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ABSTRACT .- 

-Transition amplitudes between states with spin 5 1 are considered and di- 

rectly evaluated in terms of momenta and polarization vectors. A special al- 

gorithm is derived to reduce expressions where r-matrices of different lines are 

saturated. The application of the method is illustrated for radiative and non- 

radiative processes, including mass effects. 
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i. Introduction 

In recent years the theory of strong, weak and electromagnetic interactions 

has developed to a point that we are more in a position to make very accurate 

comparisons between theoretical predictions and experimental results. In this 

investigation we need to compute higher order Feynman-diagEams. The stan- 

dard procedures, where we square the amplitude for a given process and use a 

covariant sum over polarizations, has become almost intractable. However al- 

ternative techniques have been recently developed for analyzing bremsstrahlung 

cross sections1 and transition amplitudes between Dirac spinors2 Motivated 

by these ideas we show that a unified approach can be formulated in which the - 
amplitude for an arbitrary process, radiative or not, is directly computable in 

terms of the invariants which specify the process and for any set of spin indices. 

The formalism is discussed in Section 2. 

2. Evaluation of Transition Amplitudes 

What we need is a convenient procedure which eliminates spinors, spin 1 

external wave functions and r-matrices in terms of momenta and polarization - - 

- vectors. In order to deal with spinors we first develop a method which makes use 

of an explicit representation of the y-matrices. Using the conventions of Ref. 2 

we find 

uX(Pi) “P (Pi) = -N(PiW(Pjl(#i + imi)rAp(Aj + imj) 

X2(p) = ~PO(PO + 4, b = qf(& + 8.75 3 - apA) 

where u(p) denotes a Dirac spinor and X = fl gives the spin assignment in the 

prest frame. Having in mind applications to high energy physics we restrict 
- .-. ~_ -. 
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our analysis to massless particles. u-spinors are then converted into u-spinors 

by vx = -X75u-~. Next we process by reducing the numerator structure of an 

arbitrary diagram. Vector and axial couplings of internal particles are replaced 

with a combination of scalar and pseudoscalar couplings. The basic reduction 

formula reads _ - e, 

I”s,4P& Wrnr~ = -XP [ s,R~-p(q) Q-X (p)S,R - 75s,Ru-,(q) 0-A (p)S,R75 

- U-A (P)S,RS,RU-,(q) + r5 a-x (P)S,RrSSs4d] 

(2) 
where S, stands for an arbitrary string of n q-matrices and SF is the same 

string in the reversed order. The formula can be easily proved by using the 

Chisholm identities3 In this way an arbitrary diagram consisting of n fermion 

lines connected by internal vector bosons is replaced by a collection of diagrams 

each formed by n disconnected fermion lines. However each application of the 

Chisholm identities doubles the number of terms. When many internal pho- 

tons are present we could in principle avoid this problem by using the Kahane 

algorithm3 which appears to minimize the number of terms in the final expres- 

sion. The resulting amplitude is computed by introducingI 
- -. 

-3 ._ SX,(P? tz) =Y -2POQO fh (P)q(Q), pxp(P, !?) = --2P0Q0 aA (P)r54?) * (3) -- 

For S and P we get 

Sxp(P, q) = P * Q hxp + i(?, x a> * fhp 9 pxp(P, !I) = (PO 3 - (209) * axp (4 

I&f a rlx elements of this type have been tabulated for light cone perturbation t * - 
theory in Ref. 4. .-. ~_ -. 
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As a bonus for working with an explicit representation of q-matrices we can 

avoid arbitrary phases. For simple processes the amplitude can be immediately 

computed. Consider p-e- scattering in massless QED 

_ - I 
It follows - - 

(5) 

MobJp + PePp) = -JbPp [ spc,-P~S--Xc,Xp - PPc,-P&-X,,Xp 

- SpJp S-L-P, + pPc&p-L-P, 1 
(6) 

Thus in the c.m.s. of the scattering particles 

M(++ L ++) = M(-- L --) = u2 

M(++ + -+) = M(i-- + +-) = M(++ + +-) 

= q-- + -+) = -i(tu3p2 

M(++ + --) = M(-- + ++) = -tu 
(7) 

M(+- + ++) = M(-+ + --) = M(+- -+ --) 

= M(-+ + ++) = is(tu)1/2 

M(+- + --+$ = M( -+ + +-.) = st 

- -. M(+- + +-) = &Q--+ + -+) = -8U 

In agreement with the well-known result - - 

c WI2 = t If2 
2e4 1+s+g 

( 
. 

apin 1 

Calculations of QED processes with polarized particles, including higher order 

corrections can be found in Ref. 5. In general we have expressions like 

uX (Pi) !i, /$e”P(Pj) t 
= 

(8) 
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where the Qt are linear combinations of external momenta (even when internal 

loops are present). This can be reduced to a product of S, P functions since 

. ._ A?c = 2i x amePom C %(Pm) fir (Pm) for 4?C = C UmCPm . (9) 
m 7 m 

Finally we must take into account a possible multi-photon radiation. Once the 

reduction formula is applied the formalism of Ref. 1, namely the use of circularly 

polarized photon states, becomes particularly simple since each fermion line with 

its emitted photons can be analyzed independently from the rest of the diagram. 

Even when strong cancellations between different diagrams are not expected we 

use the fact that the polarization vector It of Ref. 1 is explicitly given in terms 

of the external momenta and the previous formulas suffice in evaluating the 

amplitude. We also need a explicit representation for massive vector boson wave 

functions. A convenient way is to write 

X$=1,2,3 k2=-M2 

From Ref. 2 we learn that: a specific reference to spinor components can be 

- avoidedI if we allow for arbitrary phases. Here we derive the formal&m for the 

massless limit with a new version of the reduction formula. Let uh and q, be 

eigenstates of f (1 + X75) and f (1 - X7’) respectively. The only property we need 

is 

d 
W(P) ax (PI = -i 2po T+A 9 

d 
%(P) VA (PI = -i2po “-A 

i21See also Ref. 6. 
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with q = i( 1 + Xy5). Hence we may use VA = -X75u-h. Next we derive 

%(P) a-x (4 = 
e-i~- 
x (POQOP . C”2 d An-x (11) 

where e -i*, . IS an unspecified phase. When the helicity is the same TL~ ux = 0 

and a different procedure must be used _ - e, 
- - 

e-i$+ 
Ux(P) fh (4 = ~ 2 a (PO&-“2(2~. n Q. n - P . q)-1’2 d tc ,h (12) 

where tz,, is an arbitrary vector normalized to n2 = 1. If R is the operator which 

reverses the order of a string of r-matrices, RS = SR, we get 

-. 

R Ux(P) ap (*I = u-p(*) a-x (P) * 

Application of the Chisholm identities gives now3 

7’SnuX(P) QX (*)Sm71L = -2S!i!u-A(*) G-A (P)@T 

(n + m even) 

7’SnUX(P) % (*)Sm7CL = a-j+ (P)S,RS,RLx(*) - r5 0-A (P)S,R75S,Ru-,(4?) 

(n + m odd) - - _ 

_ 7’SnUx(p) 0-h (*)smY = Q -x (P)s,Rs,Ruxk7) - r5 Q-A (P)S,R75S,Rk(*) 

(n + m even) 

(n + m odd) . 

An alternative a.pproach can e found by means of the identity3 

tr(7pS)tr(7pS’) = 2tr(S + SR)S’ . 
- .-. ~_ -. 
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As an example we consider 

ii4 rcLul fig rcLu2 = tr(7’ul a4)tr(‘YpU2 fr3) ui = uXJPi) 

= 2 f’p (P3bXh) %, (P4)up(P2) + 2 %I (P3b-A(P4) f‘-A (Plbp(P2) 

X= h, x2 P = x2, x3 
(14 

The first term contributes only for p = -X, the second only foj p = X. Helicity - 

conservation prevents in general from a proliferation of diagrams in the repeated 

use of the reduction formula. Scalar and pseudoscalar bilinear forms can now be 

derived. 

six (PIP = ei+f $$ ( 1 l/2 
A--h4 Y - 

- fix (p)r5up(q) = -~e’#~ f-& 
( > 

w 
(15) 

A-(X, p) = eitlp 
( > 

e 
l/2 

A--P, l-4 

where A*(& p) = a( 1 f Xp). Also using Eq. (12) with n = & we get 

fh (P) m&z) = eirlv 
2p.Qg.Q-Q2pq 112 

2PoQo > 
A+(X,p) , etc. (16) 

The arbitrariness of the phases becomes relevant whenever different diagrams 

interfere. In the following example we use ei% = -P i*a to derive 
- - 

- -. gf ii1 112 fig uq -I- gi al r5u2 fi3 r5u4 = e2i*m - 2 
(98 -t Us,z) 

Xl = x2 = A, x3 = x4 = p 

As an application we consider the radiative Coulomb potential scattering of an 

electron. The amplitude is 

n2=1. 
(17) 

- .-. ~_ -. 
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Using (1) /’ = &(/f $’ jr-g- $ ,$ pnO) we find 

MT = - $ ~(EEf)-1/2(2p.np’.n-p.p~)-1/2[M~A+(~,~)+M~A-(~,~)] 

(18) 

- _ Mz =P.P’(P*P’ -2p.np’.n+p.k-p.nk.n) 

-p~npf~np~k+(p~n)2pf~k+2pf~n~(n,p,pf,k)a 
(19) 

ME= P*P’(P.P’ -2p.np’.n+p’.k-p’.nk.n) 

-p~npf~npf~k+(pf-n)2p~k-2p~nc(n,p,pf,k)a 

where A*(a, X) = $( 1 i ha), c(n, p, p’, k)= FaBnrpyphk~. Since A* are pro- 

jectors Mg do not interfere. 

Even in a situation where masses are not negligible there are many advantages 

in computing directly the amplitude. The relevant formalism has been developed 

in Ref. 2. The reduction formula is now more complicated and we derived it 

only for a simple example. Let 

- -M = ii4~pt.t~fi3~p~2 
- -. 

where ui = u(pi,nir Xi) denotes a Dirac spinor with polarization Xi = fl along 

ni with nf = 1, tai * pi = 0. Thus 

M = tr (7”ulfi4) tr (7pu2 t13) = tr (7PMf’id)tr (7pMgd) 

Mij = MGdd + MC” = lVij( #i + imi)I’,( $j + imi) 

r ij = I+ i7'(Xi fi + Xj fi, + XiXj fi fi 

- 
.-. ~_ -. 
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Nij is a normalization factor and even (odd) denotes the part of Mij with an 

i even (odd) number of T-matrices. We can easily prove that 

M;gd + Mm = 4Pi9 nir Xi) 8 (Pj, nj, Xj) 

- 

Al.30 

M?ad - M!?en = '3 $3 d-Pit -ni, Xi) 42 (-Pi, -nj, Xj) 

M$ = u(pj; -nj, Xj) ti (pi, -hi, ii) m 

M = 2tr ( Mfid + M$d’R)M$d 

(21) 

1 =- 
2 

fi3t@4tbJ-iiigu1 

-. 
‘11 f/f-‘11 ‘11 - 0;” Ul a4 u;” + ii3 211 u4 “2 

‘11 I I 
- Ii;” uy 1-r:’ UJ” + a3 

‘11 “4 01 “2 1 (22) 
where u! = u(-pi, ni, Xi), u:’ = u(pi, -nit Xi), u:” = tl(-pi, -ni, Xi). Using the 

formalism we are able to derive the expression for q,(p) fix (q) previously given in 

the massless case. It turns out that n,, can be chosen to satisfy n-p = n. q = 0. 

Indeed we start by computing u(p1, nl, Xl) a (~2, np, X2) with 

ni’& 
cos $ 

= 5 (ji , ip:Ei) + sin +ncl 
I 

- -. 
n,=(ir,O),ff.ji=O,ri”=l, (23) 

. ._ m2 
O<Q< n/2,p~=-m2,#=1-G 

i 

for II, = 0 this corresponds to longitudinal polarization. As usual 

Ul a2 = f (El E2)-‘j2( n;‘j2A+ + nz112Ae) 

X t-i A+ m) f (1 + iAir $1) a (1 + ixZy5 32)(-i $2 + m) 



When X1 = X2 = X we find n+ = -2e+‘# sin2 $ ~1. p2 + O(m). Thus 

u(Pi, f-h, A) 0 (P2, n2, A) = ei* -$ VW2 ~1. ~2j-l’~ 

X ji[sin$ +i(cos$ + Xr5) rt] $2 + O(m) . 

(25) 

In the limit II, = 0, m = 0 _ - e, 
* - 

uxh) h (~2) = id* $ NE2 ~1. ~2)-“~ $1 $ $2 n . (26) 

As a final application we consider the bremsstrahlung amplitude for e+e- -+ 

F+F-7 where the F mass effects are explicitly taken into account. Moreover 

we only include final states radiation simulating in this way a QCD 3-jet cross 

section for heavy quarks. The amplitude is 

M = fi (~3, n3, X~)[Y~A(P~ + k) f’+ PW-PS - k)rp14p4, w, X4) 

0 (Pl, h)7ccU(P2, x2) A-‘(P) = i d+ m 
(27) 

where factors due to couplings and an overall 8-l from the photon propagator 

have been omitted. Using (1) 

we find 

2p4.k . p4.k 
- - lrnp3 r-0 /f-f- ?r, $4 jc]7’v4 617’212 P3sk 



Next we use 

v4 Dl = +%4(da - im)(l - ihA4 $4) $1 n-h1 

u2 a3 = ;N23 ‘+ /2(1+ ‘-12x3 #3)(/3 + ‘+ 

.Nif = (mPi * nf + Pi ’ P,) -“2AW(Xi, XI) + (-mpi . nf + pi * p/)- ‘12A+( Xi, X/) 
F- - s 

= C Ni/kAk(Xi, XI) 
k=f 

(30) 

Thus M = (i/16 & N)Nl4N&rT. After applying Chisholm identities and 

rearranging the terms in the trace we find 

2’ = A-(X1, X2)t 

t C f~oijkAi(~,-~l)A’(xl, X4)Ak(X2, X3) (31) = 
ijk=* 

The A are projectors and the different terms in the sum never interfere in the 

cross section. However the matrices D for arbitrary polarizations contain up to 

a maximum of 8 r-matrices and therefore their trace is cumbersome but clearly 

not impossible (compare with the standard procedure) 
Dijk = Ai T(iXl)BijCk + A_i T(-iXl)B-ijCk 

+ AlC/B:k T(iXl) + &iCj’BLik T(-ixl) 
(32) 

i, iy k = +y - 
- - 

-. fig- k 2p3’lc A+=A+IC~~,A-=A+~~~~,A=PP~.P~+~ - 
P4 * k 

A: - P4 * k =Af+j4/C,A~=Af-imp3.kjC,Af=ps~Pa+m2~ 

c* = P2 * p3 F mp2 - n3 - !h-fJ $2 F 2; $3 $3 ##2 

G = Pl * P4 7 mpl - n4 + 2im #I f 2; jl j4 A4 , 

(33) 



Finally 

MC ’ 
16&N 

A-(x1, X2) C Nr4jNsktrDijkAi(b, Xl)Aj(Xr, h4)Ak(h2, 13) - 
ijk=f 

The method developed here can be of great advantage in computing the ampli- 

tude for hard subprocesses in perturbative QCD where-each quGk is assumed to 
* 

be collinear with the hadron. In this approximation we only need the kinematics 

of a four body process to analyze R - R or of - p scattering. 
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