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I. INTRODUCTION 

The aims of this paper are two-fold: The first is to demonstrate how the renormal- 

ization group technique can be used to improve the perturbation theory calculation 
. .- 
in quantum electrodynamics (QED) and the second is to actually use the technique to 

write useful radiative correction formulas for the e+e- colliding beam experiments. In 

QED only the charge renormalization is necessary because Zhe’mass”renormalization 

and the wave-function renormalization cancel each other (2’1 = 22). The renormaliza- 

tion group technique in QED is based on a very simple principle: “physics” should be 

independent of the value of photon invariant momentum X2 at which we renormalize 

the charge. That such a simple and seemingly obvious principle can lead to interest- 

ing physical consequences was first noted by Stueckelberg and Peterman (Stueckelberg, 

1953) Gell-Mann and Low (Gell-Mann, 1954),In this paper we adopt the method de- 

veloped by Bogoliubov and Shirkov (Bogoliubov, 1959). Eriksson (Eriksson, 1964,1968) 

was the-first person to apply the renormalization group technique to QED radiative 

corrections. In this paper we improve upon Eriksson’s treatments. In Appendix A we 

rederive Eriksson’s results without using his assumption that the physical quantities 

such as vacuum polarizations, vertex functions, bremsstrahlung formula, cross sections 

etc. have well defined finite limits as m -+ 0. 

If one uses the renormalization group technique, all the masses in the problem are 

in _ approximated by X2. This is a very bad approximation at presently available energies. 

For example at (s)l@  = -100 GeV, we have en(s/$) = 24.4, cn(s/m$ = 13.8, 

’ .ancl&(s/mf) = 8.03; therefore these quantities cannot be regarded as approximately 

equal for practical calculations. We must recover all the mass dependence from the 
- . .m results of the renormalization group technique in order to be of any use for practical 

applications. Especially in the application of the renormalization group technique to 

QED the vacuum polarization plays a very essential role and particles with all different 

masses occur here. Fortunately the result of the renormalization group is factorizable 

[see Eq. (2.15)] d an each factor can be expanded in a certain way [see Eqs. (2.16) and 

(2.20)) so that its physical origin is manifest. Since we know the physical origin of each 

term, it is obvious what mass should be used in place of X2 in each part of the diagram. 

This problem of what masses to assign to each part of the Feynman diagrams can be 

solved automatically in one stroke if we replace the renormalization group result Eq. 

3 



(2.2) by Eq. (2.3). Thus our treatment is based on Eq. (2.3) throughout the rest of 

the paper. Since Eq. (2.3) reproduces completely the first order radiative corrections 

as well as all the leading log terms in the higher order corrections, the terms ignored 

are at most of order a2tn(q2/m~) - 0.14% for q2 < (300 GeV)2. 

In Sec. 1I.A we write down the lowest order radiative corrections to the process 

e+e- L p+p- in the soft photon limit. This process was chosen because the results 

obtained here can be applied most easily to other processes’. In’ Sec.-11.B we use Eq. 

-~ (2.3) to extend the results of the lowest order radiative corrections to all orders in Q. 

The properties of the results of this extension are then discussed. The most important 

properties are: 

1. The multiple photon exchange between different charged lines and the interfer- 

ence between the bremsstrahlung from different charged lines do not produce 

leading log terms in the cross section. - 

2. From the structure of Eq. (2.3) the result can be factorized into various parts, 

namely, the initial state vertex fun&ion, bremsstrahlung and pair conversion 

from the initial state, the vacuum polarization of the main photon propagator, 

the final state vertex function, the bremsstrahlung and pair conversion from the 

final state, and the corrections to the asymmetry. As mentioned earlier, because 

of this property of factorization, it is obvious what kind of mass to use in each 

part and our procedure gives this mass dependence correctly. The factorization 

is to be expected because we could have applied the renormalization group . 
technique to each of these factors and obtained the same result. 

8. _ The procedure produces the exponentiation of infrared terms autom,atically. It 

also tells us that the vertex function should be exponentiated but the vacuum _. 
-~ __ ._ . polarization should not be. The latter should be summed into (1 - $Svac)-l 

instead. 

4. It predicts the existence of pair conversion of a photon. This is remarkable since 

the starting point of the calculation (the lowest order radiative corrections) does 

not contain pair conversion of a photon. The result agrees with the Kroll-Wada 

(Kroll, 1952) 1 t re a ion between bremsstrahlung cross section and the internal 

pair conversion cross section. 
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5. Our results exhibit the cancellation of mass singularities discovered by Kinoshita 

(Kinoshita, 1961) and Lee-Nauenberg (Lee, 1963) to all order in Q. This justi- 

fies that we do not do radiative corrections to the hadronic final states in the 
. .- measurement of R = a(e+e- + hadrons)/a(e+e- -t p+p-). 

6. -Higher order-corrections to the asymmetry which was produced by the lowest 

order radiative correction are small; r - e 

In Sec. III we discuss how to do radiative corrections to process such as e+e- --) 

p+p-q which is itself not the lowest order cross section. In Sec. IV, we apply our result 

to the radiative corrections to e+e- + hadronic continuum. In Sec. V, we consider 

the radiative corrections to e+e- -+ narrow resonance + some final state where the 

width of the resonance is much narrower than the energy spread of the machine (such 

as in $). The procedure of extracting the full width, the leptonic width and other 

widths are discussed. 

In Sec. VI, we consider the radiative corrections to e+e- ---) 20 ---) f, where 20 is 

supposed to have a width equal to or greater than 3 GeV which is much wider than 

-the machine width. We investigate the effects of radiative correction to (1) shift in 

the peak positron; (2) reduction in the peak height; and (3) fattening of the full width 

at half maximum. Numerical examples using various width of Zo corresponding to 

different numbers of neutrino flavors are given. Sec. VII gives the concluding remarks. 
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II. SOFT PHOTON PART 

Let us suppose that the soft photon part of the cross section including the radiative 

corrections to order o is given by 

01 =cro(l+2II+A) (2.1) 

where 00 is the lowest order cross section, .n is the order cr%acuum polarization and 

A is the rest-of -.order Q radiative corrections. Using the standard renormalization 
group technique we obtain in Appendix A the following expression for the radiative 

corrections to all order in o in the leading log approximation: 

c = (’ + n*e’) (I_ C, in 
(%+cA)/cr 

CO q2/X2 P-2) 
- 

where CA and C, are the coefficients of log q2 in A and IL respectively, and X2 is the 

value of i2 at which the renormalization is carried out and it is assumed to be roughly 

the same order of magnitude as the masses of the particles involved, and n..& stands for 

the nonlogarithmic terms in 2II + A. Unfortunately the energy ranges of the colliding 

beam machines are not high enough for us to ignore the mass difference between 

me, mp, 1717, mu, rnd, m,, rnb, etc. which can occur in the vacuum polarization II 

in Eq. (2.1). Thus Eq. (2.2) will not give useful numerical results unless one can put 

back all the mass dependence which was lost in going from Eq. (2.1) to Eq. (2.2). 

I propose that we replace (2.2)-by the following formula: 

u 1 
( > 

i+(A/l-I) 
-= 

1-B 
. 

CO 
(2.3) 

Before justifying the use of Eq. (2.3), let us write the expressions for II and A using the 

radiative corrections to e+e- + P+J.~- as an example. We discuss later how our result 
should be modified to deal with the radiative corrections to e+e- -+ p+p-r , e+e- -+ 
hadrons (nonresonances), e+e- -+ resonance + f and e+e- -+ Zu + f. 
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C- 

A. LOWEST ORDER RADIATIVE CORRECTIONS TO e+e- -+ p+p- 

For the reaction e+e- + p+p-, the lowest order cross section is dao/dfl = 

-(a2/44(1 + cos2 0) and the expressions for the II and A  in Eq. (2.1) are: 

where 

6 is the angle between e- and ~1~. te, is asymmetric with respect to the plane per- 

pendicular to the beam axis. 6~ is the asymmetric and noninfrared divergent part of 

the radiative corrections: - - : 

&(B) = F {- 1-+ ta2 ,[,,s{hz2(sin~~) + h2(~o~~)} +sin2i Pn(cosg) 

- cos2 5 &z(sini)] + 2 en2(sin$ - 2 ~n2(eos~) - @ (sin2 3 + @ (cos2 i)} , 

where a(z) is the Spence function (also called dilogarithm ). The numerical values of 

6A(6) are shown in Table I. 6~ and te, are both odd with respect to the interchange 

cr+ ++ P- and hence contribute only to the asymmetry but not to the total cross 

section up to order o3 in the cross section. b&,rt and 6:ert represent respectively the 

ele&on and muon vertices, te and t, represent the equivalent radiator thickness for 

electron and muon bremsstrahlungs respectively, 
_-, 

JI is the lowest order vacuum polarization contribution. The bubble in the vacuum 

polarization diagram  could be an electron pair, a muon pair, a r pair, or hadronic 



states. The contributions from these various states, denoted by X, can be calculated 

from the cross section bee-,x(s) in the following way: 

2l-w = x &c4 Y P-5) 
. .- X 

6c(4 =& R~/,;ue;$i?*~t _’ _ (2.6) _ 

where 8th is the- threshold value of 8 for the production of the final state X and Re 

stands for the real part. For a lepton pair with mass m we have 8th = 4m2, 

4m2 
, with ,O2=1-s , 

and we thus obtain from Eq. (2.6), - 

with x = &s and 

5 x (l--.)l42+.) 
f(x) = -s-g+ 6 en (1-x)1’2+1 if x < 1 

(1-2)1/2-l - ’ 

and 

f(x) = -;-;+f _ _3 
- l)‘i2(2 + 2) tan-l 

-Since-we are interested in energy range s >> 4mE, we have 

4m3 
with x7 = - . 

8 

(2.7) 

P-8) 

(2.Q) 

(2.10) 

(2.11) 

Letus next consider the hadronic contributions to the vacuum polarization. For the 

nonresonant region, ue+e-+had (8) can be roughly represented by 1.2 ue+e-+guark partona, 

8 



hence we may write S$$ in terms of the function f(s) given above in the following 

way: 

) (2.12) 
. ._ 
-where zu, x9, zc and ~b are s&s for production of different quark flavors and are 

given approximately by xu = 4rnT/s, x8 = 1 GeV2/s, xc = 9 GeV2/s and xb = 

100 GeV2/s. 
< - 6 

The contribution to 6,,, from hadronic resonances can be estimated by substituting 

the Breit-Wigner formula: 

~e+e-+Re&) = 
r(R+e+e-)rt 127r 
(S - Mi,” + I’: Mi r;fo MR 

-+ e+e-) S(s - Mi) (2.13) 

into Eq. (2.6). We obtain 

SE;(s) = 6I’(R -+ e+e-) s[s i Mi + rtMRF1tn(s/M;)] 

OMR (s - M;)2 + I’;M; 
(2.14) 

8 
I-SO 

6r(R -+ e+e-) 
&MR F-ig’ 

In Table II we list all the known resonances in e+e- --+ hadrons, together with their 

masses MR, total widths I’t, the partial widths into e+e-, I’(R -+ e+e-), and the 
-. . quantities 6I(R + e+e-)/(crMR) which appear in Eq. (2.14). We note that the 

contribution of these resonances to 6 vat is not important except in the neighborhood 

of the- resonance. Its effect is to increase the high energy side and deplete the low 

energy side of the resonance peak. Since the bremsstrahlung effect increases the high - . . . 
energy side of the peak with much higher strength (factor of 100 to 1000) we will not 

see the effect of SE: at high energy side of the peak. We should be able to see a slight 

dip in the cross section at the low energy side. 

The asymmetric term t,, was first obtained by Tsai (Tsai, 1965). The expression 

-- 

for SA(O) was obtained by Khriplovich (Khriplovich, 1973), Discus (Discus, 1973) and 

Brown et al. (Brown, 1973). The hadronic contributions to the vacuum polarization 

were hated by Tsai (Tsai, 1960), Cabibbo and Gatto (Cabbibo, 1961), and Berends 

and Gastmans (Berends, 1978). - 
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B. RADIATIVE CORRECTIONS TOALLORDERS TO e+e--+p+p- 

In this subsect ion we apply our modif ied renormalization group formula Eq. (2.3) 
to the radiative corrections to e+e- -+ p+p-. The purpose is to demonstrate the 
properties of (2.3). 

1. Reproduction of .the lowest order radiative corrections 
e  

To order a  in radiative corrections Eq. (2.3) reproduces Eq. ($1) exactly, including 
* 

all themasses. If all the masses of charged lines are set equal to X2 in (2.3) it reproduces 

the results of (2.2). Thus (2.3) is the most natural extension of (2.1) and (2.2). 

2. Factorization 

Equation (2.3) can be decomposed into products of factors, each of which has a  

well defined physical meaning: 
-- 

4 1  2+(Ap) = (I_  q-2 1 
l-II 

x (1 - I-pwA~)ln (1 - I-p&rt/” 

x  (1 - qbwl~)l~ (1 - q-G/n 

(2.15) 

x (I- I-@ tn(E/AE)/n (I- n)-SA/” . 
This is consistent with the fact that we could have applied the renormalization group 

technique to each of these factors instead of a/au. In Eq. (2.15) we have arranged - - 
. . the factors into four l ines to indicate that in principle factors in each line should be 

Considered together because of infrared cancellations. By infrared cancellations we 

e  -m meen cancellation of all infrared factors K(pi, pj) defined by Eq. (A.30). The physical 
meaning of each factor is d iscussed subsequently.  

3. Mult iphoton Exchange 

The two photon exchange diagrams and the interference terms between initial and 

final state bremsstrahlung diagrams are given by 6, and tep and they do not have 

mass singularities. Therefore it is natural to expect that all the mass singularities in 

multiple photon exchange and the interference terms between initial and final state 

mult iphoton bremsstrahlung do not have leading log-mass singularities. Equation (2.3) 

has this property as can be seen by expanding the lasttwo factors in Eq. (2.15). 
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i 
4. Vacuum polarization in the main photon propagator 

The factor (I- II)-2 in Eq. (2.15) is the square of the chain sum of the vacuum 

polarization diagrams in the main photon propagator in the reaction e+e- + /,A+P-. 

5. Elastic vertex function 

The factor with the electron vertex S&j in (2.15) can be_wriJten as, 

- (I--- II)+J” = exp [6iert II-’ &( 1 - II)-l] 

= I+ s~w,[-~-l en(i -II)] 

+ (%)2 T [--II-~ enp - r-q2 
(2.16) 

+ Krtf3 31 [-I+ Cn(l - 11)13 

+ Krt)4 4, [-I+ tn(l - 11)14 + . . . . 

Each term in the above expansion can again be expanded in the following way: 

s;e,,[-n-l et2(i - r-r)] = s;,, 
( 

I + f r-r + 1 r-r2 + . . .) , (2.17) 

which can be identified with the interference terms between the lowest order diagram 

A40 and the sum of vertex diagrams, Mv + k&l + A&2 + M,,3 + . . . as shown in Fig. 

1. In order to save us from drawing too many pictures, we use one Feynman diagram 

; to represent the sum of all gauge invariant subset of diagrams. The third term in the 

expansion of (2.16) can be identified with two classes of diagrams shown in Fig. 2(a) 
- . ._ where a square box represents the sum of chain diagrams of vacuum polarizations as 

shown in Fig. 1. The fourth and the fifth terms in (2.16) are shown in Figs. 2(b) and 

2(c) respectively. 

The identification of terms appearing in Eqs. (2.16) and (2.17) with various Feyn- 

man diagrams have not been proven rigorously. Let us indicate how this can be 

qualitatively understood by investigating the simplest diagram M,l of Fig. 1 and see 
- whether it is given by the term (l/2)4$,.$ of (2.17). 

Th< electron vertex function Mu of Fig. 1 contains integrations of the form 
- 

J(1,2,3) = / (1; if,; &&) te2 d4t [(PI -i)2 - mz]‘-i [(P2 + e)2 - &$I-’ . (2.18) 
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The corresponding expression of the integrations for M,l in Fig. 1 is obtained by 

inserting the vacuum polarization function II in the integrand. Thus all we need 

to prove is that the integrand in (2.18) multiplied by II is dominated by the region . ._ 

e = *(fj+P2) = fq and that the dominance is not very peaked so that we have to put 

a factor l/2 in front. The integration with 1 as the numerator is iBfrared divergent 

and is cancelled completely by exactly the same function occuring in the electron 

bremsstrahlung lMbi2 of Fig. 3 and thus does not contribute to b”ert. When II(e2) 

is inserted into the integrand, it eliminates the infrared divergence because as e2 -+ 

01 W2) - e2. The integration with 4& as the numerator is finite both in the infrared 

and ultraviolet regions and the integration is indeed dominated by the regions near 

t= &(Pl + P2). The integration with &?, in the numerator is ultraviolet divergent 

which is usually cut off by the renormalization procedure. After the renormalization 

the integration is indeed dominated by the regions near f? = *(PI+ P2). The factor 

l/2 can be understood in the following way. We notice that II is a logarithmic 

function of e2. Now b,‘& is also a logarithmic function of q2 as a result of integration 

- with respect to e2, and thus the integral must behave approximately dt2/.t2. Thus the 

factor of l/2 can be understood easily from the fact that (this was pointed out by M. 

,Peskin to the author) 

/ 

= dx 
- tn 2 = f tn2x . 

1 z 

The higher order-terms in (2?17) can then be understood from the relation 

2 dx 1 
- / 1 

-z h% = - 
n+l 

etP+‘2 . (2.19) 

- 

If we ignore the vacuum polarization in (2.16) and (2.17)’ then (2.16) reduces to 

exp (S&J. This solves one of the long standing question in radiative corrections, 

namely, what part of the lowest order radiative correction should one exponentiate? 

Equation (2.3) tells us that we should exponentiate not only the bremsstrahlung, as 

originally conjectured by Schwinger (Schwinger, 1949) and later proven by Yennie, 

Frautshi and Suura (Yennie, 1961)’ but also the vertex part. It also tells us that the 

vacuum polarization part should not be exponentiated, rather it should be summed 

chainwise and written in the form (I- lI);12 as given-by Eq. (2.3). 
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6. Bremsstrahlung and pair conversions 

The factor in Eq. (2.15) with the equivalent radiator thickness te represents the 

bremsstrahlung and the pair conversions as shown in Figs. 3 and 4. In order to 

establish a one to one correspondence of different expansion terms of this factor with _ ._ 
Feynman diagrams, we again write it in an exponential form and then expand it in 

power series: 
c - s 

- ( 1 - n jwww~ = exp [-te h(E/AE) II-’ h(l - II)-‘] 

= I + [-I’ tn(E/AE)] + [-T h(E/AEj2/2! (2.20) 

+ [-T t’n(E/AE)]3/3! + . . . , 

where 2’ is a new equivalent radiator which contains not only the effect due to the 

bremsstrahlung but also the effect due to its conversion into a pair of e*, p*, r*, d*, 

u*, etc. 

T = te I-I-l en(1 - rq-’ 

= te 1+; II+; I12+... ( > . 
(2.21) 

The values of te, II and 2’ in % are tabulated in Table III. We notice that the increase 

in equivalent radiator thickness due to pair conversions is very small, the difference 

between T and te is of order 0.2 to 0.4% for fi = 20 to 200 GeV. 

We notice that the term -T tn(E/AE) contributes negatively to the cross section. 

’ In the- bremsstrahlung case we know that the vertex diagram has a large negative 

infrared term which cancels out with the infrared term in the bremsstrahlung. After 

.- this cancellation we assign a positive number Sve,tt to the vertex correction and a neg- 

ative number -t,&(E/AE) to the bremsstrahlung correction. Similarly the negative 

number coming from the rest of the expansion: 

-T tn(E/AE) - [-de tn(E/AE)] = -te h(E/AE) (f l-I+; I12+; l-13+...) 

represents the internal conversion of “a” virtual photon into a pair (see Fig. 3, lMbl+ 

Mb2 +mb3 + . . . 12) a fi er cancellation with diagrams shown in Fig. 1 M,l, Mv2,. . . . 

Since it is a nontrivial matter to do all these c-alculations; we differentiate-T &z(E/AE) 
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with respect to AE, the result is now positive and should represent the contributions 

from inelastic diagrams shown in Fig. 3: 

--A!-.- [-T tn(E/AE)] = (te/AE) (I+ f II + f II2 + i II3 + . . .) 
d@E) 

where &/AI3 comes from the bremsstrahlung diagram IMd2 of Fig- 3 and (te/AE) 
[( 1-/2)II + (I/-3)112 + ( 1/4)113 + . . .] should represent the pair conversion diagrams 

1 Mb1 + Mb2 + Mm + . . . I2 of Fig. 3. 

When pair conversion is ignored, 2’ is replaced by te and Eq. (2.20) gives the well 

known exponential form of the infrared photon cross section. I regard this as one of 

the triumph of the renormalization group technique. With the inclusion of the pair 

conversion, AE now represents the energy loss due to emission of photons and pairs. 

Let q’ be the four momentum of the virtual photon coupled to the pair. If we 

assume that the matrix elements of emitting the virtual photon q’ is independent of 

qt2 (often called the pole dominance model) we may use the Kroll-Wada relation (Kroll, 

1955) to write the internal pair conversion probability as (see Fig. 3 for notations) 

lMb112 = lMb12 ;/,p f$ w ]Mbj2 l-I[(AE)2] 
min 

where q,$, = (AE)2 and Q~in = 4m2. (For simplicity we have assumed that only 

one kind of fermion pair with mass m and charge e participate in both the vacuum 

polarization and the pair conversion. The argument can be generalized to the actual 

-case where many different particles participate in both the vacuum polari.zation and 

the pair conversion.) 

Inserting the chain-sum of the vacuum polarization diagrams into the photon prop- 

agator in (2.22) we obtain 

lkfbl + Mb2 + Mb3 + . . . I2 = lkfb12 ;/,‘,““” (1 -; en($)j-2 $ 

= lMb12 [n((AE)2) + H2((AE)2) + I13((AE)2) + . . .] 
(2.23) 

which is to be compared with (2,21), which gives: 
_- ._ -. 

lit&l2 (f n(s) +; n2(t?) +a n3(s) + . . .) . (2.24) 
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Equations (2.23) and (2.24) are not the same, but they are related. If we integrate 

both expressions with respect to AE from the threshold 2m to its. maximum possible 

value ,/& remembering that lMb12 is proportional to (AE)-‘, we obtain the same 

answers. When (AE)2 < 2Em (2.24) is larger than (2.23)’ but when (AE)2 > 2Em 

-‘the reverse is true. In general the matrix element of emitting a virtual photon q’ is not 

independent of qt2 as was assumed in obtaining the Kroll-Wada relation (2.22). It is 

suppressed when qt2 is large so this will partially correct theabove result in the right 

direction. In order to do a more complete justification of (2.20) and (2.21) we need to 

do a complete calculation and I have not done it. However the result as it stands is 

already very impressive. We notice that pair conversion does not occur in the lowest 

order radiative corrections which were the starting point of our calculation. Therefore 

we conclude that the renormalization group technique predicts the existence of pair 

conversion and very likely predicts its magnitude correctly. - 
The terms with higher power of te in (2.20) o course represent the multiple photon f 

emission and their conversions into pairs. Some of the diagrams associated with tz are 

shown in Fig. 4. 

7. Kinoshita-Lee-Nauenberg cancellations 

Kinoshita (Kinoshita, 1962) and Lee and Nauenberg (Lee, 1964) observed that 

if one sums over all the states with the same energy (degenerate states) the mass 

singularities cancel out to all orders in perturbation theory, provided we ignore the 

mass singularities coming from the vacuum polarizations. In our problem the initial 

state is preselected by themachine so that e+ and e: have~a definite energy E each. 

’ -Thus the mass singularity due to initial state radiative corrections remains: The final 

states can be summed and after doing so we expect their mass singularity to cancel to 

all orders in perturbation theory. This actually happens in our formalism. To see this 

we need the photon spectrum valid for a hard photon emission. This can be written 

as (see for example Bjorken, 1963) 

t, f [I + (1 - x)~] x-l dx , (2.25) 

where x = It/E and t, is defined in (2.4). Integrating (2.25) with respect to x from 

AI1E/E to 1, we obtain 

/ 

1 

AE/E 
(2.26) 
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Adding (2.26) to the final state part of the lowest order radiative corrections given by 

(2.4) and calling it A/ we obtain 

. 
Aj = S:m, - t, h &+t,,(h g-3=: (-i+$) , (2.27) 

which-no longer has any mass singularity. Applying the renormalization group tech- 

nique, this result can then be extended to all orders: .-- - w 

(i-Q-Al/n G exp [AI n-l tn(l-l-I)-‘] = exp 1,: II+: Ii2+. . . . (2.28) 

The mass singularity in II, which can be either due to the vacuum polarization or 

pair conversion in (2.28) does not contribute to the leading log because AI is of order 

Q and does not have logarithmic terms. We conclude that the radiative corrections to 

the final states are negligible if we sum over the final states. - 
This is very significant when dealing with hadronic final states which are usually 

too complicated to be radiatively corrected. Our results indicate that we can ignore 

the radiative corrections to the final hadronic states completely. We need to consider 

only the vacuum polarization correction to the main photon propagator and the initial 

state radiative corrections. 

In our problem the mass singularities from initial state bremsstrahlung te and 

the initial state vertex Siert do not cancel each other out when the photon spectrum 

is integrated because as the bremsstrahlung is emitted from the initial electron the 

virtual photon four momentum is changed from s to 8’ = ~(1 - k/E). Since the cross - - 
section for e+e- --) j4+j4- ’ 1s inversely proportional to a’, we have to multiply a factor 

-(I 1 i)-’ to th e integrand of Eq. (2.26). Thus the mass singularity of the resulting 

expression does not cancel with that from a,&,. In the language of Lee and Nauenberg 

we do not expect any cancellation for the initial state because we are not summing over 

all the degenerate initial states, the machine preselects the electron and the positron 

to have energy E each, and no other degenerate state participates in the interaction. 

These two ways of explaining the failure of cancellation of mass singularities in the 

initial state radiative corrections are independent of each other, namely one is not a 

consequence of the other. 

I regard it also as one of the triumphs of the renormalization group technique to 

be able to exhibit the Kinoshita-Lee-Nauenberg cancellation in the QED problem. 
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8. Higher order corrections to the asymmetry 

Let us consider the radiative corrections to the 6 asymmetry. As 8 is changed into 

(a- 6); the asymmetric part Aa = 6A-teP h(E/AE) in A of (2.4) changes sign. Thus 

in the asymmetry all other factors in Eg. (2.15) cancel out and we obtain F- - e 

a(e) - a( A - 0) = (1 - IQ-AJ” - (1 - rQ+AJ” 
a( 6) + a( 7r - 0) (1 - II)-J4.l” + (1 - n)+A@ 

(2.29) 

m (&A - t,, tn(E/AE)] (I+ f n) (2.30) 

where (?A, t,, and II are defined in (2.4) and the values of 6~ and II are tabulated in 

Tables I and III respectively.. The physical origins of the correction are twofold. The 

term $I&?,4 comes from the fact that in the two photon exchange both photons can 

have vacuum polarization and the term - $II~,,&z(E/AE) comes from the interference 

_ between the internal pair conversions from the initial electron and the final muon lines 

represented by Feynman diagrams A411 i&z + A4i2 A& shown in Fig; 5(d). As shown 

in Table III, II is about 5% at fi = 30 GeV, hence the correction to the asymmetry 

‘is only about 2.5%. It is nice to know that the correction is small. 

. ._ 



III. RADIATIVE CORkECTIONS TO HARD PHOTON PROCESSES 

i When the energy loss due to radiation is large the cross section can no longer be 

written as a simple product of the lowest order Born cross section times a factor as 

shown in (2.1) and (2.2). The lowest order cross section for e+e- + p+p-7 can be 

obtained using Feynman diagrams Mb1 + Mb2 shown in Fig. 5(b). An approximate 

formula was given by Berends, Castmans, and Wu (Berends, JQ6Qlfor the matrix 

elements squared~ which is shown below: 

diY=$/ $1 $1 $ s4(P,+P2-P3-P4-k) lMbl+Mb212 (3.1) 

with 

Mbfi Mb1 = - m; t2+u’2 t’2+.2 P+t’2+u2+.‘2 
292 (P3 * kp+ (P4 *k) + 1 4sjP3 - k)(P4 - k) P-2) 

Mi2 Mb2 = - 
tt2+d2 t2+tfi+u2+d2 

(Pl * k)z+ (I3 * k)2 + 4S'(Pl * k)(P2 - k) I (3.3) 

iM,t, M/,2 = 
t2 + t ‘2 + u2 + u r2 

49s' (3.4) 

t’ 21’ 

’ 3’2 . & - k) - (PI - k)(P3 - k) + (PI . k)(P4. k) + (P2. kiP3. k) 1 
. . . 

and 

t =(Pz-P~)~ , t’=(Pl-P3)2 , U =(Pz-P~)~ 

-- .^ ._ u’=(P1--P4)2 ) .s =(P1+P# ) s’=(P3+P4)2 . 

PI, P2, P3 and P4 refer to four momenta of e-, e+, /.L- and p+ respectively. We have 

also calculated the exact expression for l&fbr + Mb212 using Hearn’s reduce program. 

The exact expression is about 100 times more complicated than expressions shown in 

(3.2) (3.3) and (3.4) but numerically the latter yields results accurate to within one 

part in 3000 compared with the exact o3 calculation in the kinematical range we have 

checked. 2M& Mb2 given in (3.4) is odd under the exchange p+ 4-t p- and thus it 

contribTtes only to the asymmetry and not to the total cross section. The Monte Carlo 

program using Eqs. (3.1) to (3.4) was written-by Bereads and Kleiss (Berends, 1981) 
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which is very convenient for experimentalists because it can handle any experimental 

cuts in energy and angle. Thus we would like to write a prescription for doing higher 

order effects which can be adopted easily to the Monte Carlo program of Berends and 

Kleiss . 

In- order to do this, let us differentiate (2.3) with respect to AE. We obtain [see 

(2.21)]. 

(te + t, + kp) 
k 

vo(-L~+‘A’n)(l+tn+; HL...) . (3.5) 

The lowest order cross section (order (r3) in the above formula is (te + t, + tep)aO/k, 

hence the factor 

(-LJA’=’ ( 1,; II+; r12+... > (3.6) 
can be regarded as the radiative corrections-to Eq. (3.1) in the soft photon limit. 

The physical meaning of the factor [I/( 1 7 II)]2+(A/“) is similar to the one given in 

Sec. II except now we are dealing with the radiative corrections to the bremsstrahlung 

diagram Mb1 + Mb2 in stead of the elastic diagram MO shown in Fig. 5(a). The 

-physical meaning of the factor (1 + (1/2)II + ( 1/3)112 +. . .) was already discussed in the 

previous chapter [Eqs. (2.21) to (2.24)], namely the term 1 gives the bremsstrahlung, 

and the term (1/2)II + (1/3)112 + . . . gives the pair conversion of the bremsstrahlung 

represented by ]Mbl + Mb2 + M& + . . . I2 in Fig. 3. 

Since the final states observed could be p+p-7, p+p-e+e-, p+p-/~+p-, p+p- 

hadrons etc., let us sketch- how(3.5) and (3.1) can be combined to describe different 

-experimental situations. 

- .m e+e- A p+p-7 
Since a high energy 7 is observed, we know it is not converted into a pair. In this 

case we should retain only the term 1 and discard (1/2)II + (1/3)112 + . . . in (3.6). Let 

us assume that the cut used is that the total energy of /.J+, p- and 7 added is within 

AE of the total energy 2E 

2E-(Es+Ed+k) < AE<E . 

The correction factor (1 - II)-2-Al” is a function of the virtual photon energy in the 

main photon propagator and the latter can-be either-e or s’ = s(1 - k/E) depending 
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upon whether the photon is emitted~by the final muon system or initial electron system. 

Defining 

q s) = [ 1 - q ,)]-244/w) 
. 
then the radiative corrections to the cr3 cross section (3.1) under the present ex- 

perimental condition is obtained by multiplying F(s), F(s’) and [F(s) F(s’)]‘/~ to 

Mil Mbl, Mi2&$,2 and 2Mi1Mb2 reSpeCtiVdy. 
F-- - 

We notice that this procedure gives the correct Bloch-Nordsieck limit, namely as 

AE + 0 the cross section becomes zero. Physically this is due to the fact that the 

cross section for emitting any finite number of photons (in this case 1) is zero, because 

in any physical process involving charged particles, there are always infinitely many 

photons emitted. 

e+e- + p+p-p+p- 
-- 

In this case the photon is definitely converted into a muon pair so the factor 

[l + (1/2)lI + (1/3)112 + . . .] in (3.5) and (3.6) should be replaced by 

II, ( f+i II+; H2+... > = f/&J) 9 

where II, is equal to the muon part of II given by 

‘. 

fjuppose the experimental cut is such- that 

28 - (sum of the muon energies) < AE . .” .m 

Then according to our prescription the cross section for e+e- + p+p-p+p- can be 

obtained by multiplying fp(s)F(s), /Ir(s’)F(s’) and [fcl(s) F(s) fp(s’) F(s’)]‘i2 onto 

MiMbl, MlZMb2, and 2Mj1i&,2 of Eq. (3.1) respectively. 

-. 

_-, . . -. 
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IV. RADIATIVE CORRECTIONS TO e+e- ---* HADRON CONTINUUM 

i For this type of reactions we perform only the radiative corrections to the initial 

e+e- system and the vacuum polarization corrections to the main photon propagator 

.which is coupled to the final hadrons. The reasons for not doing radiative corrections 

to the final hadronic.system are twofold. In the first place the hadronic final system is 

very complicated and since the radiative corrections depend upon the detail of how the _ - s, 
experiment is-done, it is difficult to give a general prescription for them. The second 

reason is that our understanding of the hadronic problem is so crude that there is no 

need to worry about the electromagnetic corrections. In any case if we find later that it 

is necessary to do radiative corrections to the hadronic states for some specific problem 

we can do the calculation then, because the initial state radiative corrections and the 

final state radiative corrections can be decoupled to a large extent. For measurement 

of R = a(e+e- ---) hadrons)/@(e+e- --+ p-p+) we do not need to perform the final 

state radiative corrections because of the Kinoshita-Lee-Nauenberg cancellations as 

explained previously in Sec. II.B.7. 

Let W = 2E be the sum of energies of e+ and e- beams and s = W2. Since part 

bf the energy is lost through the emission of photons and the internal conversions of 

photons into pairs, the center-of-mass energy of e+e- before annihilation becomes IV’ 

which is less than W. Let ao(W’) be the lowest order cross section for e+e- -+ hadron 

at energy W’. The experimental cross section is then 

ae~~(w)=~~ma~-[Tz~-l~(l~-2+~) 

-2--%L,(Wn)m(wn) 
(4.1) 

. .I _ x [l -.I-I(w”)] cq)(W’) dx I 
where 

- 

T = i (en%- 1) en[1 ,~~2Jl-1 , 
(4.2) 

(4.3) 

b&.,,(Wf2) = g 
( 

z 
w’2 372 

en z - i + K) , 
e . . -. 
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and II(W12) is defined in (2.5) and its numerical values tabulated in Table III. Zmaz is 

determined by the energy cut WAi,, used in selecting the final state 

Xmaz = (W - Whj,)/[( 1/2)W] . 

The bremsstrahlung spectrum used in (4.1) is TzTwl[l - x + (1/2)x2] dz which is 

valid for soft as well as hard photon emission. The equivalent radiator thickness T 

contains both the effects of bremsstrahlung as well as the internalpairconversion of the 

bremsstrahlung:-The effect of pair conversion is very small. It increases the radiator 

thickness from te to T, the values of both quantities are tabulated in Table III. 

V. RADIATIVE CORRECTIONS TO e+e- ---) VERY 

NARROW RESONANCE -- 

In this and the next sections we deal with radiative corrections to formation of a 

resonance and its subsequent decay e+e- --) R --) f where R could be p, v+5, T, etc. and 

f could be ewe-, p+p-, one particular mode or sum of all modes of hadronic decays 

-etc. In this case the most important additional consideration is the energy spread of 

the colliding beam machine. This problem was considered by the author (Tsai, 1974) 

in conjunction with the analysis of the +!J. Similar work was done by Yennie (Yennie, 

1975), and Jackson and Scharre (Jackson, 1975) almost simultaneously. In this paper 
we shall bring the subject up to date by making the treatment correct to all order in 

cx in the leading log approximation. Since my original work is not easily available to 

people outside SLAC I shall repeat most--of the contents of that work here., 

Let the mean energy of the sum of e+ and e- beams be W = 2E and let us denote 

the m,achine enegy di&ribution by G(W, W’) dW’. G(W, W’) has a Gaussian form: 

GWY’) = * ew - [ 
(W - wy 

2A2 I , (5-l) 
where A is related to the full width at half maximum (FWHM) by 

A = (FWHM) /2.3548 . (5.2) 

Usually the Gaussian distribution of each beam is given: 

WW’) = & ey- - [ 
(E - E’)2 

282 I , _ (5.3) 

22 



i 

where o is related to A by A = fi u. Numerically o/E is 0.04% for SPEAR, 0.1% 

for PEP, 0.06% for CESR at Cornell and expected to be 0.2 to 0.5% for SLC at SLAC. 

(These numbers have been kindly supplied to the author by Dr. Karl Brown of SLAC.) 

Let us denote by B(W’, W”) dW” the probability distribution of the c.m. energy 

‘after the bremsstrahlung emission (including internal pair conversion), W’ being the 

energy before the bremsstrahlung. The energy loss by bremsstrahlung is W’ - W”. 
r - - 

Since energy loss is always positive we have 
- 

B(W’, w”) =0 if W’-W”<O . (5.4) 

The expression for B(W’, W”) is given by differentiating (2.20) with respect to AE: 

qw’, w”) = [T (Wjy$$-T] tqw’ - W”) 

where - 

T=F [et&$-+r-l en(b-rq-l . 

(5.5) 

(5.6) 

Let us express the cross section for the reaction e+e- --+ R -+ f by a Breit-Wigner 

formula 

r(R ---) e+e-) r(R -+ f) 
ah(W) = (W2 _ M;)2 + r; M; 12T (5-V 

- - 

i where MR is the mass of the resonance, -F(R -+ e+e-), I’(R --+ f), and Ft are partial 

widths of R ---) e+e-, R -+ f, and the total width respectively. 

I . . We introduce two kinds of definitions for the leptonic width. Let us consider the 

partial decay width of R --* e+e-. Of course strictly speaking there is no such a decay 

mode because e+ and e- are always accompanied by an infinite number of photons 

(Bloch, 1937). N ow according to the discussions given in Sec. II.B.7, if we sum the 

vertex corrections and the bremsstrahlung all the leading logs from these two sources 

cancel out to all order in o. Thus we do not have to worry about the final state 

radiative corrections. Since the decay of this channel, unlike hadronic decay modes, 

has 

For 

toTo through a virtual photon we must include the vacuum polarization effect. 

theoretical analysis, such as obtaining the-strength-of coupling between a photon 
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and the resonance, it is more convenknt to deal with the lowest order in a width I’0 

rather than the true experimental width rezp. Two are related by- 

I’o(R + e+e-) = Fe&R -+ e+e-) [I- II(Mi)12 . 

For hadronic decay modes, there is no vacuum polarization, so ro(R -+ hadrons) = 

rezp(R + hadrons). For our analysis it .&more convenient to deal with rezp, so we 

shall let all rls in (5.7) represent rezp. [l - lI(s)12 is 0.958 ai the $(3.1) but it is 0.89 
at &= 50 GeV according to the values of If(s) tabulated in Table III. Therefore we 

should be clear whether we are dealing with I’0 or rezp. Since I’(R -+ e+e-) already 

contains the vacuum polarization in our definition we should not correct it for vacuum 

polarization. Let us multiply q(W) by the vertex correction and call it aelf: 

The-desired relation between the experimentally observed cross section bezp(W) 

and the cross section aer/(W”) is given by 

aexp(w) = /,” dW” /,“. dW’ G(W, W’) B(W’, W”)‘Q,;(W”) 

(5-g) 
= - 

/ 
om dW” F(W, w”) f&w”) . 

‘. The lower limit of the dW’ integration comes from (5.4). B(W’, W”) is too singular at 

w ’ . . = W” for computer evaluation of (5.9). This sihgularity can be’eliminated with 

&n integration by parts in the following way: 

.” .m  

F(W, wnj - /,“n. dw’ G(W, W’) B(W’, W”) 

= & (Tr 1,” exp [-(Y - zj2] dzT (5.10) 

=& (“$ A)T /-y (x+y)T xemx2 dx 

where y= (W - W”)/ &A. There is no singularity in the integrand of (S.lO), hence 

it can be handled easily by a computer. - - - -.-. 
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1. Narrow Resonance 

When the total width of the peak It is much narrower than the machine width, 

such as for $J, we may replace (5.7) by a 6 function and obtain 

(‘bcW) r;. 12x2 r(R 
-b e+e-) r(R --+ /) 

(rt MR) 
&(W2 -MA) . (5.11) 

Substituting (5.11) into (5.8) and (5.9) we obtain _ - s 
- 

flexp(W) = F(W, MR) fh 
2 r(R -+ e+e-) r(R + f) -~:erA~‘/~(M2, 

0-t Mj$) 
. 

(5.12) 
In general the experimental resonance cross section will look like Fig. 6, where 

W is the energy of the machine at the Gaussian peak. The nonresonant background 

must be subtracted before applying (5.12). Except for the normalization the shape of - 
uexp(W) d t is e ermined completely by F(W, MR). The peak of the curve is given by 

F(W, it&) at W  = MR: 

F(MR, MR) = & exp -T en &Jr (I+; T) ) (5.13) 

where the Gamma function I’( 1 + (1/2)T) can be approximated by I’( 1 + (1/2)T) = 
1, - (l/2) 0.5772157T. T is defined by 

‘. 
T=2” en 7r -$ - 1) I-I-’ en(i -I-I)-’ (5.14) 

and its numerical value is tabulated in Table III. Equations (5.13) and (5.12) can be 

used to calculate the maximum counting rate. In general the beam energy‘resolution 

A is not known accurately enough, so it is not desirable to use the measurement at 
” ._ 

the peak to obtain I’(R --+ e+e-), I’t, and I’(R + f). The area method to be described 
below is independent of the machine width A, so it should be used to determine I’(R -+ 

e+e-) and It. After this is done, one can then sit on top of the resonance peak and 

measure all other partial widths using (5.12) and (5.13) by comparing the final state 

of interest with the leptonic mode. 

.- 2. Area Method 

ThFshape of the curve on the left hand side- of the peak in Fig. 6 represents 

mainly the machine width whereas the shape of the curve OR the right hand side and 
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far away from the peak is due to l/k dependence of the radiative tail. If we integrate 

the experimental curve from Wmin to Wmaz as shown in Fig. 6, we expect the area of 

the integration to become independent of the details of the machine width as long as 

W maz - MR is chosen to be much larger than the machine width. This situation is 

-‘exactly the same as the treatment of scattering of an electron from a proton near the 

elastic-peak (Tsai, 1961). Since the area becomes independent of the machine width 

we may replace G(W, W’) by a 6 function 
_ - #, 

- 

G(W, W’) = 6(W - W’) . (5.15) 

We obtain then from (5.12) and (5.10) 

/ 

W ma2 

W aexp(W)dW = 
min 

(7;;) 
- MR)T k _ n( M;)I-‘ieti(‘%)/n(Mi) 

MR 

x 6n2 r(R 2 e+e-) r(R --+ /) rt M; 1 . 
(5.16) 

Wma, should be chosen SO that MR >> Wm,, - MR >> beam energy spread. In practice 

W maz - MR 2 (10 to 15)A will give a sufficiently accurate result. 

The procedure for extracting various widths is as follows: 

Step 1. I’(R + e+e-) can be determined by the experiment e+e- -t R -+ all, 

because in this case I’(R -t f) and I’t in (5.16) cancel each other. 
I.- Step 2. It is then determined by the experiment e+e- + R -+ e+e- which is 

. . proportional to [r(R + e+i-)]2/ri. . . e. 

!%p 3. After-I’(R -+ e+e-) and I’t are determined using the area method, other 

-~ .” ._ decay modes can be investigated by operating the machine on the resonance peak 

where the maximum counting rate occurs. Other partial decay widths are determined 

then by comparing them with the leptonic width. 

- 

Had we used the lowest order leptonic width I’o(R -+ e+e-) instead of the exper- 

imental leptonic width, some confusion can occur in Step 2 and Step 3, because in 

Step 2 when the final state is e+e- the partial width I’(R + f) in (5.16) should be 

written as ro(R -+ e+e-)(l - II)-2 and in Step 3 the leptonic mode we are comparing 

with is’6he experimental one and not I’o(R + e+e-). This is why it is a good idea to 

use I’&R -+ ewe-) instead of I’o(R + e+e-).-One can convert lYezp(R -+ e+e-) into 
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Iu(R -+ e+e-) by multiplying a factor (1 - II)2 before doing a theoretical analysis, for 

example when obtaining the wave function of quarkonium at the origin etc. 

In the next section we treat the case where the machine width is much narrower 

than the decay width using e+e- + Zu + f as an example. Of course the method 
_ ._ 
‘can be used also for the hadronic resonances. 

VI. RADIATIVE CORRECTIONS TO e+e- -+ Zo -+ f 

Since no photon intermediate state is necessary for the decay Zu -+ e+e-, we 

should not include the vacuum polarization in the lowest order radiative corrections. 

Our formulae (5.8) and (5.9) can thus be used for the analysis of e+e- -+ Zu + f. 

The width of the Zu (see Cheng, 1982) according to the standard model is expected to 

be about 3 GeV which is much wider than the-beam energy width (m 0.1 GeV). If we 

approximate G(W, W’) by S(W - W’), then (5.9) can be written as 

~ezp(W = /p dW” B(W,W”) a,/l(W”) 

. 
‘. . 

Now T, II and r!$& are all slowly%arying functions-of W”,-so we may evaluate them 

at the-resonance peak W” = Mz. Using Mz = (93.8 f 2.0) GeV (see Marciano, 1980) 
we obtain S&+ = 0.087, II = 0.061 and T = 0.111 from Table III. Thus 

” ._ 

(1 - q-fLtm = 1.094 . (6.2) 

Let us write 

where ab(Mz) is the peak value of Breit-Wigner cross section 
- 

‘Q(Mz) = 12~ IJ(Zo + e+ey)J’(Zo -+ f) MF2 rF2 1 - , (6.4 r -. 
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we have 

BWR( W) E 1.094 Mf I’,2 / 
2 TxT-l dx 

o D2+Mr2 
22 t 

W) 

-with D = W2[1-(1/2)x12-M;. ab(Mz) is the peak value of the cross section at W = 

Mz if there were no radiative corrections. BWR stands for Breit-Wigner radiatively 

corrected. In order to see the effect of radiative corrections to the-resonance peak 

we have plotted -in Fig. 7 BwR(W) together with the original Breit-Wigner function 

BW(W) which is defined by 

r; M,2 ‘?b(W) 

Bw(w) = (w2 - M!)2 + r; A@ = ob(Mz) - (6.6) 

The integrand in BWR(W) defined by (6.5) is too singular to be evaluated reliably by - 
a computer. This singularity can be eliminated by integration by parts: 

BwR(W) 1.094 M: r,2 2T = Mt4 + r 2t2 M 
+ 

t 
/ 2 2xT Dw2[(1/2)x 11 - dX 

0 (D2 + I’,2 Mj)2 
1 . (6.5’) 

In Fig. 7 we plot BW(W) and BwR(W). The figure shows that the originally symmetric 

Breit-Wigner function BW(W) acquires a radiative tail toward the high energy side. 

The shift in peak position is only about 0.1 GeV. The peak height is reduced by about 

24% and the width is increased by about 15%. In Table IV, we tabulate the shift in 
‘. peak position Wpeak - M,, the ratio of the experimental peak height to the peak height 

., of the Breit-Wigner dezp (tiPeak)l&(Mz),. and the ratio of experimental full width at 

half-maximum to It. The energies at half maximum is defined by cezp(W*l/2) = 

(l/z)a&p( Wpeak)- Each-fi avor of .massless neutrino contribute to a partial width: 

w. + vf fif) = 2.2 X ( Mz in GeV)3 X lo-’ GeV . (6.7) 

For Mz value of 93.8 GeV, this gives 

r(Zo -+ vf D!) = 0.18 GeV . (6.8) 

The vaLe.s of It used in Table IV correspond to different number of massless neutrinos 
- 

participating in the decay of ZO. _-, . . -. 
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Table JV shows that the shift of the peak position increases slightly with I’t, it 

increases from 0.1 to 0.2 GeV as I’t is increased from 3 GeV to 3.54 GeV. The ratio 

~ezp(~peak)laO(Mz) 1 a so increases slightly from .76 to .77, and the ratio of experimen- 

tal width to I’t also increases slightly with the increase of Pt. The important thing 

‘to remember is that these correction can be calculated very reliably and thus M,, rt 

and I’(20 + e+e-) I’(20 -+ f)/I’f can be determined from the experiment. Once l?t - 
and Mz are determined the machine can then be set at W,& and the partial widths 

of all the visible modes are then determined. The experimental cross section at the 

peak represents the product of quantities given in (6.4) times a calculable number (- 

.76 - .77) tabulated in Table V. After the sum of widths of all visible modes are mea- 

sured, the number of flavors (N) of neutrino can then be obtained from rt-IYvisible = 

NI’(Z + uj q), where r(Z + vf “f) is given by (6.7). In order to simplify the treat- 

ment we have ignored the nonresonant background caused by one photon exchange 

near 20 pole. This interference effect is treated in detail by Greco, Pancheri-Srivastava 

and Srivastava (Greco, 1980) and by Berends, Kleiss and Jadach (Berends, 1982). The 

interference between the 7 exchange and the 20 exchange diagrams is important only 

-when the energy is far from the 20 pole. However, when the energy is far from the 20 

pole other higher order electroweak diagrams besides the QED corrections to the low- 

est order diagrams become important. These higher order ((r3) electroweak diagrams 

have been considered by Passarino and Veltman (Passarino, 1979). It would be very 

interesting to see whether one can identify the effects of these higher order electroweak 

gr.aphs experimentally by investigating the energy dependence of the cross sections for 

; proc_es_ses such as e+e- + p+p-. Some theoretically trivial but numerically significant 

improvements must be made on Passarino and Veltman’s work before it can be used by 
- ^ .m experimenters: 1. The width of 20 should not be ignored; 2. The photon spectrum 

should be modified from z-l& to (1 + (1 - ~)~)/(22’-~)dz, see Eq. (4.1) in order 

to take care of both soft and hard photon regions; 3. r and hadron contricutions 

should be added to their vacuum polarization diagrams. 

VII. CONCLUSION AND SUMMARY 

Using the renormalization group technique we obtained all the leading log terms - 
to all order in cx using the results from the lowest orderradiative corrections. We point 
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out in the Appendix that this can be derived without assuming that the limit m2 + 0 

exists. We have restored the mass dependence of the logarithmic terms by judiciously 

changing the results of the renormalization group technique. This renders the result 

usable in practical calculations. 
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APPENDIX A: Renormalization Group in QED 

In quantum electrodynamics, because of the gauge invariance, the mass renormal- 

ization and the wave function renormalization cancel (21 = 22) each other, hence only 

the charge renormalization needs to be considered. The renormalization group in QED 

is simply a statement -that “physics” should be independent of the value of momentum 

transfer at which we renormalize the charge. It is truly remarkable that such a simple 

and seemingly obvious statement can yield so many nontrivial results. In the above 

by “physics” we mean any quantity which is a function of charge, such as vacuum 

polarization, vertex function, cross section, asymmetry, etc. The vacuum polariza- 

tion plays a central role in this scheme because it defines the charge ez corresponding 

to different renormalization point X. Let us first consider the vacuum polarization 

d( q2/x2, m2/X2, ez) where X2 is the value of q2 at which the charge ef is defined: - 

d(1, m2/X2, ef) = ez . (A4 

The basic supposition of the renormalization group is that d(q2/X2, m2/X2, ez) is 

independent of X, therefore 

. . 

d(q2/X2, m2/X2, ei) = d(q2/Xf, m2/XT, efl) . (A.4 

We want to solve for d(q2/XT, m2/XT, ez,) using (A.l) and (A.2). In order to do this 

we define z = q2/X2, y = m2/X2 and t = X:/X2, so (A.2) becomes 

45 ?I, e$= 444 Y/h 4hY7 4)) ? (4 

where-we have written e2 
h 

= d(t, y, ez) which can be obtained by letting i2 = Xx in 

-~ ._^ .- (A.2). Since t is arbitrary in (A:3), we may differentiate (A.3) with respect to x and 
^. then let t = x. This yields 

The solution to (A.4) can be written formally as 
- 

(A-5) 
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i 

(A.5) is still exact. What we want to do is to use it to obtain a better expression for 

d(x, y, ez) using the perturbation theory calculation up to one loop for @(y/x, d(x, y, ef)). 

The perturbation results for the unrenormalized d up to e4 for a pair of fermions with 

mass m in the loop was given by Feynman (Feynman, 1949): 

dunr(q2, A27 e2) = e2[l+$ (-5 en $+{-4mis2q2 [I--&)+;})I 9 tAJ) 

where e2 is the unrenormalized change, A is the cut off parameter, a is a complex 

number given by q2 = 4m2 sin2 a. The real part of terms inside the curly bracket 

in (A.6) is equal to the function f(x) in (2.7) and (2.8). When q2 > 4m2 there is a 

positive imaginary part coming from a = n/2 + iu where sinh u = +(q2/4m2 - 1)112 

and -l/tan a = itanh u = +i(q2 - 4m2)lj2 (q2)-li2. This imaginary part can be 

obtained also from (2.6) by using the identity (a--s’-ie)-l = P(s-s’)-l+inG(s-8’). 

From (A.6) we can write down immediately the expression for d,(q2, X2, eb), which is 

renormalized at q2 = X2 for any value of X2: 

- 

IA.71 

1 4m2 + 2X2 - - 
3x2 k-c&~+5)1] ’ ’ 

. . where ah is related to X by X2 = 4m2 sin’ah. In order to avoid confusion we use 
d,(q2, X2, ef) to represent d(q2/X2,-m2/X2, ef) which is awkward when X2 = 0. Equa- 

’ tion-(A.7) is too complicated to be used-.for’the integration shown in (A.5). At high 

energies lq21 >> m2, the first curly bracket in (A.7) becomes (l/3)&(-q2/m2) - (5/9). 

.- The second curly bra&et is (l/$)&(-X2/m2) - (5/9) if lx21 >> m2, and when IL21 << 

m2 it is --X2/15m2. We have thus 

dr(q2, 0, ez) (q2gm2 4 [1+$2 (f en (-$2) -;)I (A-8) 

and 
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Now the condition 1X21 >> m2 can be relaxed for the validity of Eq.. (A.9) because even 

when 1x21 = m2 (A.9) is St.11 I a good approximation. When X2 = m2 the second curly 

bracket in (A.7) is -0.0751 which is small compared with ( 1/3)&(q2/m2) coming from 

the first curly bracket. We also note (A.9) is valid when q2 = X2 as long as 1q21 >> 

7n2. From the basic supposition of -renormalization group, ~,(cJ~,D, e$= d,(q2, X2, ei). 

Hence letting q2--= X2 in both sides of (A.8) and (A.9) we obtain 

4 (A. 10) 
p4&rl* 

This shows that the mass singularity appearing in (A.8) becomes the mass singularity 

in ef and (A.9) is now free from mass singularity except in the definition of ef. Thus 

in the limits jq21 >> m2 and 1X2( 2 rn2 the functions d and Cp in (A.4) and (A.5) are 

free from y dependence, all the mass dependence is contained in the definition of ez. (D 

in (A.5) is now function of d(z, y, ef ) alone and d(z, y, ex) is the variable of integration. 

- From (A.9) we have 

Substituting (A.lO) into (A.5) we obtain 

which gives 

4x, y, e?) = “2x 
I- (ef/127r2) en 2 . 

(A.ll) 

(A.12) 

We can recover all the mass dependence of d by substituting the expression for ez 

given by (A.lO) into (A.12), 

dr(q2, 0, e$ = 4 
x:-5 

1 

m )I .g -&zen$ 

(A.13) 

e!j! --.- ~. -. 

m 
i-$(A en q* -;;;2-$ ) * 

(A.14) 
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i We have made an approximation to obtain (A.14) from (A.13), but (A.14) makes more 

sense than (A.13) because it is just a summation of chain diagrams for the vacuum 

-polarization. We have assumed that only one kind of fermion pair contributes to the 

vacuum polarization.- We can prove easily that the method can be extended to the 

actual case where many different particles participates in tha vacuum-polarization. In 

actual calculations we shall use the form 

d,(q2, 0, e$ = eii 1 - Vq2) (A. 15) 

where II(q2) is the lowest order vacuum polarization including all particles (e, ~1, r, 

hadrons) as defined in (2.5) and (2.6), even though the condition jq2j >> tn2 may not 

be satisfied for some of the particles. The reason is that (A.15) can be obtained by 

summing the chain graphs i.e., 1+II+I12+.~. . = 1/(1-n), which does not require that 

lq21 >> m2 is satisfied. We might ask what have we gained by using the renormalization 

group to obtain (A.15) if it can be obtained using another method? We shall show in 

-the following that the chain sum of the lowest order vacuum polarization diagrams 

contains all the leading logs in perturbation series. By leading logs we mean terms of 

order on &P(q2/m2) in II. A term such as CP &F1(q2/m2) is not a leading log. 

In order to demonstrate this let us suppose that we have calculated d(q2, X2, ef) to 
. . all orders 

d(x, y, ez) = ez 14 .2n -e n>l %eh) (en 4 - c 1 n>-@o (A. 16) 

^ .- 
We can then calculate- 

(A. 17) =.Z c a,1 P . 
n21 

Apparently only terms linear in enx contribute to Cp. This is the most profound 

statement. It means that the high energy behavior of dr(q2,X2,et) is completely de- .- 
termined by the coefficients of terms linear in enx, specifically the coefficients a,1 

from n = 1,. . . , k will determine all the coefficients a~,!, a!+~,!, a[+~,!, . . . , ae+k-l,e 
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i 
for all e = 1, . . . , co. In other words, if we want to know the leading log terms to all 

orders, we need to calculate only ~11, if we want to know terms next to the leading 

logs to all orders then we need to calculate only alI and ugl etc. In order to prove 

this all we need to show is that ah1 will not contribute to uf+kr,t for k’ < k  - 1, and 

e = 1,2,..., 00. Let us assume that we know the coefficients ql, am, ‘. . . , ukl. From 

Eqs. (A.5) and (114.17) we obtain 

en x = / 
d(xwf) dz 

e2x %2[ull + U2l% + . . . + uk lzk-l] * (A.18) 

Now d(z, y, ez) does not differ greatly from ez and also we may assume that the quantity 

inside [ ] does not vary greatly in the interval of integration. Thus we may pull the 

factor [ ] out of the integral and replace z by Q which lies somewhere between ez and 

d(z, y, e:). The integration can then be carried out and we obtain 

4x, Y, ef) = 
4  

I- ez en X[Q + ~2153 + US& + . . . + ~~~+-l] 
= ez [ 1 + e: en x[. . .] + (ef en x)~[, . .I2  + . . . + (ez en x)![. . .le  + . . .] 

(A. 19) 
. . where [. . .] represents the terms inside the square bracket. Let us consider the term 

., [. . .le. The m inimum power of-e; associated with dl in [all + a2lq + u31q2 + . . . + 

u~~~*-l]e is k- 1. Thus ah1 can contribute to ue+k-l,e but not to ue+k-2,1, ae+k-s,p, 

‘“9 ae,e. This proves the observation first made by Perrin (Perrin, 1966), who used 

a  more ellaborate method to prove this point. The most important corollary of this 

point is that the higher order irreducible graphs do not contribute to the leading logs 

of the vacuum polarization because they are all given by the chain summation of the 

one loop graphs. 

Let us next consider other physical quantit ies which contain charges, for example 

a  vertex function or a  cross section. Let us denote this by F(q2/X2, m f/X2, ez). In 

gene& the mass (or masses occuring in F  may  not be the same as the one occuring in 

d). From the fact that F(q2/X2, mT/X2, 2  ex)-is independent of choice of A, we obtain 

F(x, y, e f) = 8’ (3 , f , 40 :)) . (A.20) 
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We have used the fact that in the high energy limit m dependence of d function is all 

absorbed in ef. Taking the logarithmic derivative of (A.20) with respect to x and then 

setting t -1 2 we obtain 

-& en F(x, y,ez) = i + (f y d(z,e:)) 

where 

Integrating (A.21) with respect to x from x = 1 to x = x we obtain 

en fk Y, eZ) 
W, Y, e$ 

= llx 2 II, (i , d(x,ef)) - 

(A.21) 

(A.22) 

(A.23) 

Equation (A.23) is still exact.. This equation is very profound. It says that function 

F(x, y, ef ) can be determined entirely once its logarithmic derivative at x = 1 is known. 

We calculate $J up to one loop in perturbation theory and use Eq. (A.23) to improve 

the results. It can be shown that the results contain leading log terms of all orders in 

cr. 

Let the result of one loop calculation at high energy be 

Fl(X, y, ef) = 1 + e$uF + ($7 en(q2/m2)) 
(A.24) 

= l+e$(aF+cF enX-cF eny) 

where aJ7 and CF are quantities independent of ei and q2. eg is related to ez by (A.10) 

’ -hence-to the order we want ea is equal to 6;. From (A.22) and (A.24) we obtain to 

order c$: 

(A.25) 

which is independent of y. We have therefore 

- 

ti (i , d(x, e:)) = CF d(x, ei) . 

Substituting 

(A.26) 

(A.27) 



into (A.26) and performing the integration in (A.23), we obtain 

, 

-,:which yields 

(A.28) 

This is the relation derived by Erikkson. We went through the derivation in detail 

in order to show that it is not necessary to assume that the functions d and F are 

finite in the limit m2 --) 0 for derivation of the result. From the perturbation results 

we know both d and F diverge in the limit m2 -+ 0. Since this is a bonafide physical 

property it cannot be eliminated by the choice of X (it would be against the basic 

supposition of the renormalization group if it-can). The apparent independence of d 

on m2 in Eq. (A.12) is because all the m2 dependence of d is hidden in the definition 

0f.e:: 

2- e8 
eA - 1 - (e$127r2) tn(A2/m2) . 

(A.29) 

X2 in (A.28) is arbitrary. We may conveniently choose X2 = m2, then in the high 

energy limit e2 x = eg and of course y = 1. In QED the mass singularity occur in the 

form tn(g2/m2) = tn x- en y. Thus when x = y = 1 all the log terms disappear. The 

term F(1, y, et) in (A.28) can therefore be approximated by the nonlogarithmic term 

of the one loop calculation,-the higher order terms being negligible. In Eq. (2.3) which - - 
is our proposed improved formula for (A.28) the expression A contains the logarithmic 

as well as nonlogarithmic terms -from one loop radiative corrections. Thus the factor 

F(1, y, el) is dropped to avoid double counting of nonlog terms. 

It is important to notice that there are no double log terms such as en2(s/m2), 

en2(u/m2) and Cn2(t/m2) in Eq. (A.24). These double log terms occur in the bremsstrah- 

lung diagrams, vertex functions and the two photon exchange diagrams when the 

photon mass X is used as the infrared cut off. As shown by Tsai (Tsai 1960, 1961) 

these double logs always occur in the form: 
- 

(A.30) 
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where p, = piy + (1 - y)pj and pi and pj are momenta of two external particles 

from which an infrared photon (real or virtual) is emitted. This term occurs with an 

opposite sign in real and virtual photon emissions and thus will not appear in the cross 

section. Each term in the expression of A given by Eq. (2.4) represents the remainder 

‘after the functions K(pi, pj)‘s are subtracted. For example, the electron vertex part 

contains K(pl, pl), K(p2, ~2) and K(pl, ~2). The expression G&,Js) given in Eq. 

(2.4) represents the electron vertex function after these three in’frarea functions have 

been subtracted... Similarly the bremsstrahlung from the e+e- llines contain K(pl, pl), 

K(p2, ~2) and K(pl, p2), each with an opposite sign from the corresponding one in 

the electron vertex function. The expression -t&E/AE in Eq. (2.4) represents the 
bremsstrahlung from the initial electron-positron line after these infrared functions 

have been subtracted. The easiest way to see that these double log terms arise purely 

because the photon mass X is used as the infrared cut off is to use the noncovariant 

infrared cut off for the real bremsstrahlung. The bremsstrahlung cross section from 

the e+e- is, for example, 

:(tn(tj2/m3, - 1) /kkm4z f 
min 

which does not have a double log. Since we know the sum of bremsstrahlung cross 

section and the vertex function does not have double logs, we conclude that the vertex 

function should also not have double logs if we use the non-covariant soft photon cut 

Off. 
. - 
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Table I i 

. Noninfrared and asymmetric part of the radiative 

correction 6~( 0) = -bA(n - 0). This function is 

independent of energy in the extreme relativistic 

limit. 8 is defined as the angle between e-Ln& p-. e 

8 (degree) 6~ (percent) 

1 9.0 

2 6.5 

3 5.2 

-5 3.9 - 
10 2.4 

20 1.3 

30 0.8 

40 0.5 

50 0.3 

60 0.2 

70 0.1 

80 0.1 

90 0 



i Table II 

Resonances in e+e- annihilation and the parameters 

necessary to calculate c?~~?(s) a la Eq. (2.14). 

. . 

Resonance 

-P - 
W  

4 

P’ 

Jllcl 
f/J’ 
lCIN 
VfJ ttt 

II, tttt 

ti 11111 

7 
7’ 
yrr 

MR (MeV) 

770 

783 

1020 

1600 

3100 

3685 

3770 

4030 
4159 

4415 

9456 

10020 

10350 

rt (MeV) Le (kev) 
154 6.6 

9.9 0.7 

4.21 1.3 

300 ? 

0.063 4.6 

0.215 -A.9 

25 0.27 

52 0.73 
78 0.78 
43 0.43 

0.042 1.3 

0.030 0.51 

? ? 

Sr(R s ee &MR X lo3 

7.0 

0.73 

1.05 

? 

1.21 

0.42 

0.06 

0.14 

0.15 

0.08 

0.11 

0.04 
? 



Table III 

Various quantities needed for calculating the radiative corrections. 

. . 

.fiGeV - qyert 

1 5.6 

3.1 6.4 

5 6.7 

10 7.2 

20 7.7 

29 7.9 

34 3.0 

50 8.3 

lQ0 8.8 

.200 9.3 

s&, 
1.9 

2.7 

3.0 

3.5 

4.0 

4.2 

4.3 

4.6 

5.1 

5.6 

- 

Gac tkP vat Gac 
2.1 0.4 -0.0 

2.4 0.8 -0.0 

2.6 0.9 -0.1 

2.8 1.2 0.2 

3.0 1.4 0.5 

3.1 1.5 0.6 

3.2 1.5 0.7 

3.3 1.7 0.8 

3.5 1.9 1.0 

3.7 2.1 1.2 

All quantities are in percent. 

6had 
vat 

0.5 

0.9 

1.9 

2.7 

3.8 

4.3 

4.6 

5.1 

6.0 

7.0 

68 lJ = &ac/2 

10.4 1.5 
13.2 2.1 
15.0 2.7 

17.6 3.5 

20.3 4.4 

21.7 4.8 
22.3 5.0 

23.7 5.5 

26.3 6.2 

28.8 7.0 

te 

6.58 

7.63 

8.08 

8.72 

9.37 

9.71 

9.86 

10.2 

10.9 

11.5 

I T 

6.63 

7.71 

8.18 

8.87 

9.57 

9.94 

10.1 

10.5 

11.2 

11.9 

_- . . -. 
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i Table IV 

-._ Effects of radiative corrections to the 20 peak for different values of f’t. 

Wpeak - Mz. represents shift in peak energy, aezp(wPeak)/ab(Mz) represents 

the ratio of the experimental peak height to the peak height of 

geepresent 
e 

the Breit-Wigner cross section, (W+1/2 - W-,12)/I’t the ratio - 
of the experimental full width at half maximum to l?t. We assumed 

Mz = 93.8 GeV. The standard model gives l?t = 3.0 GeV. All these numbers 

are obtained numerically by computer using Eq. (6.5t). 

3u’s 

.; 

1 P7+l12 - q2)/rt 1.143 

4u’s 5u’s 6~‘s 

3.18 3.36 3.54 

0.15 GeV 0.2 GeV 0.2 GeV 

.76 .77 .77 

1.145 1.155 1.167 
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FIGUitE CAPTIONS 

Fig. 1. Diagrammatic representation of the expansion 6tmt[l + (i/2)lI + ( 1/3)112 + . . .]. 

Fig. 2. (a) Diagrams representing [s:,,t II-l en(l - I’I)-l12/2! . 

(b) Diagrams representing [6:,, II-’ h(1 - II)-‘13/3! . 

(c) Diagrams representing [biveert II-l en(l - II)-‘]*/4! . 

Fig. 3. Diagrams associated with te en(E/AE)[l + (1/2)II G (1/3)l$+ (1/4)113 + . . .]. - 

Fig. 4. Diagrams associated with [-te tn(E/AE) II-’ Cn(1 - II)-‘12/2! . 

Fig. 5. Some of the diagrams associated with the a4 cross section for 

(a) e+e- -+ p+p-, (b) e+e- -+ ~~~1-7, (c) e+e- -+ ~+/.4-77, and 

(d) e+e- + p+p- + pair. The diagrams containing the vacuum polarization 

in the main photon propagator as well as the diagrams containing multiple 

photon exchange between e and p are omitted. In order to simplify the 

-illustration, only one diagram among the gauge invariant subset of 

diagrams is shown. 

Fig. 6. Schematic diagram of experimental cross section for the reaction 

e+e- + narrow resonance -+ final states. 

. . 

Fig. 7. Effect of raditive corrections to the shape of the Breit-Wigner cross section 

for 20 peak assuming Mz = 93.8 GeV and rt = 3.0 GeV. The solid curve 

represents the Breit-Wigner cross section normalized to unity at the peak. 

The dotted curve is theradiatively corrected cross section. 

- 
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