLECTION AMPLITUDE EXPANSION 

As presented in the previous section, a Casimir energy calculation consists of (i) 

solving (2.7) to obtain 6’s and (ii) evaluating the integral (2.5). Unfortunately, unless 

one keeps to numerical calculations, there are very few cases which allow (i). Even 

a- when 6’s are given, we usually encounter difficulties in the procedure (ii). In this 

section, we give formulae that would help us to deal with both procedures (i) and (ii) 

for a class of &(x). 

- - Let us take a symmetric &(x) that is almost constant dc for 1x1 < (L/2) - (l/p) 

and is zero for 1x1 > (L/2) + (l/p); the transition regions near x = &L/2 have a width 

l/p << L. We first solve the following equation, 

c-a2 + m2(4) !I&) = P2 gp(x) 9 (3.1) 

where the mass term is given by the following, 

m2(x) = 
i 

m2 = X&/2 for x < -L/2 , 

w3x + w/2 
(34 

for 2 > -L/2 . 

(Hereafter, we omit the subscripts 1 of p1 when there could be no confusion.) A typical 

m2(x) is sketched in Fig. 1. The solutions of (3.1) are Lindependent. For p > m, we 

need gP that has the following asymptotic behavior, 

!JP(4 
1 

-+ I$“’ for x < -cl , Ape ‘Pz + Bpe- ipz 
1 

for 2 > i , (3.3) 



where p’ s Jp-m 2. When translated by L/2, gp yields a solution of (2.7) for x > 

0. A solution for x < 0 is obtained by reflection, translation by -L/2, and complex 

conjugation. By connecting the resulting solutions at x = 0, we obtain a solution of 

(2.7), 

exp(i $) g(Xl -g) e(xl) + exp(-i ‘4) g*(-xl - g) q-x1) . (3.4) 

Since the above is eiP’z for x - 0, the even and odd fp’s are obtained by taking the 

real and the imaginary parts of (3.4). The phase shifts are 

and (2.8), 

tan !!j!=kh , tan $=!!I!? 
a+9 a-9 

where a, 6, g and h are real quantities defined as follows, 
a- 

a+ibGApexp(i f---L) (=A’) , g+ih=Bpexp(i 

It is now straightforward to show that 

tan 6, = Im (A” - B*‘2) 
2 Re (Al2 - B*‘2) 

found by comparing (3.4) 

, (3.5) 

+ L) (E B’) . (3.6) 

, (3.7) 

or 

6, + 6, = -2pL -I- 2p’L + 2 arg(Ai - Bi2eB2@lL) . (3.8) 

For p < m, we need to have two gp*s which behave as follows, 

!JP(X) + 
i 

I;--x (x < -l/p) ’ 
A+,p e’Pz + A;,p e-‘pz 

(x z-3 l/cl) 
9 A-,, eiPZ + A?,p em@’ 

where p E \/m2--p 2. In this case, similar procedures involving linear combinations 

of the above two yield the desired definite parity fp’s. The sum of the phase shifts is 

found to be, 

6, + 6, = -2pL + 2 arg{i(-e,, fPL + d,p epL) . (3.9) 



The branches of the arguments in (3.8) and (3.9) should be chosen such that 6, + 6, is 

continuous for 0 < p < 00. The remaining overall phase is of no physical interest. 

Since A’s and B’s are Gindependent, (3.8) and (3.9) are useful for deriving large L 

formulae. It is easy to see that the arg part of (3.8) and (3.9) is O(L”) for large L. For 

(3.8) as we increase L, the value of Ai- BG2e -2iP’L traces a circle in the complex plane 

with an angle velocity -2p ‘. Since B/A is a reflection amplitude in the “potential” 

m2(x) (Fig. 2) we have 

B2 I I x <1 - (3.10) 

Thus the circle does not include the origin (Fig. 3). Therefore, the arg term simply 

oscillates as L increases. For (3.9), as L increases, only the A-term survives which 

~- yield a constant value. This situation is evident in the following identities, which are 

obtained by using arg z = (i/2) tn(z/z*) and then expanding the logarithm, 

_ B*2 ,-f2iP’L = -j en f$ 

i -- 
2 

( > i 
arg i( -A$eePL + ACePL) =-- 

2 

i -- 
2 

gl f-( ($)2ne2inP’L - (%)2ne-2inP’L} , (3.11a) 

4 tn -- 
( > A*2 

gl i$$rn -(grn} esBnpL , (3.11b) 

-_ 

where the subscript p is omitted for brevity. The convergence of the above series is 

guaranteed by (3.10). W e call (3.lla,b) “pseudo reflection amplitude” expansion, since 

the expansion coefficients of (3.11a) resembles the reflection amplitude, B/A, of the 

Schrodinger problem (3.1) ( see Fig. 2). The same is true for (3.11b). 

The leading L’ terms in (3.8) and (3.9) have a trivial physical interpretation. They 

are the major part of the volume energy terms; after substituting (3.8) and (3.9) into 

- a--.* 
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(2.11) and (2.5), we find that 

(3.12) 

= (Ll -L) AV(0) + LAV(&) + ec , 

where e, denotes the part that comes from t,he arg terms.12 

4. THE MEMBRANE WITH SHARP BOUNDARY 

As an example of formalism developed in the previous section, we investigate the 

Casimir energy of the following configuration, 

when the quantized scalar field is massive (m2 = X&/B) in the membrane (1x11 < L/2) 

and is massless outside. In this case, it is possible to solve (2.7) directly and obtain 

the following phase shifts, 

6,(p) = -pL + 2 tan-l 
( 

f tan P’I; 
> 2 ' 

(4.2) 

6,(p) = -pL+ 2 tan--l 
( 

P’L $ tan --2-- 
> 

, 

where for p < m, p’ should be understood as ip (or -ip, equivalently). The a,bove 

leads to the following expression for the nonleading term e, of (3.13) 

1 00 dP1 
ec =-- 

dp;-2 
2 / (2#-" / 0 7 d-$+ {fi(Pd WP1-m)+f2(Pd e(m-PI)} 7 (4.3) 

ji(pl) = tan-l [k ($+g) tan p/L]--p/L , 

jz(p1) = tan-l [f (F--L) tanh PL] , 
(4.4) 

‘--.W 
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where we have partially integrated p1 (no boundary terms appear due to the dim. 

regularization scheme). 

So far, it has not been necessary to use formulae given in the previous section. 

The evaluation of (4.3) however, needs the help of the “pseudo reflection amplitude” 

expansion. Solving (3.1) for the configuration (4.1), we obtain 

A=‘+ , Bz!$ , t4--P;piP . (4.5) 

Consequently, the j’s in (4.4) which are halves of the arg terms in (3.8) and (3.9), are 

expanded as follows, 

ji(p) = nEl i (+rn sin 2np’L , 
= 

j2(p) = tan-l [f ($-:)I .“, ’ (!f~ne-2nPL , +C ;Irn 

(4.6a) 

(4.6b) 

where tan-l term should take its principal value (--n/2 - n/2) for the continuity of 

the phase shifts. Note that jl does not have an Lo term of (3.11a) due to A being real. 

The PI-integrations of the nth terms in (4.6a) and (4.6b) are combined into a complex 

integral, 

/ 
dP1 Pl 1 Pl - P’ 

C 2ni dpm n ( > 
4n ,2nip’L 

m , 

where the contour C is given in Fig. 3. After closing the contour in the upper half-pane 

and integrating pp first, we find that 

(ec)nth = - 
1 

J 
co dx xd-2 

x-dx2+m2 4n 
(41r)(d-1)/2 I’((d - 1)/2)n 0 m > 

(4.7) 

X exp(-2nL \/x2 + m2) . 
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When resummed over n, the above leads to a compact expression of e,. Instead, we 

choose to evaluate e, for mL >> 1 (note that mL is the only dimensionless parameter 

for EC). The above yields 

(e&j, -&(&)(dD1”2e-2nmL [ 1 •+ 0 (A)] . 

The Lo term or the “zero-reflection” term, in (4.6b) allows the analytical integration 

for e, as follows, 

(Q)(Jth = a(d) /6 dppdB2 tm-‘[$i)] , 

= a(d) -&$-+.$d~l , 

where a(d) comes from the pp-integration, a.- 

a(d) = - 

- - - Therefore, we obtain the following,14 

ec = c(d) mdsl - ,-2mL+ . . . 7 

where the Lo-term is 

(4.8) 

(4.9) 

(4.10) 

At first sight, it is a little surprising that the nonleading term in (4.9) is small 

exponentially rather than in powers of l/mL. Therefore, we elaborate on the math- 

ematics of e, in the rest of this section. (The discussion on the result (4.9), (4.10) is 

given in the next section.) To assure the correctness of (4.9) and (4.10), we evaluate 

the two pieces of e,, one from jl and one from j2, separately. Here again the pseudo 

reflection amplitude expansion is a great help. First, we do the printegration as in 

, 
.- 
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(4.8). For the ji part, we follow the steps; (i) change the integration variable from p to 

p’; (ii) expand the coefficients of sin 2np’L in powers of p’; (iii) integrate each terms; 

and (iv) sum over n. Since the integration of a (P’)~ term yield zero for odd N and 

is cl/(nmL)N otherwise, we obtain a l/mL power expansion as follows, 

Wd = a(d) mdel (4.11) 

The steps (iii) and (iv) do not yield any divergences. Therefore all the coefficients on 

are finite. In particular, the first two expansion coefficients are given by, 

q=<(3) , a2=-; g(5)d - %(3) + 5~6) - (4.12) 

a- We have done numerical PI-integrations without using the expansion (4.6a) for several 

values of the parameters in the range d = 2 - 5, mL = 5 - 1000. The results is 

in good agreement with the leading Al-term. For the piece of e, that comes from j2, 

similar procedures (small p expansion instead of p’ expansion, etc.) yield the following 

large mL expansion, 

e,( j2) = c(d) md-’ + a(d) mdel 5 “i 
n=l b-4 n+l - 

(4.13) 

The explicit calculations of the first two coefficients yield 

Pl =-a1 9 P2=-a2 9 (4.14) 

which is consistent with (4.9): We expect Q~ = -& for all n and as a result, the 

total e, consists of a LO-term and the terms that decay faster than any power of mL. 

We have also done numerical PI-integrations for (4.13) without using (4.6b) and the 

results confirmed the /31 and ,& terms. 

-s..m 
-- 
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5. DIVERGENCES 

The Casimir energy obtained in the previous section contains some divergences. 

Besides the divergence in the volume energy term, which can be renormalized away, 

they are in the first nonleading term c(d) m d-1. From (4.10), we see that c(d) is finite 

for d = 2 - 4,6,8 ,..., and is divergent for d = 5,7,. . . . due to the pp-integration. 

(For d = 3, the divergence in the pp-integration is removed by the vanishing pl- 

integration.) These divergences are not intrinsic to the theory but are due to the 

special feature of the configuration (4.1) we have taken; the vanishing thickness of the 

boundary at x1 = &L/2. They cannot be intrinsic to the theory, because (i) These 

divergences cannot be renormalized away by any parameters in the Lagrangian. (ii) 

The X+4 theory in the dimensional regularization scheme is finite for d = 5,7,. . . . We 

*- can also observe that these divergences are associated with the boundary from the fact 

that they are in the “surface” energy term, i.e., are proportional to the “area” of the 

surface Lpdm2. 

This nature of the divergences is seen in the Feynman graph calculation. We 

illustrate it here for d = 5. Symbolically, the Feynman graphs are generated by the 

expansion, 

E c=~~Tr~n[~2+m2(x)]=~{~~~~n~2+~r~m2-fTr~m2~m2+...} . 

(5.1) 
The first two terms of (5.1) are zero in the dim. regularization scheme. For the 

configuration (4.1) the second term yields, 

~1~) = Lfv2 F(d) 1,” dk kds6 sin2 F , (5.2) 

where F(d) comes from the loop-momentum integration and is finite for odd d. The 

.I k-integrand receives kds4 from the loop integral and the rest from the absolute square 
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of the Fourier transform of 7n2(z). The Kitegral has logarithmic W divergence for 

d = 5. 

l?3i2) a: - 2(d1 5) + f en L + constants + O(d - 5) . - (5.3) 

‘jY& divergence is clearly due to the sharp boundary. Imagine that the boundary is 

smoothed to the thickness of order l/p (<< L). In such a case, the Fourier transform of 

m2(z) decays more rapidly for k/p -+ co. Then the pole term is replaced by (!!np)/2 

to yield a finite result,14 

Ej2) cc 1 tnpL+... . 
2 (5.4) 

Unfortunately, the Feynman graph expansion (5.1) corresponds to the small mL ex- 

*- pansion and most of the terms are infected by the mass singularities. Therefore, it is 

not possible to extend above argument systematically and prove the fake nature of the 

divergence in c(d). The above observation, however, strongly supports our argument 

on c(d). Furthermore, the identification of the pole with the logarithmic singularity of 

the thickness leads to the following finite expression, 

c(d) mdS1 - 
d-5 

1 -___ 
512~~ 

, 

(5.5) 

for the surface term. 

For d = 7,9,. . ., similar procedure gives the en terms. However, the highest order 

terms of p/m are hidden by the dim. regularization scheme, which picks up only the 

en divergent terms. Our result that the &n term first appears for d = 5 and then 

for odd d’s, while the degree of divergence is expected to monotonically increase as d 

increases, suggests that the real leading terms of the surface energy for d > 5 is as 



follows, 

md--l[*(~~-5+*(f-)d-7+...] , (5.6) 

where s’s denote unknown coefficients. This can be seen by using the heat-kernel 

method, or proper-time formulation as follows. Our Casimir energy is, to within an 

additive constant, 

The logarithmic divergence at s = 0 is subtracted by the unwritten constant, 

which however affects only the volume energy term and thus is irrelevant for our 

discussion of the surface energy term. Using the pl level density p, the above is, 

E 
C 

= -Ld-2 e f 1,” f J i2 2 1,” dP1 API) ev+-v2) 

-p-2 1 
/ 

W  ds = 
e 2(&)(d-1)/z / O” dPl P(P1) ezp(--sP?) 

0 m 0 * 

Our surface energy came from the integration of the phase shifts for p1 < m [see 

(4.8)]. In the proper-time formalism, it is proportional to the following, 

J W  ds m 
/ oBo/20 dPl tan[f(% - -$](-2sPl)ezP(--sPf) . (5.8) 

For small 8, the p1 integration is of O(S), corresponding to the fact that the p-integral 

in (4.8) vanishes at d = 3. The above (5.8) is 

W  ds 
0 piyrS~ ( 2) ( -- l2 sm4 + O(s2m”) 

This is divergent for d 2 5 in agreement with the result of our dimensional calcu- 

. I  lation, (4.10). We also see that these divergences are due to the sharp boundary, since 

-- 
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s - 0 corresponds to short dist.ances in space-time as can be seen in the following free, 

proper-time propagator, 

(Yk -so15) = & e3q-f - @ isyJ2) . 

The integral (5.9) can be regulated by a small cut-off 6. (Remember that d is a mere 

integer here, not a variable for analytical continuation.) Then, the leading divergences 

in (5.9) are, for d > 5, 

When the boundaries are smooth and have thickness l/p, we expect ca1/p2. Therefore 

(5.7) is reproduced. 

6. CONCLUSIONS 
a- 

We have developed a formalism suitable for the analysis of the Casimir energy 

of Higgs field configurations which are (i) dependent only on one space coordinate 

- - - (“membrane” type); (ii) zero in the asymptotic region of space; and (iii) constant (tic) 

in the central region. We obtained an expansion of the Casimir energy which coeffi- 

cient functions are closely related to the reflection amplitude of the Higgs fluctuations 

outside the membrane. The expansion automatically separates the volume energy 

term, thereby locating major W divergences that allows usual renormalization for 

the effective potential. 

We have used these techniques for the analysis of a configuration of thickness L 

with sharp boundaries, (4.1), when the quantized field is massive inside the membrane 

and is massless outside. We have found that in the d-dimensional space-time the total 

energy, including the classical part, is given by the following for mL >> 1 (remember 

m2 - X&/2), 

E = Ekinetic + Le d-2 L IQ,(&) + Lcds2 c(d) mdsl + . . . . (6.1) 
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where we have adjusted the energy of the vacuum (4) = 0 to zero. In the above, we find 

that the Casimir energy yields the usual quantum correction to the effective potential, 

which gives the volume energy, and a new “surface” energy (for d = 4, Li is the total 

area of the membrane). The usual renormalization for the effective potential Ve~j(t$e) 

replaces the bare coupling constant X in this surface energy term by the renormalized 

one, since the difference is of higher order. 

The surface energy is defined uniquely and is physically relevant. Our Casimir 

energy EC is defined to vanish for L = 0. This is evident from the fact that the 

phase shifts vanish in that limit. We have directly calculated the zerc+point energy 

sum and renormalized the theory according to the usual renormalization procedure. 

This renormalization affects only to the volume energy term. Since no additional 

&- subtractions were done for the surface energy, our results satisty this definition.15 

As long as one keeps to this definition of the Casimir energy, the surface energy is 

uniquely defined. As a result, Any different methods of calculation should yield the 

- - - same result. (For example, if one employs the Green’s function method,16 one may 

suspect that the surface energy may be ambiguous due to the contact terms. But it is 

not so.) The coefficient c(d) is given in (4.10) for general d. In particular, 

I 

1 1 -- - 0.0683 A ;I-- for d = 2 , 

c(d) = w~0.00769 for d = 3 , . (6.2) 

[a (+1)~0.00201 for d = 4 . 

For d 2 5, c(d) is divergent due to the sharp boundaries of the configuration (4.1). 

When the boundaries are smooth and of order l/p, c(d) is expected to be of order of 

en p/m for d = 5 and (p/m)d-5 for d 2 5 (see (5.6)). This surface energy comes from 

the “zeroreflection” term. 

The non leading Ldependent term comes from the ta-“reflection” term, which is 

.I exponentially small as -e -2nmL for mL >> 1. That is, the Casimir energy provides 

=s.s!@ 
-- 
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an attractive force between boundaries at x = &L/2, which decays exponentially due 

to the fluctuations between boundary being massive. The absence of the power series 

in l/mL can also be explained by the following argument. Imagine m ---t 00, such 

that the fluctuation is completely excluded from 1x11 < L/2. Since we have two half- 

space with no tunneling between them, the Casimir energy of such a configuration is 

physically expected to be independent from L. (In fact, it is zero when dimensionally 

regularized.) On the other hand, suppose that (5.1) had a Taylor series in l/mL like 

E = Ekinetic + - 

Then, in general, E has an m-independent term, a: Ltm2/Lde1. When we take m -+ 

00, this term survives, because the dimensional regularization let us get rid of all non- 

*- logarithmic divergences. This contradicts the Lindependence of the Casimir energy 

in that limit. 

Ambjorn and Wolfram6 have calculated the Casimir energy for a scalar field of 

mass A4 completely confined in a membrane of thickness L.17 Our result is consistent 

with theirs. They showed that the surface energy of the boundary between the regions 

of mass M and 00 is, 

which coefficient coincide with our first (n/2) term in (4.10). Since our surface energy 

is of the boundary between the masses m and 0, comparison is possible only for A4 + 0 

and m -+ 00. In this limit, their surface energy results in zero, while ours diverges as 

oo(d-l). This is due to uncommutativity of the limiting procedures and dimensional 

regularization: If we have taken our m to be 00 in the beginning, we would have 

gotten the zero answer since dimensional regularization automatically subtracts the 

non-logarithmic divergences.18 
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As is well-known, the one-loop approximation in the X#4-theory has limited range 

of validity. l3 In the physica 11 interesting four-dimensional case, the one-loop effective y 

potential must be taken seriously only for a range of $c between the origin and its 

minimum. For the surface energy term in (6.1), it is most natural to expect that the 

higher orders would bring in extra powers of X 43~ 9. Therefore, (6.1) should be valid 

only in that range. In gauge theories, where the minima of the effective potential is 

real, the type of the calculation done in this paper is complicated due to the mixing of 

gauge modes and Higgs modes at the boundary. At this moment one could only guess 

that the result might be similar to (6.1) with X replaced by g2, where g is the gauge 

coupling constant. 

It is also interesting to see how the Casimir energy appears for “spherical” Higgs 

a- configurations. For example, let us take a spherical qSc(x) with radius R in a four- 

dimensional space time. After the separation of the angular variables, the Casimir 

energy would be approximately expressed as follows, 

Ec- o / 
O” 5 g (gt+1) !!!p.f . 

T e=o r 

For e > k,R, the configuration would be “hidden” by the centrifugal potential. There- 

fore, EC receives contributions only from e < k,R. For large R, 6 have a leading R k, 

term, which together with a kFR’-term from &summation, yield 

dk, . k,2 - kr . 

This is the correction to the volume energy. The nonleading R” term in 6 would then 

yield a R2 term, the surface energy, which should be 47rR2 times the surface energy 

per unit area given by (6.1) i c(d) md-‘. 

There is at least one other case where we can investigate the Casimir energy 

-1 rather straightforwardly. That is a case of the scalar field partially confined in a 

--..m 
.- 
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membrane due to a finite mass. It is of particular interest in connection with the 

dimensional calculation of the completely confined system6. The pseudoreflection 

amplitude expansion given in this paper is again effective for evaluating the continuous 

spectrum. It is, however, necessary to employ different methods for the evaluation of 

the summation over the discrete spectrum. The results including this technology will 

be published elsewhere.lg 
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11. From (2.5), it is easy to see that the q-function regularization and the dimen- 

sional regularization scheme yield the same answer for EC. For example, we 

want to calculate EC in the ddimensional space-time, integrating over the d - 4 

extra dimension yields 

Ld-4 
e / 

(E;;;4 0 = A(d) . (p2)(d-3)/2 

where the coefficient A satisfies A(4) = 1. Therefore the role of c-regularization 

parameter s [~(a) zz is w,“] is played by (3 - d)/2. The d-dependence of 

A causes a finite difference in case when the rest has poles, which, however is 

irrelevant and can be removed by appropriate renormalization conditions. 

12. Although AV(0) = 0 when dimensionally integrated, we leave it unintegrated 

for clarity. 
a.- 13. S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973). 

14. Actually, the pole at d = 5 in (5.3) is of “fake” IR origin. While the original 

integral in (5.3) is IR-convergent for d = 5, it is not so when dimensionaly 

calculated. This is because the average value l/2 of sin2 yields zero when 

integrated. Nevertheless, this property of the integrand is irrelevant for this 

discussion; any extra decay factor of k/p kills the fake IR divergence and leads 

to (5.4). 

15. We can see this property explicitly by summing the Ldependent terms (e,),th 

of (4.7) as follows 
W  

co / ec nth 
n=l L=O = (a*)&~) 

The above integral can be evaluated analytically and yield 
W  

co / ec nth = -c(d)mdB1 = -(ec)& . 
n=l L=O 

16. See Milton’s papers in Refs. 5 and 6. 

17. The d = 2 case was done in Ref. 4 and P. Hayes, Ann. Phys. 121, 32 (1979). 
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18. In Ref.19, we calculate the surface energy of a boundary between masses ml 

and m2, and show (if ml 2 m2) that this energy takes the form: 

+ m$-l) - mflF . 

We find F(0) = B( i, ,“), and so this agrees with the result of this paper in the 

limit mg -+ 0. In the limit ml ---, 00, the first and third terms diverge. However, 

these terms have no piece proportional to my. Therefore they are set to zero 

by an analytic regulator. This gives the result of Ambjorn and Wolfram. 

19. H. Aoyama, SLAC preprint PUB-3253 

23 



FIGURE CAPTIONS 

1. A typical shape of m2(x) of (3.2). The amplitudes of the incoming and outgoing 

waves of (3.3) are written. 

2. The circle C is traced by the value Ai - BG2e-2iP’L as we change L. It is easy 

to see that the angle oscillates around a constant value due to (3.10). 

3. The complex plane of p and the contour C for the integration (4.7). The integral 

picks up the cut on the imaginary axis when closed in the upper half plane. 
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