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ABSTRACT 

a- Simple analytical expressions are derived for 2’ + e+e-7 and qij -+ 2’ -+ 

e+e-r at the Z” peak. The integrated decay rate is computed in a configuration 

where one of the leptons has a momentum much larger than the other. The 

propability of such an internal bremsstrahlung is found to be between l-2% 

depending on the experimental cuts. 
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The purpose of this letter is to derive simple analytical expressions for the 

radiative 2’ decay into electrons. The motivation is clear; there is a candidate 

for the Z” at the CERN pp collider where however one of the electrons has a 

momentum of about 50 GeV while the other charged track has only 8 GeV. 

The decay rate for 2’ + e+e-r is obviously suppressed by a factor (Y/T 

with respect to the non-radiative decay but there could be an enhancement due 

to the emission of a hard collinear photon giving a factor &z(mz/@). Indeed it 

is well known[l] that large logarithmic terms involving the lepton masses cancel 

in the total decay rate, including virtual plus real corrections, only when the 

momenta of the two leptons and photon are unrestricted. Hence we compute 

the integrated rate for Z” + e+e-7 within the standard W(2) X U( 1) model 

a- assuming for definiteness that no charge is measured and imposing kinematical 

cuts such that one of the fermions has energy greater than some threshold value 

while the other has energy lower than some other value. 

I’o(Z’ -+ e+e-) is given by 

ro=-ggMo v = 4s; - 1 
8e 

where SO(Q) denotes the sin (cos) of the weak mixing angle. For Z’(q) + e+(pr)+ 

e-(p2) + 7w we compute the double differential decay rate 

d21’ 
- = ; Iyys, t) 
ds dt 

where s MO2 = -(PI + p~)~, t MO2 = -(q - ~1)~ and u M$ = -(PI + k)2 = 

(l-s- W&i, J-b, t) can be cast in the form 

F(S, t) = F+(Sj t) + F-(8, t) + Fi,t(Sj t) + Fm(Sy t) * 
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F* denotes the contribution from the square of the diagram where e* emits 

the photon, Finr is their interference and Fm contains terms proportional to 

dl(P1,2 * kJ2- 

F+(s, t) = 2 
l-s 
-+s-2, F-(s,t)=F+(s,u) 

U 

Finj,(Syt)=4&(: + :)-2, ,F,(S,t)=-4(%) - 

If E* is the energy of e* we get 

E+=5 ‘(l-t)MO, E-=;(l-u)Mo. 

The requirement that one of the fermions has E 2 e,Mo while the other has 

E < eMMo together with the symmetry of F under t c* u gives an integrated 

a- decay rate 

W m9 eM) = 2 ;I’ojdsdtF(s, t) 
D 

where assuming em + eM > f 

32-91 81 

J 
dsdt= 1 ds/dt+ 7 ds8Tsdt sl=l-2e,, s2=2eM. 

D 0 0 92-a 0 

F(s, t) is singular for t = 0. When we include mass effects the lower boundary 

of the photon phase space (t = 0) is replaced by t = (y2/s) + O(p4) with /J = 

m,/Mo. This is the origin of the collinear mass singularity. 

Performing the s, t integrations we find 

/ 
ds dt F( s, t) = A(s2)h p2 + B( sl, s2)h sl + 2C( q, s2)bz( 1- s2) 

D 

+ 2y0, s2 - s1; -1,l - 81) - 2L(O,s2; -1,O) 

- 2ys2 - Sl, 82; -1,s2) + w%s2) 

3 
_-. 

‘--.W 



where 

A(q) = s$ - 6s~ - 4b(l- ~2) 

and 

R(s1, sg) = - f st + sls2 + 492 

L(a,b;A,B)= j dz(l++)tn(h+B) - 
a 

only the last integral is non trivial 

b 

/ 
dx & Cn(Ax + B) = s(b) - s(u) - 

a 

44 = tn(Az + B)tn 
A(1 - x) 

A + B + Li2(?3 
where Liz(z) denotes the dilogarithm function. Using si = 0.22 and MO = 

93 GeV [2] we computed 

R(em, eM) = & Wh ~MI 

for few values of em,eM. The result is R = 2% for em = 0.45 and eM = 0.1, 

R = 1.5% for e m = 0.48 and eM = 0.15, R = 1.7% for em = 0.45 and e&j = 

0.15. Including a 1% for external bremsstrahlung we can estimate that a total 

of 2-3% of the events may look this way. 

We also considered the cross section for q p + Z” + e+e-7 at the 2’ peak. 

CY3Q2 
d50 = w lAl2 dR+ dE+ dE- d$, 
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where Q is the quark charge in units of e. Using the results of Ref. (31 we get 

lAl2 = -2 $&[c-(jg+$+c+($+g)] 

l + rQ+ k- [cqt2 + t’2) + c+(u2 + u”)] 

with 

cf = (V,2 + A;)( V; + A;) f 4&4&A, . 

V, A being the vector and axial couplings of e and q to Z”. Also t = -2~1 a p4, 

t’ = -2~2 - p3, u = -2~1. p3, u’ = -2~2 - p4, k+ = -2~4. k and k- = -2~3 . k 

with the convention that all the momenta flow inwards. I’ = 2.92 GeV [2] 
a- 

is the Z” width. lAl2 is given by a very compact expression. One could use it 

directly for a numerical integration and any further achievement in the analytical 

approach is a matter of taste. In this case however we can show that the final 

answer is again very simple. Following Ref. [4] we find 

E+=;(l-k-)Mo, E-==;(l-k+)Mo 

where from now on all the dimensional quantities have been scaled to A$. The 

photon phase space for me = 0 is bounded by k+ = k- = 0, k+ + k- = 1. The 

variables t, t’, u and u’ are not independent but fulfill 

t=to(l-k-), t’=to+k+-tok-+kq 

u = u. + tok- - k, , u’ = uo(l - k-) 

tO=&ose-l) ,u(-J =-;(cosB+l),k(=--2pl.k 
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where 8 is the scattering angle between ii(d) and e+. In a frame where e+ is 

along the third direction with ii(d) in the 1-3 plane the q+, integration can be 

carried on giving 

2n 

J d&,k, = -4 k+ + k-)( i - cos 8 COG er) 
0 

T&+; = ;a(k+ + k-)2[( 
0 

1 - cos e cos e7J2 + tsin2 (j sin2 fj, 
I 

k+ (k++k-)cosB7=k++k--2----- 
l-k- 

We now assume that the detected e+ has an energy greater than some threshold 

value $ e,Mo while e- has an energy less than t eMMu. Thus 
a- 

da cr3Q2 1 -=-- 
dn+ 4~ r2 J dk+dk-(All2 

D 

- . where D is the constrained photon phase space and 

1 
lA’j2 = -2p2(c-t; + c+u$~+ c a; 

k- n=O,l 
m=1,2 

m 
an = c-fnm@o) + c+f,m(uo) 9 b,jj = w&Yp(to) + C+&q9(“0) 

f:(x) = 1+ 62 + 6z2 , f&z) = -2x(2 + 32) , j;(x) = -1 - 22 

a,-lb) = S-1,1(4 = x2 9 !Jo,--l(4 = s-1,0(4 = -!I-l,-l(4 = -2x2 

The integration is now trivial; for em + eM < 1 D is a triangle in the k+, k- 

plane 

J dk+ dk- = j dk+ ‘Tdk- . 
D 1-eM 0 
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Again the singularity at k- = 0 is controlled by the electron mass since the 

boundary k- = 0 is replaced by k- = p2(k+/l - k+) + 0(p4). The final answer 

contains a collection of logs as well as a dilogarithm coming from the l/k+k- 

term. 

As a next step one should fold this cross section with the quark distributions 

inside the proton in order to compute the numerical answer for p p + Z” +X -+ 

e+e-r +X. We have made no attempt in this direction. 

CERN has now announced 6 Z” candidates (CERN press PR 10/83), 5 Z” + 

e+e- and 1 Z” -+ p+p- For the best Z” . --) e+e- candidate the tracks carry 45 

and 47 GeV of energy. 

I wish to express my gratitude to Professor S. Drell for the hospitality at the 

a- Stanford Linear Accelerator Center. 
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