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ABSTRACT 

We consider supersymmetric nonlinear sigma models, in which the chiral super- 

fields-serve as coordinates on a compact coset space G/H, and study the effects of 

gauging various subgroups S C G. The general result is that S spontaneously breaks 

- down much more than expected from experience with nonsupersymmetric models. In 

particular the rank of S is almost never preserved. Significantly, if S is large enough 

to break supersymmetry, then no scalars remain in the massless sector. If S is small, 

supersymmetry is unbroken and the model has an indeterminate vacuum; as a result 

S breaks either completely or not at all, and the mass spectrum is determined only 

up to an arbitrary multiplicative constant (possibly zero). 
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i. Introduction 

A particularly fruitful approach to the study of the low-energy modes of a strongly 

coupled field theory has been that of the nonlinear sigma model. This is a model in 

which the scalar fields, which represent the Goldstone bosons of the underlying theory, 

serve as coordinates on a coset space G/H; here G is an arbitrary compact Lie group 

characterizing the symmetries of the underlying LagrangianF and49 is the unbroken 

subgroup, under which the various fields of the theory are assumed to transform lin- 

early. Thus the Goldstone bosons are in one-to-one correspondence with the broken 

generators of G. 

Before proceeding to the supersymmetric case, let us recall some salient features 

of nonsupersymmetric nonlinear sigma models. In particular, let us focus on what 

happens in such models when one gauges a subgroup S of the full symmetry group G. 

(It is straightforward to do so; one need only work out the gauge-covariant derivative 

appropriate to the manifold question.‘) Of course, gauging S breaks G explicitly to 

the product of S with those elements of G which commute with S. As for spontaneous 

- symmetry breakdown, its pattern2 depends crucially on the overlap between S and 

H (which is dynamically determined). If S is wholly contained in H, then S remains 

unbroken. If not, then the gauge mesons corresponding to the broken generators gain 

mass at tree level through the Higgs mechanism, and S spontaneously breaks down to 

. . _ its largest subgroup that is contained in H. 

Correspondingly, gauging S effectively divides the Goldstone bosons into three 

classes2 Those that correspond to the broken generators of S are eaten. Those that 

correspond to the generators of G/H which commute with S remain massless. Those . . .- 
that remain - the “pseudo-Goldstone bosons” - gain mass from radiative corrections 

at the one-loop level; these masses are characteristically of order gfT, where fn is the 

usual Goldstone boson decay constant and g is the gauge coupling constant. 

How does the theory determine the alignment of S relative to H? The common 

wisdom is that S seeks to break down “as little as possible”. More concretely, in the 

important case when G/H is a symmetric space, the gauge group positions itself via 

G-t&sformations so as to minimize the sum of the squares of the induced vector 

boson masses.3 Suppose for example that S is isomorphic to a subgroup of H, and 
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furthermore that there exists a group element g E G whose action serves to rotate S 

completely into H. Then S will not break down. 

Supersymmetric sigma models differ from their nonsupersymmetric counterparts in 

-,_ several noteworthy respects. For one thing, the scalars and vectors each have fermionic 

partners that must be included in the phenomenological Lagrangian; this is naturally 

accomplished by superfield methods. More strikingly, as Zumino has shown4 super- ,-- - w 
symmetry severely restricts the construction of such models. One must take as one’s _ 
space a certain type of complex manifold known as Kahlerian5 An important subclass 

of Kahler manifolds are the Grassmann spaces Gp,q E U(p + q)/U(p) X U(q). These 

turn out to be the easiest to analyze; consequently we will confine our attention to 

G,,, through Section 4. 

We will consider the effects of gauging various special unitary subgroups S of 

the full symmetry group U(p + q) of G p,Q. @ur analysis generalizes that of Ong6 and 

Bagger and Witten7, who examined the extreme case in which all of U(p+q) is gauged.) 

We find, in general, that the gauge group breaks down much more severely than one 

would expect based on experience with nonsupersymmetric models (note that Gp,* is a 

- symmetric space). In particular, the rank of the gauge group is almost never preserved. 

Furthermore, if S is too big to be included in the unbroken subgroup U(p) X U(q), 

supersymmetry is itself spontaneously broken - and, surprisingly, all scalar particles 

receive mass at tree level or are eaten. 
. . _ If, on the other hand, S is smaller than U(p) X U(q), then supersymmetry is - - 

unbroken, but even this case contains-a surprise: if S is small enough, the model has 

an indeterminate vacuum. That is, to all orders of perturbation theory, the gauge 

- . . .- group does not know whether to break down completely or not at all, and the mass- 

spectrum is determined only up to an arbitrary multiplicative constant (possibly zero). 

This paper is organized as follows. In Section 2 we set up the Lagrangian for 

G p,Q, exhibit the nonlinear realization of its symmetries, and show how to gauge them. 

Sections 3 and 4 discuss the patterns of symmetry breaking that result when the 

gauge group is, respectively, larger or smaller than the unbroken subgroup of G,,,. 

In Section 5 we consider gauging other Kahler manifolds, namely SO(2p)/U(p) and 

Sp(2T)/U(p), and find qualitatively the same behavior as for G,,,. Possible applications 

are mentioned in Section 6. Finally, in the-Appendix we-generalize Zumino’s result4 
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to the case when the Kahler potential depends on vector as well as chiral superfields, 

and then utilize this formula to obtain the Lagrangian for our-models in component 

form. 

2. Grassmann Models 

Both Ong6 and Bagger and Witten7.have recently given prescriptions for gauging 

thesupersymmetrized G,,,. In Ong’s formulation, the chiral superfields live in p x (p+ 

q) dimensional matrices, taken to be equivalent if they differ by left-multiplication by a 

nonsingular p Xp matrix. This auxiliary symmetry is implemented, following Aoyama,8 

by the introduction of nondynamical exponentiated U(p) vector superfields which are 

to be eliminated by the equations of motion. The actual U(p + q) symmetry (right- 

multiplication), in contrast, is promoted to a bona fide gauge symmetry in the usual 

manner, by the introduction of exponentiated vector superfields endowed with kinetic 

energy terms. Bagger and Witten showed in general how to gauge supersymmetric 

models of the form G/H. Their treatment relies on the identification of G with the 

isometry group of the manifold; the Lagrangian they construct is expressed entirely in 

terms of geometric invariants. 

We will employ a rather more straightforward method of gauging GP,q, one in 

which the auxiliary degrees of freedom are eliminated at the outset. Consider first the 

ungauged model. In “stereographic coordinates,” its Lagrangian may be written4 

here <p is a p X q matrix of chiral superfields, ch is its Hermitian conjugate, and 1, 
. . .- denotes the p X p unit matrix. The Goldstone bosons then correspond to the 2pq real 

scalar components of <p, represented by the complex p x q matrix A. 

We can factor 1, + @ ;h as 

Then L is trivially invariant under the replacement 
- 

(2) 
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where exp(iT) is an element of U(p + q). We can implement (2) directly as a trans- 

formation of Q and $ as follows: Consider the effect of an infinitesimal U(p + q) 

transformation esp( icT), with 

Under this transformation 

(1,+-B) -+ (l,i@)(l +icT) = M(@)(l,i@- &Hz + EH~Q, + icX + i&x a,) (3) 

where 

M(a) = l+ icH1 -~a-% . 
- 

Since M is itself a chiral superfield, it is killed by the Grassmannian integration in (1): 

1 d4s d48 tr logM(1 + Cp 6) i6.f = / d4x d40 tr log(1 + @  6) . 

Therefore the Lagrangian is invariant under the transformation 

-. _ which provides the desired nonlinear realization of U(p+ q). Indeed, it is now manifest 

that 4) transforms linearly under the v(p) X U(q) spanned by HI’ and Hz; X and x 

are the 2pq broken generators. 

- .” .- It is obvious how to promote a subgroup S of U(p + q) to a local symmetry. As 

usual, we introduce V = ViTi, where the Vi are vector superfields and the Ti are 

(P + q) x (P + q) H ermitian matrices that generate S. The gauge-invariant Lagrangian 

is then simply given by 

L = 1 d40f,2 tr log( 1, i@)egV + L gatLge (5) 

witlXgauge the gaugesuperfield kinetic energy. -Let us henceforth choose the normal- 

ization tr TiTj = 6ij. _- r -. 
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3. SupeFGmmetry-breaking Cases 

We first consider the case where the Ti generate an SU(p + Ic) subgroup S of 

U(p + q), with 1 5 k 5 q < p. This case will be worked out in detail; subsequent 

-‘_ cases will be dealt with more succinctly. 

There are in general several inequivalent embeddings of SU(p + k) in U(p + q), 

that is, embeddings which cannot simply be rotated intoone another by a U(p + q) 

matrix9 To resolve this ambiguity, let us specify that the fundamental representation 

of U(p+q) transform under S as a fundamental plus q-k singlets. Then, by a U(p+q) 

rotation, the Ti can be positioned to lie entirely in the upper left-hand (p+ k) X (p+ k) 

submatrix of V (thereby minimizing the overlap between S and the broken generators). 

We are thus gauging 2pk broken generators. If this is indeed the preferred orientation 

of the gauge group, these generators will eat 2pk of the 2pq Goldstone bosons and - 
leave 2p(q - k) massive scalars in the spectrum. Our naive expectation is therefore 

that SU(p + k) + SU(p) x W(k) x U(1) (p reserving the rank of the gauge group). 

However, this turns out not to be the case. 

We begin by calculating the (tree-level) effective potential I?. Let the chiral and 

vector superfields (in WZ gauge) have component fields (A, +‘, F) and (A”, P, D) 

respectively; these are of course matrices like Q, and V. It will prove convenient to set 

J=(l,,iA), B=(Jb)-‘=(lp+AA)-‘, andC=(lq+AA)-’ . (6) 

Then by Taylor-expanding ezp&nd log in (5) one obtains: 

r(A, D) = - - . . .- J 
d’t?r,” trlog {J ezp(kgDB282) I} - f trD2 - 

(7) - 
= -kg/,z tr(JBJD)-k trD2 . 

(It will be shown in the Appendix that the auxiliary field F is irrelevant to the tree- 

level calculation of the effective potential.) Eliminating the auxiliary field D yields the 

expression 

- 

C( trf BJTi)2 . 
i .r -. (8) 
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Finally, if we introduce the (p + q) X (p + q) dimensional projection matrix 

we can perform the indicated sum easily enough and obtain . ._ 

I[ tr( & 1 BJ)2 ,- -& (trQ 3 BJ)2] 
c - e 

p-q+k+trC2 -&(p-q+k+ trej2] 

(9) 

where c denotes the bottom right-hand (q - k) x (q - k) submatrix of C. 

The potential is minimized when 

which-defines the space of vacua for the theory. Equation (10) implies that 

so that supersymmetry is, in fact, spontaneously broken as advertised. This result was 

obtained previously by Ong6 and by Bagger and Witten for the case k = q. Further- 

more, (11) illustrates Ong’s simple counting argument proving that supersymmetry 

must be broken, roughly speaking, whenever the gauge group cannot be contained in 

the unbroken subgroup (with some exceptions: see (34) and footnote 16). - - 
Let us pick a specific vacuum consistent with (10) and expand around it. The 

simplest choice is given by 
- . .- - k q--k 

A vat = a with Q =(p-;+k)1’2 - (12) 

-- 

(We will shortly demonstrate that all minima of I’(A) are gauge-equivalent to (12).) 

Let us define the shifted scalar fields 

A’ (13) 
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where the divisions are the same a& in (12), and likewise label the SU(p + k) generators 

. ._ 
T= 

I 
h t5 t8 ho 0 

15 t2 t6 t9 0 

18 16 t3 t7 0 

ho 39 .I7 t4 0 
0 0 0 0 op 

The transformation law (4) then takes the form 

k k q-k p-q k q-k q-k p-q k q-k 
k k 

q-k q-k 
P-Q P-Q 
k k 
i - k- i - k- 

SA’ = icA vacH2 - icHlA,a, + LY + t&acxAvac + O(A’) 

We can identify the broken generators of S as those which appear in the inhomo- 

geneous term of (15). This implies that 

SU(p + k) + SU(k) x SU(p - q + k) x U(1) (16) 

-. _ 

where the unbroken symmetry is generated by tl, t3, t4, t8 and 18. It is interesting to 

note that the rank of the gauge group has decreased by q - k. The gauge symmetry 

has indeed broken down much more than expected (unless k = q, which is the case 

discussed in Refs. 6 and 7). - 1 

As for the Goldstone bosons, (15) implies that they are all eaten except for the 

- _” .- (q i~k)2 “Hermitian” scalar fields Af: z [;(A4 + A); these transform as singlets 

under the unbroken gauge group. Since the broken generators of U(p + q) to which 

they correspond do not commute with S, we expect the Ay to become massive. In 

fact, thanks to their coupling to the auxiliary gauge field D, and in contradistinction 

to the nonsupersymmetric case, they gain mass at tree level. 

Our results have ostensibly been based on the particular choice of vacuum given 
-- in (12). We will now establish that in fact all vacua are gauge equivalent, and shall do 

so ixa way that easily generalizes to other cases. Let Au be some minimum of I’. We 

are free to apply a (global) U(p+ k) X U(qrk) transformation to &without changing 
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the value of I. (Here we are assuming that the U(p + k) and U(q - k) generators lie 

in the upper left-hand and lower right-hand subblocks of T, respectively, so that they 

merely rotate the SU(p + k) gauge fields among themselves, hence leave the form of I’ 

invariant.) Consider first the infinitesimal change in 4 due to the broken generators 

tlo, tg, and t7 in (14). Choose these generators to be equal and opposite to their 

counterparts in 4, which live in the regions designated Al, 4 and &, respectively, 

in (13). One then obtains r - e 
_ 

4 
6 tr(&AL) = -2~ tr[;lLAL + (&AL)2] , AL= & 0 (17) 

A5 

as is readily verified using (4). In this way AL can be quickly driven to zero. 

O-ur next step is to choose an appropriate U(p) matrix exp(iH1) which rotates the 

remaining entries of & into the subblock labeled 4 in (13). Finally, through the 

joint action of two cleverly chosen U(q - k) matrices that live in the bottom right- 

- hand square and in the region labeled t2 in (14), one can reduce the surviving (q - k)2 

elements of Au to diagonal form with real, nonnegative entries. 

In short, this argument proves that every (constant) pXq matrix is gauge-equivalent 

to a matrix of the form 

k 

q-k 
(Pi 2 O) - 

P-Q 

(18) 

Of these matrices, only (12) satisfies (lo), establishing the gauge-equivalence of the 

space of vacua. 

In order to obtain the full mass spectrum and representation content of the theory, 

it is unfortunately necessary to descend from the superfield formalism and work out 

theTagrangian in component form; this is done in the Appendix. It is then a simple 

matter to plug the shifted scalar fields into7A.6) and collect the quadratic terms. One 
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obtains” 

L 
-g2f2 a2 

ma8.3 =+tl + (-42 (tr (-g&2%“)‘-& [tr (&TAq]‘) 

+& (& ,,,,h.c.} 
!J2f2 * tr 

d d -- 
4 (k+a2)2 ~;+~(~5v5+~6v6)+~7u7 

1 
+1+,2 fJ9~9+~10~10 

I 

where $1,. . . , $6 and q, . . . , ulu are labeled analogously to (13) and (14) respectively, 

and where 

X= 

h x2 x3 x4 0 k 

x5 x6 x7 x8 0 q-k 

x9 ho hl x12 0 P-Q . 

x13 1 h4 x15 x16 . 0 k 

0 0 0 00 q-k 

In (-19) the matter fields have been grouped with the appropriate normalization con- 

stants. The case k = q is precisely Ong’s result.6 

As promised, the gauge generators corresponding to the unbroken SU(k) x SU(p- 

q+k) x UP) are the only remaining massless vector fields. Likewise the matter spinors 

have combined with their counterparts in the vector multiplet via the supersymmetric 

Higgs mechanism to yield 2pq massive Dirac spinors, leaving (p + k)2 - pq - 1 massless 

gauginos . 

The representation content is most easily read off if one interchanges the second 

and third (blocks of) rows and likewise columns inboth (14) and (20); For example, 
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the k(p-q+k) ( massless) gauginos .X4 and X12 together transform like a (p-q+ k, E) 

under the unbroken SU(p - q + k) X SU( k). 

Let us briefly discuss other cases. Gauging other subgroups in addition to SU(p+k) 

. ._ leaves the above results virtually intact. Consider the gauge group SU(p+ k) x (? with 

G a subgroup of SU(q - k). Then 6 leaves the space of vacua (10) unchanged. The 

generators of G can be thought of as living in the bottom right (q - k) x (q - k) e 
subblock of (14); denote the corresponding gauge particles TI and X and the Yang- _ 
Mills coupling constant S. Then (19) holds verbatim if one substitutes 3 - 5~ for 

v2 and x6 - $A for &j. If, in addition, one gauges a (traceless) U(1) proportional to 
(k - q)l,+k $ (p + k)+, the only change is in (12); one must now take 

[ 

kg2 + PSf 

I 

l/2 
Q  

= (P - q + k)g2 + qgf 
(21) 

with 91 the U(1) coupling constant. Our general result is thus 

SU(p + k) x G x U(1) + N(k) x SU(p - q + k) x U( 1) x ii’ x U( 1) (22) 

when G C SU(q - k). 

Finally, consider gauging SU(p - k) X SU(q + k) X U( 1). (To avoid any ambiguity, 

we assume that the defining representation of U(p - q) transforms under this SU(p - 
. . _ k) x SU(q+k) as a (p- k, 1) + (1, q + k).) We will focus on p > q + k, since p = q + k 

does not break supersymmetry,:while p < q + k is a special case of (22). 

One can rotate the generators of SU(p - k) and SU(q + k) to lie in the upper 

left-hand and lower right-hand subblocks of (14), respectively; then the U(1) is pro- - _” .- 
portional to (q + k)l‘ P-k $ (k - p)l,+k. The effective potential is found to be 

I-’ = [(p - k)(q + k)(p + q)]-’ [p(k - p) + (p + q)trfi12 

+ $fi 1 (-)[td?-- 
8 p-k r 

- 2 
(t B) ] 

q+k-p+trfi2- --&(q+k-p+ tr@2] . 

(23) 
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Here gr, 92, ga are the coupling constants for U(l), SU(p - k) and SU(q + k), respec- 

tively, and g is the upper left-hand (p-k) X (p-k) submatrix-of B E (lp +AA)-l. 

Now, the null-space of A has dim > p - q so that B has at least p - q eigenvalues 

equal to unity. There is a well-known theorem l1 which states that the eigenvalues . _ 
Xi of a Hermitian matrix M must interlace with the eigenvalues X: of the matrix M’ 

obtained from M by deleting (say) the last row and column: X1 5 Xi 5 X2 2 Xi 5 

. . . . Therefore B must have (at least) p-q-k eigenvalues equal to unity; the remaining - 
eigenvalues Xl, . . . , X, are constrained only to lie between zero and one. I is minimized 

when 

Xl = . . . = A, = A(@ = (q + k) Is&l + S&P - q - k)l 
s&b + d + sj(n + k)(p - q - k) + &(p - k) (24 

at which point I’ > 0, so that supersymmetry is spontaneously broken, as it must be. 

By the same arguments as before, one-can show that the vacua are all gauge- 

equivalent; a convenient choice is 

A vat = 

Expanding around A,,, yields the result 

SU(p-k) x SU(q+k) x U(1) + Su(k) X =$+-k-q) x W(q) x U(1) x U(1) . (26) 

Note that the rank of the gauge group has once again decreased. 
- - 

4. Supersymmetry-preserving Cases 

We next consider gauging. S = SU(n) with n, q 5 p, assuming as before that the 

defining representation of U(p+ q) transforms under S as a fundamental plus p + q - n 

singlets. Then S can be rotated to lie in the upper left-hand n x n submatrix of V; 

in that case the gauge group is contained entirely in the unbroken subgroup of GP,q. 

It is obvious from (7) that I will be minimized when B, the upper left-hand n x n 

submatrix of B, is pIoportiona1 to the identity. Then I = 0, and supersymmetry is 

unbroken. 

There are actually two cases to consider here. We focus first on the case q < n 5 

p. By the interlacing theorem, it follows -that h must have at least-n - q eigenvalues 
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equal to unity. Therefore B must in fact be equal to the identity in order for I? to 

vanish. A = 0 is the simplest vacuum one can think of, and indeed all other vacua 

are gauge-equivalent to it. We conclude that the gauge symmetry remains unbroken, 

as naively expected, and that all particles stay massless. 

More interesting is the case when n 5 q 5 p; then interlacing no longer poses any 

restriction. Any vacuum is gauge-equivalent to one of the form c - e 

where 7 is an arbitrary real, non-negative constant. Let 

(27) 

(28) 
- 

with fermionic partners $1,. . . , $4. Then the massive fields are the n2 - 1 “traceless 

Hermitian” scalars in AZ, the n2 - 1 gauge mesons, and the 2(n2 - 1) Dirac spinors 

composed of the gauginos mixed with the corresponding “traceless” $3 fields; all of 

these have mass 6 i gfir &. (Note the symmetry 7 ++ 7-l.) 

The model is thus indeterminate: The gauge symmetry either breaks down com- 

pletely or, if y = 0, not at all, and the masses can assume any value up to sfn. By 
J8 

the magic of supersymmetry, this peculiar situation must to persist to any order in 

perturbation theory (a result reminiscent of supersymmetric SU(5)12). One should 

probably not take this too seriously; presumably, in any realistic application, the vac- 

uum degeneracy would be lifted by perturbations. 

5. Generalization to Other Kihler Manifolds 

It is important to know whether the phenomena discussed in the last two sec- 

tions are peculiar to G,,, or characteristic of supersymmetric sigma models in general. 

Fortunately, the symmetric Kahler manifolds of the form G/H, where G is a com- 

pact, connected simple Lie group, have been completely classified.13 They are: (i) 

SVP + 4lWP) x SUbI) x U(l), (ii) SP(2PMPh (iii) SWPMP), (iv) wq + 2)/ 

sot? x u(l), (V) ‘f36/so(lo) x u(l), and (vi) E7/E6 X U(1). Case (i) is equivalent 

to U(P + d/VP) x w considered previously. In this section we shall focus on cases 
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(ii) and (iii). For the sake of brevity, let us denote both Sp(2q) and SO(2q) by S(2q); 

then they can be treated simultaneously. 

It is a pleasant surprise that the appropriate Lagrangians for (ii) and (iii) are still 

given13 by (I), (5) and (A.6). Now, however, 4) is a p X p matrix of chiral superfields 

subject to the constraint QT = &t<p, the upper sign referring henceforth to (ii) and the 

lower to (iii). Thus C = BT. The global S(2p) symmetries are generated by l4 c - e 

T= 
( 

H X 
x -HT ’ > (29) 

here H and X are p x p matrices satisfying H = fi and XT = fX. It is obvious 

from (4) that the (anti)symmetry of (9 is preserved by the action of T, and that H 

indeed generates the unbroken U(p) subgroup. 

We will first consider the consequences of gauging an S(2k) subgroup of S(2p). Let 
us assume for convenience that the generators of S(2k) can be rotated into the form 

T2 0 Tl 0 k 

o p-k 1 Tl 0 -TT 0 k (30) 

0 0 0 o p-k 

where of course TIT = fT1 and T2 = - 2 T as above. The naive expectation is then 

S(2k) -+ U(k). Needless to say, this underestimates the breaking of the gauge group, 

as we shall presently show. 

As before, we seek to minimize the effective -potential I’(A). It is convenient to 

reduce A to “canonical form” at the outset, reversing our usual procedure. Let Ao be 

some minimum of r: 

&=(*$r 2) imk , AT =&Al , A;=&& . 

We are free to apply a global S(2k) x S(2p-2k) transformation to AQ without changing 

the value of I’; here S(21c) is generated by (30), and S(2p - 2k) by 0 0 0 0 
0 T4 0 T3 

T4 = T4 (31) 
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which manifestly commutes with (30). 

i We begin by choosing Tl = -Al, T2 = T3 = T4 = 0. Then Al can be quickly 

driven to zero, precisely as in (17). Our next step is to choose T3 = -A3(1 +&As) + 

. _ @JA~)~A~(&A~), Tl = FAN Tax, T2 = T4 = 0. With these choices 

6A1~=0, 6A2 = rA2 p3 &, Gtr(& 4) = -26 tr( T3 T3) 

so that A3 can likewise be made-to vanish. l5 Finally, withca judicio”us choice of T2 and 

?‘J,-one can put the k X (p - k) matrix A2 in the convenient form 

where all the Xi are real and nonnegative. This exhausts our gauge freedom. 

With this choice of Al,A2 and Aa, it is easy to calculate the effective potential. 

One obtains: 

r= $ [max{fk - p, O} + $-$$)2] , 
i 

(32) 

-. . 

which is minimized when Xi = 1. Once again there are two cases to consider. Suppose 

first that k 5 p/2. Then supersymmetry remains unbroken, but the gauge symmetry 

breaks down completely. (Note that there is no indeterminacy here, unlike the case to 

be discussed at the end of this section.) On the other hand, if k > p/2, supersymmetry 

breaks and one finds: - - ’ 

- .” . . 
S(2k) + U(2k - p) . (33) 

In addition to the (2k - p)2 gauge mesons corresponding to the unbroken symmetries, 

the massless sector consists of (k - 4 p)(p f 1) D irac gauginos transforming under 

the unbroken unitary group as p - k covariant vectors plus a contravariant two-index 

(anti)symmetric tensor. There are no massless scalars. 

One might wish to gauge the generators of (31) in addition to those of (30). In 
-. that case 

r=$[g2max{2k-p,0}+j2max{p--2k10)+(g2+~~)~(~~)2] (34 ~_ -. 
i 
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where ij is the S(2p - 21c) coupling constant. Let us assume without loss of generality 

that k 2 p/2. Then we find 

S(2k) x S(2p - 2k) + U(2k -p) x S(2p - 2k) (35) 

so that essentially the symmetry does not break down any further than in (33) (cf. 

(16) and (22)). Note that supersymmetry is broken unless k = p/2.16 

Finally, let us consider gauging a subgroup of SU(p)that can be rotated to lie - 
entirely in the unbroken subgroup generated by H and -HT in (29). (This is not 

possible for the case k 5 p/2 discussed above.) One then finds the same indeterminacy 

described in Section 4. All in all, it thus appears that the behavior of these models is 

qualitatively very similar to that of G,,,. 

6. Discussion 

i . 

We have seen that the spontaneous breaking of the gauge symmetry in supersym- 

metric sigma models is generally much more severe than in their nonsupersymmetric 

counterparts. (The only exceptions occur when S = G, in which case S --) H as 
naively expected.) This phenomenon has potentially ink?rf?Stihg applications. One 

might for example envision that at some large scale the world is supersymmetric, with 

a global symmetry group G broken spontaneously to H, and a grand unified gauge 

group S C G. One might then quite naturally obtain S -+ SU(5) or more directly 

s + SU(3) x x42) x U(l), even when rank S > 4. On the other hand, one might 

imagine that the symmetry breaking takes place at low energies (1 TeV) and find 

su(-2) x U(l)-+ U(1). 

- _” ._ in either case, however, it is no small task to arrange that the representation 

-. 

content and number of “families” of the remaining massless matter and gauge fermions 

correspond to those of the quarks and leptons (and that the ABJ anomalies vanish).17 

For example, consider the case when G/H = SO(14)/U(7) and S = SO( 12). Then 

one finds that S -+ SU(5) X U(1) with the massless fermions transforming quite 

encouragingly like a 5 + 10 under the unbroken SU(5); unfortunately, there is room 

for only one family. Still, it is especially heartening to note that one need not worry 

aboz massless scalars remaining in the spectrum; in general, thanks to the gauging, 

they all either gain mass at tree-level or areeaten by broken generators. 
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APPENDIX 
Derivation of the Lagrangian in Component Form 

We begin by presenting a straightforward generalization of Zumino’s result.4 Let 

. ._ the Kahler potential be a function, not only of chiral superfields 9’ and b’, but also 

of vector superfields Vc. That is, 

f = / d48 K(&‘, 0’) VL) + f.ga;ge .- - - 
Then as an exercise in the chain rule, we find: 

(A4 

In (A.2) all derivatives of the Kahler potential are to be evaluated at 6 = 8 = 0; they 

are thus functions only of the scalar fields A’ and A*‘. These fields can be thought of 

as coordinates on a complex manifold5 whose metric is given by 

gij*(A’, A*k) = f32K 

daG &j &j=o ’ (A4 

such a metric is said to be Kihlerian. ‘- - ---- 

18 



It is now clear that the auxiliary fields F’ and F*ican be ignored in the treelevel 

computation of the effective potential I, as previously asserted, since at the minimum 

of I they assume the value zero. The first four lines of (A.2) which do not contain 

gauge fields, constitute Zumino’s result. . ._ 
tie wish to apply this formula to (5). Let B, C and J be defined as in (6). It is 

convenient to define the q X (p + q) dimensional matrices 

- 
I = (0, lq) 7 L = (iii, l/J) 

as well. Note the following useful identities (Si denotes the 

(A.4 

ith canonical basis vector): 

8B -= 
dAij 

-B&(jTAB at? ’ .I -=-CAbisjTC , BA=AC, 
’ 3Aij 

(A.5) 

JIBA=I-C i ABJ=i(l-CL) , JBJ+i%L=l. 

Then, after a good deal of algebra, one obtains” 

-&iBPAC+; (d,$d’V$B-h.c.) 

. . . 
+ f $ B$C $ B$C + i (B$onC[3n ABA $ + $ BAB, ;i] - h.c.) 

+f g$~nC$BJ~nfB’~ g$onCLvnEC3B --$($CLi~B+ h.c.) 
(A4 

- . . . . -f g(vnJBdnACL+h.c.)-a 

+ tr{i D2 - i ( vmn)2 - iXUn Rn 1) , 

where vmn and Dn denote the usual gauge field strength and gauge-covariant derivative. 

The first line vanishes upon elimination of F and E. 

Recall that (A.6) is the appropriate Lagrangian, not only for GPIq, but also for 

Sp(m/U(p) and SO(2p)/U(p). In these cases C = BT, and the matter and gauge 

fields obey the various symmetry constraints discussed in Section 5. ._ 
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