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ABSTRACT 

We argue that the discretization of physics which has occured thanks to the 

advent of quantum mechanics has replaced the continuum standards of time, 

length and mass which brought physics to maturity by counting. The (arbitrary 

in the sense of conventional dimensional analysis) standards have been replaced 

by three dimensional constants: the limiting velocity crthe unitof action h, and - 
either a reference mass (eg mp) or a coupling constant (eg G related to the mass 

scale by hc/(2nGmz) N 1.7 X 1038). Once these physical and experiential ref- 

erence standards are accepted, the conventional approach is to connect physics 

to mathematics by means of dimensionless ratios. But these standards now rest 

on counting rather than ratios, and allow us to think of a fourth dimension- 

less mathematical concept, which is counting integera. According to constructive 

mathematics, counting has to be understood before engaging in the practice of 

mathematics in order to avoid redundancy. In its strict form constructive math- 

ematics allows no completed infinities, and must provide finite algorithms for the 

computation of any acceptable concept. This finite requirement in constructive 

mathematics is in keeping with the practice of physics when that practice is 

restricted to hypotheses which are testable in a finite time. In this paper we 

attempt to outline a program for physics which will meet these rigid criteria 

while preserving, in so far as possible, the successes that conventional physics 

has already achieved.- - - 

._ -- 
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1. INTRODUCTORY REMARKS 

We contend that the advent of quantum mechanics and the replacement of 

continuum standards of mass, length and time by standards based on counting 

integers has set the stage for a discrete physics based on finite, constructive math- 

ematics. We offer a constructive algorithm which, starting from the empty string, 

leads to a growing universe of unique bit strings generated by discrimination and 

complementation. When neither operation generates novelty we increase the bit 

length of each string by adjoining a random bit at the growing end of the string. 

The only exception to this is the case when both strings, tested by discrimina- 

tion, their complements, and the result of the discrimination are already in the 

universe, and in addition the string produced by discrimination contains an equal 

number of O’s and 1’s. These unique events are identified both with the unique .- 
and indivisible quantum number and momentum conserving scattering events of 

quantum theory and with the events of particulate relativistic mechanics, once we 

have made clear the connection between our construction and laboratory space- 

time. In this way we achieve the unification of quantum mechanics and special 

relativity at an appropriately fundamental level. 

During the construction we test the strings for linear independence and in 

this way construct sequentially 2, 3, 7, and 127 linearly independent vectors 

which can serve as the basis vectors for a representation of the four levels of 

the combinatorial hierachy. Once the basis is complete we allow the universe 

-- to-continue to grow until all the discriminate closures of the basis vectors are 

present, completing the hierarchy. This gives us the scale constants 3, 10, 137 
. . and ,2rn - 1 + 137 =L 1.7 x 1038, which are the cumulative cardinals of the 

sequentially completed levels. 

Since the labeling capability of the combinatorial hierarchy scheme is now 

exhausted we define the bit string length when this occurs as the label length 

NL. Since the length of the strings continues to grow, we define the portion of 

the string beyond the first NL bits as the addrecrs. We group the strings hereafter 

into Zisembles each of which carry the same first NL bits, which we call the label, 
- _- _ -. 
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each member of the ensemble carrying a distinct address. It is clear that in this 

way we generate, eventually, all possible 2NL labels of length Nh, 21n + 136 of 

which can be further identified with the four levels of the combinatorial heirarchy. 

Because the matrix mapping construction of the hierarchy leads naturally to the 

restriction NL = 256, we consider only that case in this paper. Thereafter all 

that can happen is that the number of members of each ensemble and the length 

of their addresses continue to grow. c - 6, 
- 

We now focus on an event as previously defined and a second event one of 

whose labels is common with the first event, but occuring after the string length 

of the addresses has increased by b bits. We interpret the connection between 

the two events as a random walk of b steps, following a construction pioneered 

by Stein. Assuming a finite step length this automatically insures that we have 

a limiting velocity between events. Interpreting our criterion for an event- that 

the number of O’s in the address string for the intermediate state is equal to the 

number of l’s- - as defining zero “velocity” when the difference between these 

two numbers is zero, these two events define a “coordinate system”. We then 

- show that we can define coordinates for connected events in such a way that 

the intervals between events and relative velocities can be chosen in such a way 

.that we have the same algebra and geometry as that described by the usual 

Poincare transformations in l+l Minkowski space with restrictions imposed by 

the fact that our “time parameter” b is finite and integral. We then show that the 

construction can be extended to 3+1 Minkowski space, but no further because of 
-- the limitation of the hierarchy to four levels. In this way we demonstrate that the 

basicspace for the description of events in our construction is 3dimensional. We 
- I note, that interactions’ in this space can be anticipated to have chiral properties. 

We introduce the concept of mass by assuming that there is a correspondence 

between the labels and a parameter for each label with the physical dimensions 

of mass. We relate this to the finite step lengths in the random walks, and to 

the limiting velocity - which is now given physical dimensions and symbolized 

by c- by introducing a second parameter with the physical dimensions of action 

symbolized by h and defining the step length in a coordinate system where the 
- _ -. 
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velocity of the random walk is zero as the Compton wavelength lo = h/me. This 

allows us to define conserved relativistic energy and momentum for free parti- 

cles. To insure this connection we make the contact between our mathematical 

model and laboratory experience precise by requiring that any two events that 

-” can lead to space-time separated firings of counters (or their unobserved equiva- 

lent) .conserve vet tor 3-momentum. We thus claim to have established a formal 

correspondence to relativistic particle kinematics within the framework of our 

theory; - -- 

We now construct coherent ensembles of these labeled sub-ensembles speci- 

fied by a unique bvector momentum and demonstrate that these constructions 

exhibit a discrete version of deBroglie wave double slit interference. By identi- 

fying our events with the physical happenings that lead to the firing of counters 

in the-laboratory, we can relate our model to the practice of high energy parti- 

cle physics. We can then identify our limiting velocity c and our unit of action 

h with the laboratory definition of those physical parameters. Picking some 

- reference particle, which we take to be the proton, we can then show that rel- 

ativistic energy-momentum conservation allows us to measure mass ratios. The 

discrete interference phenomenon we derived then allows us to identify the step 

length of our random walk model in any arbitrary coordinate system with the 

. . _ physically defined deBroglie phase wave length and derive the basic Einstein- 

deBroglie quantization condition E = hc/X,h. This immediately .leads to the 
- deBroglie wavelength X = h/p and relates the universal constant h to our .digital 

model. We now have the dimensional constants c, mp and h; this validates our 
- . claim to have constructed a physical theory. 

So far we have used only label conservation in the construction. Using the 

first two bits of each label to refer to some experimentally definable conserved 

quantum number such as charge or the particle-antiparticle dichotomy or helicity 

for spin l/2 fermions, we construct a quantum mechanical scattering theory in 

momturn space for three particle systems. Our basic counter paradigm applied 
- ._ -. 
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to the discrete coherent ensembles already introduced then leads us to the neces- 

sity of introducing probability amplitudes whose squares give us~classical proba- 

bilities. We then recover free particle relativistic wave mechanics as a continuum 

approzimation. The finite step length forces us to introduce complex numbers, 

and explains for us the ubiquitous iO+ in the “propagators” of quantum mechani- 

cal scattering theory. This leads to the starting point of a “zero range scattering 

theory” which was initially derived within the conventional frame%ork and is 

being vigorously pursued in that context. Connection to configuration space and 

“wave” phenomena then arises from Fourier transformation, as is customary for 

S-matrix theories which start in momentum space and use scattering boundary 

conditions. 

Returning to the combinatorial hierarchy method for conserving the informa- 

tion content of discriminate closure and connecting it between levels, we find that 

level l-describes a two-component neutrino theory, level 2 gives us the quantum 

numbers of quantum electrodynamics for electrons, positrons and gamma-rays, 

and the two combined give us the quantum numbers for weak-electromagnetic 

- unification in the leptonic sector. Level 3 is then naturally interpreted in terms 

of baryon number, charged and neutral baryons, and isospin, providing the quan- 

turn numbers for SU3. The scheme might also support at level 4 a quark-heavy 

lepton-graviton interpretation, and the numerics suggest a connection to Harari’s 

“rishons”, but more work is needed before a choice is made. 
. 

Independent of the details of the quantum number assignment, we now claim ._ -- 
to be on firm ground in interpreting Parker-Rhodes’ successful calculation off 

- . the proton-electron mass ratio, as a calculation of the basic baryon-lepton mass 

ratio. Then the comparison with experiment is naturally to be made with the 

only known stable (to at least 1031 years) massive baryon and lepton. Since 

the baryon mass (recall that we are allowed one mass on dimensional grounds) 

is only approximately the proton mass (in the first order interpretation of the 

combinatorial result hc/(2?rGm$) = 2127 + 136 N 1.7 X 1038) the calculation 

of the corrections needed to obtain the absolute value of the proton mass (or, 

equivalently the empirical value of G) and the empirical value of the fine structure 
- r -. 



constant remain a challenge for the theory. Once the dynamics, which is being 

explored in a more conventional context, allows us to compute unstable baryon 

and boson masses, this problem will provide a crucial test for the theory. Since 

we are allowed only one dimensional mass, there is no place in the theory for 

different gravitational and inertial masses. The problem of going from spin one 

photons and spin two gravitons to a continuum approximation in classical fields 

is basically the same as for any Smatrix theory which starts with a%iicroscopic 

description based on quantum phenomena. Finally, some of the cosmological 

implications of the construction are briefly discussed. 
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2. BACKGROUND 

Physics as formulated by Galileo in terms of length and time and completed 

by Newton, in the dimensional sense of physics, by the additional concept of 

mass used as its mathematical paradigm the continuum geometry of Euclid. 

Galileo in practice used the Eudoxian theory of proportions and hence could 

relate arbitrary laboratory standards of length and time to pure numbers, thus 

connecting dimensionless (in the physical sense) mathematics to the world of 

experience. The completion of this connection by Newton used, according to 

Mach’s analysis, mass ratios and the Third Law (momentum conservation). So 

far physics has not found it necessary to introduce any dimensional standards 

other than length, time and mass, or three independent combinations of these 

units raised to integral or fractional powers. Hence classical physics is “scale 

invariant” and the Euclidean mathematical paradigm (extended by the calculus) 

appropriate. 

The first break in this picture was forced by Planck’s and Einstein’s discovery 

_ that energy is quantized, and by Einstein’s discovery of the universal limiting 

velocity, giving us the universal constants h and c. The empirical fact that electric 

charge is quantized still does not break the scale invariance since hc/2m2 s 137 
is a dimensionless number, but its universality cries out for explanation, at least 

according to Einstein. In his biography, Pais says . 

“I conclude this time capsule with a comment by Einstein on the meaning of 

- the occurance of dimensionless constants (such as the fine structure constant or 

the electron-proton mass ratio) in the laws of physics, a subject about which he 
. . 

knew nothing, we know nothing: ‘In a sensible theory there are no [dimensionless] 

numbers whose values are determinable only empirically. I can, of course, not 

prove that...dimensionless constants in the laws of nature, which from a purely 

logical point of view can just as well have other values, should not exist. To me 

in my “Gottvertrauen” [faith in God] this seems evident, but there may well be 

few who have the same opinion.‘[E9]” 

The additional fact that the proton and the electron (stable for at least 1031 
- ._ -. 
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years), as well as demonstrablly composite atoms and nuclei, have unique mass 

values breaks scale invariance in practice, but current theory does not have suffi- 

cient explanatory power to tell us why. Using the universal gravitational constant 

and the proton mass we can form the dimensionless combination hc/2nGmi + 

1.7 x 1O38 which again cries out for explanation. 

Meanwhile the arbitrary meter, second and kilogram have-disaweared into 

history and have been replaced by a fixed number of wave lengths emitted by a 

monoisotopic atomic source which at one time approximately occupied the dis- 

tance between the scratches on the standard meter, a fixed number of oscillations 

of an atomic clock which at one time approximated to what was then the stan- 

dard second and (eg) the number of a specified type of atoms which at one time 

approximately balanced the standard kilogram; that is, all our current standards 

are based on counting integers. Yet current explanatory efforts based on quan- 

tum fie_ld theory start from continuum mathematics and, after considerable trial 

and error and experiment, attempt to “discover” the symmetries and non-linear 

“interactions” which will lead to the observed discreteness. Our contention is 

that current physics is ripe for an explanatory theory which starts from finite 

numbers and allows no completed infinities; hence we posit that the appropriate 

.mathematical paradigm should be taken from finite constructive mathematics. 

The key conceptual point here is that, in contrast to continuum mathematics 

which has to be connected to physics by ratios of physically measured quanti- . - 
ties which can only be made suitable for mathematical analysis by taking out 

- 
three arbitrary (historically speaking) units of MASS, LENGTH and TIM& con- 

+ . structive mathematics deals directly with integers, and hence is appropriate for 

introducing dimensionless integral (or rational) quantum numbers as a new type 

of link between mathematics and physics. In other words, quantization should 

be basic to the theory rather than derived. The problem is how to accomplish 

this. 

2.1 HISTORICAL BACKGROUND 

Tliis program has been pursued in various ways for a number of years, and 
- ._ -. 
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is the product of several lines of development. Some have been brought together 

subsequent to the foundation of the Alternative Natural Philosophy Association 

in 1979. One strand of this work, of which Whitehead and Eddington were 

precursors, was the discussion of space time structure from an algebraic point 

of view, the dimensions being regarded as (we would say now) a combinatorial 

structure in fact isomorphic with the first level of the hierarchy as now known. 

This early work was published in a sequence of papers by’ B%.stin%id Kilmis- 

ter about the Concept of Ordegm3 Another step was Bastin’s hierarchical and 

multiple feedback loop model in which the points in spaces were built up in a 

hierarchical manner with the dimensional structure appearing at the simplest 

stage. Gordon Pask constructed a hardware form. In 1961 Parker-Rhodes made 

an algebraic formulation of the model in terms of binary variables. He invented 

the matrix mapping representation of the level connection (see Chapter 2) and 

the use of matrices as the new vector operands. He discovered the breakdown of 

the construction at the fourth level (when-the successively completed structures 

are characterized by the integers 3,10,137, 212’ - 1 + 137 - 1.7 X 10%) and 

Bastin noted the connection to the scale constants of physics. Amson, in dis- 

cussion with Bastin, in 1965 isolated the crucial notion of discriminate closure, 

and then Kilmister showed that discrimination necessarily introduced an abelian 

.group structure in each level of the hierarchy. Part of this collaborative work by 

Amson, Bastin, Kilmister and Parker-Rhodes was published in 19664 . 

Meanwhile Noyes was becoming increasingly dissatisfied with the failure of ._ -- 
hadronic theories using Yukawa type couplings to provide a quantitative and con- 

. _ trolled description of the strong interactions. It is still possible to maintain that 

neither second quantized field theories nor S-matrix theory based on dispersion 

relations and crossing have met that challenge today. He proposed5-6 a unitary 

relativistic scattering theory for three or more particles using as input only the 

on shell or “zero range” scatterings of the pairs. This program turned out to 

be difficult to articulate. By now the precise conditions under which the non- 

relativistic theory is self-consistent have been found.7 The minimal relativistic 

three-particle equations have been consistently developed by Lindesay’ ; they 
- _- _ -. 
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go to the correct non-relativistic limit in that they predict quantitatively the 

Efimov effect (i.e. a logarithmic accumulation of three particle bound states) in 

the appropriate kinematic region. g Under the assumption that there is no direct 

particle-particle scattering but that a particle and a quantum can bind to form 

a state of the same mass and quantum numbers as the particle, the three body 

equations provide a covariant and unitary description of particle-particle scatter- 

ing generated by single quantum exchange. lo In contrast totheequat’ions arising 

fromconventional approaches these equations go uniquely and unambiguously to 

the non-relativistic scattering generated by a local Yukawa potential at low en- 

ergy; the precise connection to quantum field theory is under investigation. This 

work is relevant to the current paper because the theory we construct leads most 

easily to this “zero range scattering theory” rather than to more conventional 

quantum mechanical formalisms. .- 

Connection between Noyes’ approach- and the combinatorial hierarchy ap- 

proach was first attempted some time ago. After becoming interested in the 

hierarchy work in the early '70's, Noyes attempted to survey some of the reasons 

why conventional approaches were felt by him to be inadequate” and presented 

the combinatorial hierachy work at one of the SLAC summer schools.12 Work 

.by Bastin and Amson was presented at the 1976 Tutzing Conference, and an at- 

tempted integration of the combinatorial hierarchy work with Noyes’ ideas about 

scattering was presented by Noyes and Bastin at the 1978 Tutzing Conference; - - 
neither report appeared in the Proceed.ings, for retions best known to the edi- - - 
tors. A reasonably complete presentation of both the basic philosophical ideas 

and the technical achievements at that stage was subsequently published13 ; see 

the introductory section of that paper for comparison with the Ur program of 

von Weizsacker and the space time code of Finkelstein. This was also the first 

occasion on which an attempt was made to integrate into the mainstream work 

the remarkable calculation of the electron-proton mass ratio by Parker-Rhodes14 

given in his Theory ol Indistinguishdes. A general description of his theory is 

given in Appendix I. Recent work by Kilmister on the foundations of the combi- 

nator% hierarchy is given in Appendix II. 
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What was missing at that time was any explicit way to proceed from the indi- 

vidual concatenating processes (discriminations - see below) among bit strings, or 

Schnurs, and individual particulate scattering processes in space time. The con- 

nection was supplied by the work of Stein l5 developed initially from completely 

independent considerations. Extensive discussion of his work at the 2nd and 3rd 

annual meetings of the Alternative Natural Philosophy Association (1980, 1981) 

revealed both that there were close connections between Steih’s thinking and 

Parker-Rhodes ~~“indistinguishables” 14, and that Stein’s construction of space- 

time and “particles” from random walks might be what we were looking for. 

Meanwhile Kilmister had realized that we were missing the initial constructive 

steps needed to get the scheme off the ground, and attempted to supply these16 

by modifying a construction of the integers due to Conway17 . Noyes realized 

that the scheme proposed by Kilmister for generating bit strings would keep on 

going after the hierarchy scheme for preserving information was exhausted, and 

hence would provide labeled ensembles of strings which could be used for the 

Stein construction. A new presentation of the basic program making use of this 

insight was presented in April 1982 at the conference honoring Louis deBroglie’s 

90th birthdayL8 . 

Discussion of the ever growing bit string universe at the 4th annual meeting 

of the Alternative Natural Philosophy Association and a refinement of Kilmis- 
_ 

ter’s treatment of generation and discriminationlg , followed by intensive work - - 
by Noyes, Bastin and Kilmister,‘allowed a complete overhaul of the paper for ._ -- 
the de Broglie Symposium Proceedings prior to the submission of that papera 

. _ for publication. Other ideas presented at ANPA 4 have had considerable impact 

on the preparation of this paper. The presentation at ANPA 4 by Aerts of his 

thesis result21 that the separability of classical physics is logically incompatible 

with standard quantum mechanics, and in particular with the von Neumann pro- 

jection postulate, reinforced the conviction of Bastin and several other members 

of the Association that Bohr’s concept of the correspondence principle is invalid 

and strengthened our case for the necessity of revision at the fundamental level. 

BastGi+s views on complementarity are represented in this paper by an excerpt 
- ~_ -. 
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from his unpublished book The C&abinatorial Basis of the Physics of the Quan- 

turn included as Appendix III. Manthey’s contention22 that concurrent commu- 

nicating asynchronous digital systems necessarily generate randomness and that 

such systems necessarily have a conservation law and an uncertainty born of 

discreteness, exclusion, and asynchrony coupled with the fact that physical com- 

puting systems have a built in limiting velocity, reinforced the conviction that 

Stein’s construction was the right place to start in order to obtain..the Lorentz 

tran%formation; momentum-energy conservation and the uncertainty principle of 

quantum mechanics. Gefwert’s discussion of constructive mathematics then and 

subsequently made it clear that it would be fruitful to make an attempt to sim- 

ulate the whole construction by a computer program. A preliminary attempt to 

do just this by Noyes and Manthey led directly to the ideas presented in this 

paper. .- 

We have been more complete than usual in presenting this historical back- 

ground because no extant publication, other than a couple of paragraphs in the 

introduction to Parker-Rhodes’ book14, covers the many strands of thought on 

- which the program relies. It is now time to turn to the ideas themselves. 

2.2 BASIC IDEAS 

Our basic postulate is that quantum events are unique and indivisible, but for 

reasons we wish to understand cannot be localized in the space-time of classical 

physics. We choose the high energy particle physics laboratory as the paradigm 

- for the practice of physics. The basic data are the sequential firings of counters 

separated by macroscopic space and time intervals. We can use this type of data 
. _ 

to measure mass ratios of particles relative to some standard type of particle 

using relativistic energy-momentum conservation. Given space and time enough 

we can refine the accuracy of these measurements as much as we like, at least for 

stable particles. This precise information is readily described by the relativistic 

kinematics of classical theory. 

By using this descriptive framework we can derive from laboratory experience 

statistical information about the probability of the scatterings observed via the 
- _- _ -. 
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firings of the counters, or “cross sections”. Conventional (and quantum) theories 

predict cross sections which exhibit interference phenomena reminiscent of the 

intensities in classical wave theory, but which can only be compared with theoret- 

ical predictions from quantum mechanics in the sense of the law of large numbers 

by the accumulation of a sufficient number of events starting from what, so far 

as we know, are the same initial conditions. For elementary particle phenomena 

what is missing compared to the classical situation is som’e iridepezdent means 

of measuring the real amplitudes whose squares predict the cross sections. The 

quantum theory puts these amplitudes beyond reach in principle, and not just 

in practice, by making them complex, but relative phases between amplitudes 

remain observable; it is only one overall phase that is always beyond reach, and 

a few more when there are “superselection rules”. 

Our problem is to construct a description or theory or “model” in which the 

situation described in the last paragraph arises as a natural consequence of the 

construction, and from which the experimental results successfully interpreted 

by elementary particle theories can be shown to follow. We assume, as is conven- 

- tional for theorists who take an S-matrix point of view, that once we have con- 

structed relativistic scattering amplitudes whose absolute squares predict cross 

.sections, it is then possible to construct from them all of non-relativistic quantum 

mechanics, and the classical physics of particles and fields, under appropriately 

. restricted circumstances. This contention will not be argued further here. 

We start from very primit& finite mathematical structures (which we be- 

- lievey but do not -attempt to demonstrate here, can be grounded in the construc- 

tive mathematics of Bishop23 and Martin-L6f24 , and provide a self-generating . _ 
and ‘self-organizing algorithm which leads to a universe of bit strings whose 

bounded size keeps on growing as long as we wish. The information content of 

this universe is partially organized into ensembles whose initial bits or “labels” 

are a representation of the combinatorial hierarchy. We provide as Appendix 

IV a specific computer program which will simulate this construction; a detailed 

discussion of the program will be presented elsewhere25 . 

O?ir computer algorithm makes use of two processes which create new strings 
- ._ -. 
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either by discrimination defined for two ordered bit strings of length N symbol- 

ized by Si = (..., xi, . ..)N. xi E [0, I] as 

and complementation defined by 

‘Sj = (v*sj Xj +2 1, sis)N = DNSjIN c - s (2.2.2) 
- 

where +2 is addition, mod 2 or “exclusive or”, and IN is the antinull string 

containing N 1’s. When neither of these operations succeeds in generating a 

string not already contained in the universe of bit strings we generate novelty 

by increasing the string length of all strings by appending a random bit at the 

growing end. There is one exception to this rule. When DNSiSj = S3 = 

DNlSjlSj, all five strings are already in the universe, and the number of O’s 

in S3 is equal to the number of l’s we do not increase the string length but 

simply continue. We call this happening an euent. During the construction we 

organize the strings into the four levels of the combinatorial hierarchy 4j13. Once 
the hierarchy is complete, we use the initial bits in the strings reflecting this 

organization as labels for ensembles of bit strings, labeled by these inital bits, 

‘and uniquely specified within each ensemble by the (growing) remainder of the 

bit string which we call the address. This construction is described in detail in 

Chapter 3. 

In Chapter 4 we construct our discrete substitute for space-time “coor- - - 
dinates” by identifying explicitly chosen labeled subensembles connecting two 

events for which the the bit length of the address differs, but containing a com- 

mon label, with Stein’s random walks. We introduce our connection to physics 

by assuming that when we have two well separated counters of finite volume 

AzAyAz with a distance S between them greater than their spatial resolution 

which fire sequentially with a time interval 2’ greater than their time resolution 

At that they define a velocity v = S/T for some o6ject which passed between 

them. The connection to the bit string universe is made by assuming that the 

labelTart of the string ensemble defining a random walk of b steps is to be 
- ~. -. 
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identified later with the quantum numbers of the object. The dimensionless ve- 

locity of the object in the bit string universe is defined by u =< N’ - No > 

/(N1 + N”) =< N1 - No > lb. Here N1 is the number of l’s and No the num- 

ber of O’s in the address strings of bit length b and <> is the average over the 

appropriate labeled ensemble. Clearly Y is bounded in absolute value by unity 

providing us with a limiting velocity for the connection between events. Hence 

we connect this aspect of the bit string universe to the limitmg velocity of special 

relativity and laboratory experience by taking v = VC. This is done in such a 

way that, we claim, the events have the usual geometrical and transformation 

properties of 3+1 Minkowski space-time in an appropriate large number limit. 

For us the finite space-time volume of our counters makes special relativity into 

an approximate macrolrcopic theory. Our counter volumes cannot be allowed 

to shrink to points; we have prevented by our construction and interpretation 

any possibility of going to a microscopic continuum theory, and thus avoid the 

infinities of quantum field theory. Yet bythe random walk paradigm and a set 

of specific algorithms we claim to show that this suffices to extract a limiting 

velocity and the usual observer-dependent coordinates of special relativity. 

We now introduce dimensional units in the physical sense by identifying the 

random walk step length with the Compton wave length in the coordinate sys- 

tem in which two connected events have zero velocity and by postulating that 

the corresponding mass parameter is associated with one of our labels, which was - - 
the critical step taken by Stein. However, our treatment departs from his in that ._ -- 
our basic counter paradigm compells us to see this length as Lorentz contracted 

- _ in moving coordinate systems whereas he used it as a basic dimensional param- 

eter. Our approach enables us to define relativistic energy and momentum for 

free particles correctly connected to the velocities we have already constructed. 

We now claim to have constructed a discrete version of classical relativistic par- 

ticle kinematics which goes to the conventional continuum theory in the h + 0 

limit. We emphasize, as Stein did also, that this is only a mathematical approx- 

imation and not a “correspondence principle” limit in Bohr’s sense. Our space 

time Ea space time of discrete events connected by random walks of finite step 
- _- _ -. 
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length with void, not space, “in between”. The events which we have now tied 

abstractly to coordinate systems related by the usual Poincare transformations 

are our candidates for the finite, unique, and distinct happenings that lie at the 

core of quantum mechanics. Hence we will try to relate them to the processes 
. . 

which in conventional theory are called elementary particle scatterings and which 

are supposed to initiate the chain of happenings which, in the laboratory, are 

assumed to lead to the firing of a counter; r - I 
_ 

In Chapter 5 we try to to get from this reasonably familiar relativistic situ- 

ation to quantum mechanics. We argue that our counter paradigm requires us 

to construct ensembles of ensembles with defined coherence properties. If this is 

done with care, we can then show that the underlying digital discreteness, which 

we have been careful to retain, allows us to anticipate interference phenomena, 

such as that found in the the double slit experiment, once we have succeeded 

in making the connection with our dimensionless (in the physical sense) mathe- 

matical structures and laboratory definitions of space, time and mass. We make 

_ the connection by first identifying the limiting U velocity” in the dimensionless 

theory with c and then assuming that some label can be put into.correspondence 

with some laboratory particle such as the proton. We then can use the already 

‘established Lorentz invariance, which implies the relativistic kinematics of free 

particles, to relate the mass ratios of the theory to actual laboratory practice. 
_ 

The interference phenomenon mentioned above can now be connected to mea- - - 
surements of the deBroglie wavelength -h/p. Having now shown how to connect ._ --- 
our mathematics to the dimensional constants c, mp, and h we can claim to have 

- - established a physical theory. By examining our counter paradigm in more detail 

we then show that we can recover the conventional continuum theory of deBroglie 

waves as an upprozimution. 

We now concentrate on the first two bits in each label and show that these 

can be interpreted as conserved quantum numbers in such a way as to construct 

the elementary scattering amplitudes which drive the momentum space integral 

equations for a three particle relativistic quantum mechanical scattering theory 
- ._ -. 
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identical in mathematical structure to the zero range scattering theory 5-1o ini- 

tially developed from a more conventional starting point. Since- this scattering 

theory can be shown to be generalizeable to systems containing any finite num- 

ber of particles, we claim to have made contact with the practice of elementary 

particle physics at an appropriate level. In an S-matrix theory, the conventional 

approach is to connect the theory to wave phenomena by Fourier transformation. 

Whether this is a valid procedure is already a problem for S-matrix-theorists, so 

we do not discuss it further in this paper; we rely on their competence as show- 

ing that a large body of practicing physicists are not too dissatisfied with this 

connection. We simply note that from their point of view, as for us, classical 

continuum wave phenomena and “fields” are not fundamental, but are derived 

consequences of elementary scatterings. 

In Chapter 6 we discuss briefly a number of problems that remain to be 

solved before our theory can be expected to attract the interest of more than a 

few practicing elementary particle physicists. At the level of quantum numbers 

we have previously proposed l3 what looks like a promising interpretation in 

terms of charge, baryon number, lepton number, and helicity; here it is revised to 

bring it into closer contact with quantum numbers know from elementary particle 

experiments. This has the advantage of providing a rationalle for Parker-Rhodes 

remarkable calculation26 of the proton-electron mass ratio. This argument is 

briefly reviewed. But we are also struck by the coincidence between the number 

of basic particles (8) we- encounter at level 3 of the hierarchy and the basic 

“rishons” proposed by Harari ‘27 . ‘The more detailed articulation of the theory to 

the point where we can make a choice would take us beyond the scope of this 

paper, so is given only cursory attention. We close with a few remarks on the 

cosmology implied by the construction. 

- 
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3. CONSTRUCTING A BIT STRING UNIVERSE 

In this paper we cannot discuss many of the basic philosophical issues raised 

by our program; some of them will be discussed by Christoffer Gefwert in his 

-Y forthcoming thesis on constructivism 28 . We leave it open, here, whether it can be 

conclusively shown that a bit string universe constitutes the necessary conditions 

for explanatory closure consistent with. the current practice of physics. “AlPwe 

need take from- constructive mathematics are the symbols 0, 1, +2, = with their 

usual significance,i.e. 

0+20 =o; 0+21=0; 1+20=1; l+21=o 

the “random” operator R which gives us 0 or 1 with equal probability, and 

ordered bit strings of the symbols 0 and 1: We take the symbols O,l, +2 to 

stand for primitive recursive functions. Now the expressions set out above can, 

essentially be seen as programs which give the information needed for their own 

evaluation2’ . By this strategy we aim at showing the expressions above to be 

- self-explanatory vis-a-vis meaning; we do not have to embark on a reductionist 

strategy in order to justify the use of these expressions. From these symbols we 

then proceed to construct a universe of strings of the existence symbols 0 and 

1 starting from the empty string. We show that this universe is self-organizing 

in a manner that can be labeled by the combinatorial hierarchy. Since the work 

has not appeared elsewhere, we-include in Appendix II an, earlier construction 

- due -to Kilmisterm which starts from -the. empty set, and a refinement of this 

approach by himlg; a third cut across this material is given in Appendix 11.3. 
- - The construction discussed here is due to joint work with Manthey, and draws 

from the background provided by Kilmister. 

3.1 GENERATIONOF THESTRINGS 

Our algorithm for creating a universe of bit strings starting from the empty 

string has been coded in Pascal by Manthey and is included here as Appendix 

IV. Since it uses concurrent programming, which may not be familiar to many 

readers of this paper, we will use here a less elegant approach presented using 
- r -. 
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sequential programming flow charts and definitions. A full discussion of the 

concurrent program will be presented elsewhere25. Nevertheless, even in this 

sequential program the essential aspect of concurrency - which Bastin% maintains 

is a fundamental necessity in our construction - is already contained. The reason 

is that everything happens between TICKS, and cannot be ordered within that 

restriction; but this is getting ahead of our story. 

Cur initial algorithm is displayed in Figure 1. We see that U(N, ,977) starts 

from the empty string, and sets the number of strings in the universe, and the 

length of the strings equal to zero. The critical operator we need for the con- 

struction is called R. The function of this operator is simply ‘to pick randomly 

between the two bit symbols 0 and 1 with equal probability. We are investigating 

the problem of just where the idea of randomness enters constructive mathemat- 

ics and how such an operator is to be constructed. For the moment we content 

ourselves, at least for the purpose of computer simulation, with the fact that 

pseudo-random number generators are a standard part of computer practice and 
are also used in high energy particle physics for “Monte Carlo” programs. The 

specific random number generator used by Manthey in the program assumes that 

a bit in a memory cell is flipped between 1 and 0 on a fixed local cycle time. A 

.sampling process, which is necessarily asynchronous to the bit flipping process 

(necessarily so, to be consistent with the definition of process), therefore samples 

(reads) 1 or 0 with equal probability. Asynchronicity can be obtained in practice 

by driving the second cycle with:(eg) a quartz oscillator detuned from the first. 

Whether this is the best way to achieve the result is irrelevant so long as some 

adequate random bit generator exists. The critical question for us is rather, since 
_ - 

the program is more than exponential, whether pseudorandomness can in prin- 

ciple be extended rapidly enough to meet the requirements of the program no 

matter how large the finite size of the universe has become. We do not attempt 

to discuss that problem here. 

Since our aim is to construct an ever growing universe of distinct symbols 

which is self-generating, we need to have a way of checking whether or not any 

symbol we turn up already is in this universe or not. Kilmister has shownmjl’ 
- ~. -. 
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how to do this starting from the empty set and defining a “prediscrimination” 

operation which becomes equivalent to the discrimination operation used in ear- 

lier discussions of the combinatorial hierarchy4p13, and already defined by Eq. 

(2.2.1). We assume that constructive mathematics can define for us what we 

mean by the ordered strings containing N of the existence symbols 0,l needed 

in that definition. Clearly if the two strings are identical this operation gives 

us the null string ON; otherwise 1 for N .> 2 - it must generate astring which 

differs from-either. The first time through the program we pick a bit at random 

and call it the first string U[l] in Zf(N, SU). Since discrimination requires two 

strings if it is to produce novelty we keep picking a bit a random, checking by 

discrimination whether it differs from U[l] and when we succeed call it U[2]. 

For the purposes of the computer simulation we order the elements of U by the 

integers E [I, SU], the order-being simply the order in which the new strings are 

generated. We will discuss shortly why this is only a simulation of the situation 

we actually envisage in which the order of the strings in the universe in the sense 

required by the simulation is forever beyond the reach of experiment. 

Now that we have two strings we are ready to start the main program. Our 

first method of generating novelty in U is simply to pick two strings from Zf 

at random and discriminate them. If we unluckily have picked the same string 

twice, we try again. If we pass this test, we still may have generated a string 

already contained in Zl as the result of earlier operations, so we must test the 

candidate against all the stride in U. If we pass. this test, we adjoin it to U 

- and -continue. It should be remarked that’ here we are adopting Parker-Rhodes 

concept of “identity” as used in The Theory of Indistinguishublea14 with the 
. _ 

implication of uniqueness. He differentiates this concept cleanly from the concept 
of indistinguishability, or the existence of “twins”. Of twins one can can say that 

there are two of them but that they cannot be labeled; hence finite collections 

of twins can be assigned a cardinal number but cannot be ordered - they are 

%ortsn, not “sets”. 

Our algorithm provides a simulation of his concept of identity,- necessarily 

a sin%lation because “twins” cannot be directly observed macroscopic objects 
- ._ -. 
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or constructed using standard mathematical operations in a computer. Yet we 

can simulate the idea by requiring that the strings in U can only be accessed at 

random. We insure that they are distinct in that discrimination between any 

two of them gives a non-null result, thus telling us that we have two of them, 

yet they are “indistinguishable” in that we cannot tell which two we have. We 

thus claim to have constructed a simulation of a collection of twins of cardinality 

SU. Of course the computer has to order the elements of U by th: integers in 

order to function, and has to use bit strings ordered along the string by integers 

in order to carry out the discriminations. But we have arranged the program in 

such a way that this information is not available to us. 

Although we have now insured that our universe contains only distinct 

strings, at any bit length N the operations defined solely by discrimination will 

eventually stop generating new strings because all the possibilities have been 

achieved. Hence we need a second operation to allow the universe to keep on 

growing. We provide this simply by putting in a branch which is used any time 

we have attempted to create a string already contained in U. In our initial ver- 

- sion of the program what we did then was simply to increase the string length by 

adding a random bit to each string in U. Of course this could happen before we 

have created all possible strings of the bit length we are working with. Hence the 

universe we generate will have a random structure that is not predictable from 

the algorithm. The requirement that all the other strings are also augmented is 

simply a way of keeping the bit length of all strings in U the same; This might 

- seem-to be in violation of the principle of relativity, since in a sense this provides 

a “universal time”. Actually such a time exists - the time since the “big bang” 
. - - and can be measured locally -by the temperature of the background radiation, 

which is currently 2.7’K. We therefore feel justified in allowing our simulation to 

contain this feature. The name we give to this string length increasing operation 

is “TICK”. 

The first time we enter the main program, we know that the universe consists 

of the two bits 0 and 1 and hence that we cannot create novelty by discrimination, 

so wrenter the main program at TICK. From now on the program runs as 
- ~. -. 
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indicated in the flow chart, Fig 1. The basic new operator we need at this point 

is one that will pick a string from U at random, and is called- “PICK”. Since 

the strings in U are indexed by integers all this amounts to is a random number 

generator for an integer E [I, SU] which is obviously easy to construct in binary 
. 

notation using R. The explicit coding is given in Appendix IV. So now we pick 

a string, pick another which we check by discrimination is different, and if the 

result of the discrimination is novel we adjoin it to U. (Ignore for&w the box 

called CO%Yl?RUCT LABELS... which in no wise impacts the running of the 

main program.) 

In our first attempt at computer simulation we thought all we had to do at 

this point, if we had failed to produce novelty, was simply to TICK. Actually, 

we found that this left out of the universe a process that could later be identified 

with elementary scattering events, unless we-put it in “by hand” at a later stage. 

We did not like this extreme form of “observer participation”, and have come 

up with a simpler solution in terms of an operation we required at a later stage 

in any case. This operation is simply complementation, which we have already 

- defined in Eq. (2.2.2). So the rest of the program simply creates the complement 

of one or the other of the strings we picked initially on this pass and adjoins it 

to U if it is not already present. This will have a lot of advantages later on, but 

we do not want to get too far ahead of our story. If the complement of the string 

_ produced by discrimination is not already in U, we adjoin it to U and continue. 

At this point, if we have-still failed to generate novelty, the careful reader will 
. _ realize that we have achieved a situation in which 

. - DNS& = s3 = DN+$+~ (3.1.1) 

At this point, since novelty has not been generated, the obvious thing to do is 

to TICK. Some of the time this is indeed what will happen, but we have decided 

to put a final branch in the main program at this point in the sequence. If the 

number of O’s in S3 is equal to the number of l’s, we do not TICK; we simply 

continue. 

‘I5 understand why this choice was made, we must look ahead. We will see 
- ~. -. 
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later that for the label part of the string the presence of a 1 will correspond to the 

presence of a quantum number. In the particular case when Li has (a) an even 

number of bits and (b) an equal number of O’s and l’s, 1Li will necessarily have 

l’s where Li has zeros and visa versa. Hence, once we have succeeded in assigning 
. 

physical meaning to the ordered position of an entry in a label string as referring 

to a specific quantum number, these quantum numbers are paired as dichotomous 

variables for the case considered. Thus we have a natural interpr&tion of Li 

a.G describing the quantum numbers of a particle, and -ILL as describing the 

quantum numbers of the corresponding antiparticle. Which is “particle” and 

which is “antiparticle” will depend on an arbitrary choice, which cannot be given 

precise meaning until the dynamics of the scheme have been articulated and given 

physical interpretation. We will also find that when the address part of the string 

(a) has an even number of bits and (b) has an equal number of O’s and l’s, this 

will relate to the starting point for defining zero physical “velocity”. Hence the 

criterion we have specified for not going to TICK will correspond, eventually, to 

two particles Sr, 572 encountering their two antiparticles +I, -62 and producing 

and intermediate state S3 with the quantum numbers of a particle-antiparticle 

pair and zero velocity. 

For those familiar with Feynman diagrams we have just described a basic 

four-leg diagram in the coordinate system in which the total momentum is zero. - - 
Our intent is to construct all other scattering processes from this category of - - - 
elementary events, and the “vertices” created by discrimination or complemen- 

- - tation. Since we do not allow. a TICK, only the occurance is specified in the 

sequential evolution of the universe. We have no way, without providing more 

“background” information about the event, of specifying which particles are 

“incoming” and which are “outgoing”. Thus at this elementary level we are 

guaranteed what we need for “time reversal invariance” and quantum number 

conservation. We also know from earlier work l3 that, once an external time se- 

quence has been established, the usual Feynman rules equating a particle moving 

“forwxrd in time” to an antiparticle moving “backward in time” with opposite 
- ~. -. 
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charge, helicity, and any other appropriate quantum numbers will follow. We fur- 

ther anticipate that our version of the CPT theorem will emerge in due course. 

But all of this is yet to come. 

We emphasize that at this point in the construction we have simply inserted 

a simple rule that is readily understood at the bit string level. It provides us 

with a well specified definition of what we mean by an event in the_universe of Y - 
bit strings. That we can justify this term as corresponding to the unique and 

indivisible scattering events of quantum mechanics and to the point scatterings 

of classical particulate special relativity will constitute the main objective of this 

paper. In fact we can, we believe, with some justification claim that we are also 

talking about the individual collisions between hard and impenetrable atoms 

envisaged by Leucippus and Democritus. 
.- 

We now have completed our construction of a growing universe of bit strings. 

We trust you will grant that it is a simple algorithm, which could be simulated 

on a computer in its early stages. Of course, since the program is more than 

exponential, any such simulation could not catch up with the current state of 

the universe by actual calculation. Thus we must turn to how it can be used 

for conceptual, and necessarily partial, interpretation. Physicists will probably 

.be more comfortable with what we are doing if they view it simply as a model 

whose consequences can be supported or refuted by experiment. We suspect it 

might prove to be more than that, but will not address that deep question in this - - 
paper. 

- - - 

3.2 THE COMBINATORIAL HIERARCHY CONSTRUCTION 
- - 

The simple algorithm for generating novelty presented in the last section cre- 

ates an amazing amount of structure. To keep track of the information we invoke 

the concept of discriminate closure, which leads to the combinatorial hierarchy 

4~13. We define a discriminately closed subset (DCsS) as a single non-null string 

or as that set of non-null strings which when any pair are discriminated yield 

another member of the set. If we start from linearly independent strings a, b, c, . . . 

(i.e. 3-b # 0, b+c # 0, c+a # 0, a+b+c # 0, . ..) we can clearly form the DCsS’s 
- ._ -. 
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{a), W, -id, {a, 4 a+bh (4 c, b+c), { c,a,c+a}, {a, b,c,a+b, b+c,c+a,a+b+c} 
and so on. Here we have used + for discrimination; since a +a =.O the closure of 

the subsets is transparent. From j linearly independent strings we can obviously 

always form 2j - 1 DCsS’s because this is the number of ways we can choose i 
. 

distinct objects 1,2, ..,i at a time. 

Starting from strings with two bits (N&2) we can form 22-1 = 3 DCsS’s, for 

@xafiple UWI; WW, W), NW, (11)). T o P reserve this information about dis- 

criminate closure we map these three sets by non-singular, linearly independent 

2x2 matrices which have the members of these sets as eigenvectors. Rearranged 

as strings of four bits these form a basis for 23- 1 = 7 DCsS’s. Mapping these by 

4x4 matrices we get 7 strings of 16 bits which form a basis for 27-l = 127 DCsS’s. 

We have now organized the. information content of 137 strings into 3 levels of 

complexity. We can repeat the process once more to obtain 2127-l A 1.7 x 1O38 

DCsS’s composed of strings with 256 bits, but cannot go further because there 

are only 256x256 linearly independent matrices available to map them, which is 

many to few. Thus when our generating and discriminating operations have gone 

on for a while the information carrying capacity of our information preserving 

mapping scheme is exhausted. We have in this way generated the critical num- 

bers 137 A hc/2re2 and 1.7 x 1O38 A hc/2nGmi and a hierarchical structure 

with four levels of complexity. 

The generation of this structure and its termination can‘be summarized by a - - -. 
very simple algorithm. Each level 1 is generated from a basis B(r) containing B(I) 

. - linearly independent strings. From these we can construct a set U(l)consisting of 

H(1) = gB(l) - 1 DCsS’s, as we have already seen. If we have available another 

set M(E) which contains at least H(1) linearly independent strings, we can map 

U(I) by H(1) of them and use this mapping as the basis set 8(1+ 1) for the next 

level. The matrix method discussed in the last paragraph gives a means by which 

the the mapping can be explicitly constructed and a cutoff rule coming from the 

maximum number of linearly independent strings available. However the actual 

termtiation of the sequence of levels does not depend on the origin of the rule. 
- ._ -. 
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This algebraic structure can be started by assuming a 0th “level” with H(0) = 2 

and M(0) = 2 and the iterative rules 

B(1) = H( I - 1); H(I) = 2B(‘) - 1; M(I) = M( I - 1)2 

The iteration stops when M(1 - 1) < H(I - 1). We are also interested in the 

number of strings in play at each. level which is C(1) = Z&rH(j). &he result is 

given in Table I. 

Although we have constructed a universe of bit strings with many discrimina- 

tions going on at random, it may not be immediately apparent that this already 

implies the existence of the hierarchical structure just described. However, John 

AmsonS has shown that the whole of the hierarchy structure can be derived 

using only the general framework of group theory without ever mentioning the .- 
mapping matrices. Further, Kilmister has shown that if we use a minimal repre- 

sentation for the hierarchy, then any other-representation, and the corresponding 

mapping matrices, can be constructed. Since this is not intuitively obvious, we 

give the details of this previously unpublished work, updated and simplified in 

presentation for the purposes of this paper, as Appendix II.3. Consequently, so 

far as organizing information in U goes, we can use any scheme which generates 

‘the correct cardinal numbers. A specific algorithm for doing this in conjunction 

with our initial algorithm is presented as a flow chart in Figure 2.and explicit cod- 

ing provided in Appendix IV. It differs from earlier constructions in that it relies 

only on linear independence and discriminate closure, and makes no explicit use 
- -. 

of mapping matrices. Nevertheless, the original matrix mapping scheme’ turns 

out to be important when we make explicit contact with quantum numbers later 

on. We give this more general approach here because we have not yet been able 

to settle on a unique quantum number interpretation drawn from first principles. 

Once we have solved that problem the coding for CONSTRUCT LABELS will 

be given a more precise form. 

The case for using the mapping matrices is in fact considerably stronger than 

the appeal to application would indicate. As Kilmister points out32 : “...(a) if you 

don’tmake linear operators correspond to DCsS, then why should we consider 
- ~. -. 
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DCsS in particular - any subset would do. (b)Without the matrix character of 

the correspondence, there is no reason to stop at level 4. (c)The-matrix trick is 

the only one I know in which the coding of a DCsS by a single element at the 

next level is intrinsic to the element - I mean, given the high element, you don’t 

need a code-book to determine what subset it is representing.” 

3.3 THELABEL-ADDRESS SCH.EMA _ - s 

The important conceptual point to grasp at this stage of the construction 

is that the steps we now take to bring out the fact that the universe generated 

by our main program is already organized in a hierarchical fashion, whether we 

make use of that fact or not. Hence the coding we now develop is introduced 

for our convenience and in no wise affects the evolution of U. In this sense it 

is like the observation process in classical physics which postulates a structure 

and makes use of that model to extract information from nature, or to set up 

experiments to obtain information which we did not previously possess. Where 

our scheme differs is that the mode of access, although for computer simulation 

- it makes use of the ordering of the strings in U, will only provide us in the end 

with structural information that does not allow us to actually-determine that 

integer sequence. Thus we preserve the indistinguishability characteristics of the 

bit strings, and are debared from reifying them - a philosophical mistake which 

is all too often made by those who still think that classical physics describes the 

“real world”. - - 

- - The way in which we achieve this is-to leave the universal memory untouched 

and to construct arrays of pointers which tell us what strings in U correspond to 
- - 

a particular representation of the hierarchy, without either extracting the specific 

indices from the machine, or the strings themselves. Thus we will in fact end up 

with a specific representation of the hierarchy inside the machine, but we will 

have no way at this stage in the construction of knowing which of the very large 

number of possible representations of the hierarchy we have in fact achieved. 

The flow chart for our program is given in Figure 2, and the explicit coding 

for itTwith the modifications needed to achieve concurrency, is given in Appendix 
- ._ -. 
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IV. As can be seen from Figure 1, we enter this box each time we generate a novel 

string S either by discrimination or complementation, and only at that point in 

the sequence. The first time through we assign a pointer to that string calling it 

BV[l, l] the first basis vector, m = 1 for level I = 1 of the hierarchy. The general 

notation for a basis vector will be BV[I, m], I E [I, 2,3,4] and m E [l, .., B[fl]. We 

have .already seen that B[l] = 2, B[2] = 3, B[3] = 7, B[4] = 127, so this will 

be built into the logic. Since our basic .algorithm guarantees that’ any string 

adjoined to-U is unique, the next time we enter the box S will differ, and we can 

assign a pointer to it indicating that it is BV[l, 21. 

It might seem logical at this point to immediately compute the discriminate 

closure of the first level, whose basis is now complete, But this would get us 

into trouble later on. All we have assigned is a pointer, not an explicit string. 

Each time we go through TICK, the string-itself will acquire a new (random) 

bit at the growing end. However, this will-not affect the bits which make B[l, I] 

and B[l, 21 distinct. Hence they will always serve as basis vectors for level one, 

whatever their length. This is the basic point which has to be understood about 

- our construction. We construct the basis vectors first, and only after the bases 

for all four levels are complete do we attempt to construct their discriminate 

closures. 

. . 
We have already seen that, given any linearly independent set of n strings 

of the same length, we c-an form 2n - - - 1 DCsS’s. Here by linear independence 

we mean that by forming all possible %ums” (i.e discriminations) of the strings - - - 
taken 2, 3, up to n at a time, we never produce the string containing n zeros. 

. - Thus for each level separately it would seem that we need only test any new 

string S which comes into the box for linear independence within the level on 

which we are working, and go on to the next level when the basis at that level 

is complete, that is when we have B[I] linearly independent strings. However, 

although our program guarantees that any string which comes into the box is not 

already in U, it by no means guarantees that it is linearly independent of the basis 

vectors which have been assigned at lower levels. Thus our test must run over all 

1evelsTwhether completed or not. It is this test which gives to our construction 
- r -. 
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its hierarchical character; this is our replacement for the matrix mapping con- 

struction discussed in the last section. The coding is straightforward, as can be 

seen by looking at Appendix IV. It terminates when we have 2+3+7+127=139 

linearly independent strings, organized as we go along into the four levels of the 

combinatorial hierarchy. We emphasize again that, even though the length of 

the actual strings in U continues to grow (every time we go through TICK) the 

pointer designation of each string we have assigned to the incomplet; basis array 
- 

is unchanged. Further, the linear independence already achieved, since it comes 

from the initial bits along the string, is not destroyed by the random bits which 

TICK keeps adding at the growing ends. 

At this point in the program we must make another decision. We obviously 

could at this point simply compute all the discriminate closures of this basis and 

complete the hierarchy. Any that were not already in U could then be adjoined 

to it. But this would constitute an intervention, or glitch, in the main program 

for which we see no physical justification, and in fact no necessity. What we 

choose to do is simply to test whether in fact all the 2127 + 136 strings which 

complete the discriminate closures are already in U or not. If they are, the 

hierarchy is complete, and we go on to start forming labeled ensembles. If they 

are not, we simply let U continue to grow until this happens. Thus, once the 

basis array is complete we have-to continue to perform this mammoth calculation 

of the discriminate closures until our goal.is achieved. The‘way the logic is set - - 
up we have to do this each time a new string enters the box, which is bad 

from‘the point of view of corn-puter efficiency. It would be better to set a flag 
each time we go through TICK and only perform the mammoth calculation on 

the first pass through the box after that has happened. But conceptually this 

makes two intervention points rather than one in the main program. In practice 

this doesn’t matter, except for efficiency, but we use the first alternative as 

conceptually cleaner. Clearly neither choice affects the actual structure of U, 

which is basically all we require until we have a firmer grasp on how specific 

qua&m numbers are generated. 
- r -. 
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Once the hierarchy is complete, that is not only the complete set of basis 

vectors but also all their discriminate closures, are all in U we are ready to 

construct labeled ensembles. We know in advance that the bit string length N 

at this point will be at least 139, since otherwise we could not have found that 

number of linearly independent strings. If the matrix mapping construction has 

a fundamental significance, we would anticipate that the actual length will be 

256, but we will not investigate that question here. All weneed do-is to record 

the actual bit length at this point in the sequence, which we call NL. This will 

be the length of our labels from now on. We now set up labeled ensembles for all 

the strings in U(N, SU). Each time we enter the box with some new string S We 

examine the first NL bits. If the label already occurs, we assign a pointer which 

tells us that S is the next element in the ensemble with that label. If the label has 

not showed up yet, we make-S the first string in a new ensemble with that label. 

Eventually it is clear that we will end up with 2NL labeled ensembles. Thereafter 

the number of members in each ensemble, and the length of the addresses in each 

ensemble B = N - NL will continue to grow. This is automatic, so we need not 

record the value of SU at the point where the labeling scheme is exhausted. Just 

when this occurs, and the size of the ensembles for each label when it occurs, is 

an interesting statistical question, which may ultimately have significance with 

regard to the cosmology implied by our construction. We leave this aside as a 

question for future research. 

- - - 
One interesting aspect of our construction is that, in contrast to the matrix 

- - mapping construction, the fact that we stop at four levels has become arbitrary. 

Clearly we could have let our routine run long enough so that we could get the 

F = @7 - 1 + 139 linearly independent basis vectors needed to construct five 

levels, and the 2F-138 -I vectors which form their discriminate closures. Or could 

we? It may be that the procedure keeps throwing up strings in such a way that 

we never get there. If so, we would have an alternative to the matrix mapping 

construction stop rule. We leave this interesting question for future research. We 

also Gild stop at fewer than four levels. Such simplified universes might form 
- _ -. 
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useful models for simple physical situations, with small enough dimensionality 

so that an actual simulation might be attempted in practice. 

We now claim to have shown explicitly that our simulation of U contains the 

-. combinatorial hierarchy, and that the hierarchy can be extracted from it. Further 

the extraction has been done is such a way that only the cardinals of the levels 

are known. We cannot know within a level which are the basis strings and which 

the discriminate closures, only that there are exactly B(f)linearly%dependent 

basis strings in-each level, and H[I] vectors in each completed level. Consequently 

the appropriate indistinguishability properties are preserved by our simulation. 

This should make it clear that the information expressed by the combinatorial 

hierarchy is implicit in our original construction. Hauling it out to look at is an 

aid to our thinking, not a necessary part of the construction. In the next chapter 

we will not even need the explicit number of ensembles available (although the 

construction specifies them), only the fact that there are four classes of labels. 

- - - 

- 

- 
.- 
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4. CONSTRUCTING SPACE TIME and PARTICLES 

i Since we aim at a fundamental theory, the manner in which we “break in” 

to the system to define subsystems and the (shifting) “observer-participator” 

-.: boundary can be chosen only once and must be chosen with care. The paradigm 

we adopt is drawn from the practice of high energy particle physics where the 

usual fundamental data are discrete firings-of counters separated by distances and 

time-intervals defined in the laboratory. Our strategy is to identify in U(N, SU) 

events as already defined which we can relate conceptually to the coordinates 

of conventional theories and the intervals between such events in an arbitrary 

laboratory coordinate system. As shown in Ch. 2, once U is large enough we 

can find in U ensembles of strings which have the same first NL bits, which we 

will call the it label, followed by many different sequences of O’s and l’s called 

addresses. Since NL has now been fixed by-the point when SU reached (four 

level) hierarchy closure with NL bits in the labels, from now on we talk about 

U(N, SL) with N = NL + B. We now consider two strings Sl, S2 with labels 

Ll, Lp followed by B bits and define an event, as before, as the case when 

DNS& = s3 = DN++~ (4.0.1) 

with Sr, S2, -6’1, -62 already in U and the discrimination produces an S3 which 

is both already in U and has an equal number of O’s and 1’s. For this discussion we 

will also assume that .either oneof the four labels or-one of the four addresses has 

; _ an-even number of bits; which of the eight possible choices satisfies the condition 

is obviously irrelevant, since the rest follow. We could insure this by requiring our 
. - cutoff criterion on “completion-of the hierarchy” to occur only when NL is even, 

but for the time being we are allowing only the minimal number of interventions 

in the main program. The simplest way to insure that both addresses and labels 

have an even number of bits is obviously to require NL to be even. But we 

find it more interesting to leave the even-odd character of NL open until we are 

compelled to do otherwise. For simplicity in what follows we require the “equal 

number of zeros and ones” criterion to apply only to B3, that is to the address part 
- 

of the string. Independent of this restriction of the definition of event we have 
- r -. 
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already seen that an event defines, in the simulation memory of the computer, 

two integers B = N - NL and B + 1 the absolute string address lengths of the 

universe between which the event in question occurs. As we have seen, all that 

happens is that all five strings Sr, S2, S3, +I, -62, which by definition of eueplt 

are already in U are untouched, and the program tries again to generate novelty; 

in other words nothing happens. 

This “non-intervention” has a number of consequences which we might as 

well face right now. One is that the “same” event may occur more than once 

in the simulation (i.e. before the next TICK), without “anything happening”. 

From our point of view this is good; it eliminates the basic source of the in- 

finities which occur in relativistic quantum field theories basically because the 

uncertainty principle generates infinite energy at each space-time point. For us 

the virtual processes which generate these infinities occur in a Democritean void 

whichis not part of space-time. They are finite and unique; repetitions of the 

same process simply do not occur in the sense that they do not change our basic 

U. A second consequence is that there may be a number of “distant, simultane- 

ous” events. This this can, of course, happen in any Galilean frame in special 

relativity. What appears to be disturbing from the point of view of special rel- 

ativity is that our unique sequential definition of B implies a unique time frame 

which would seem to single out a special class of Galilean frames, and hence 

violate “the principle of special relativity”. Here we believe that we are on firm 

experimental ground, and need not, to quote Phipps,33 attempt to,cover our 
- 

- ‘..nakedness with a fog of blather about ‘mind,’ which could just as well 

be the ‘God’ whose sensorium provided Newton with such convenient cover in . - 
circumstances of like embarrassment.” 

What has changed since the time of Newton, and more particularly since 

Einstein is that, thanks to the 2.7’K background radiation, we have an ez- 

perimentally well defined coordinate system which defines both “zero velocity” 

and an absolute universal time scale. This might have pleased Newton, since 

it strengthens his case from the “bucket experiment” for an absolute space. Of 

coursT, since the background radiation is now believed to be understood on the 
- ._ -. 
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basis of general relativity and particle physics, the background radiation is not 

usually considered an embarrassment for special relativity. But the absolute 

space for rotations looks somewhat embarrassing for general relativity in the 

light of the conceptual background of Mach’s principle, which played a critical 

role in Einstein’s creation of the general theory. His position on this point was34 

“As you know the general theory is. a field theory defined by_ differential 

equations, and .any such theory must be supplied with boundary conditions. In 

the early days it was believed that the only solutions of the field equations far 

from gravitating matter were believed to be the flat space of special relativity, or 

an overall cosmological curvature; the uniqueness of these boundary conditions 

was believed to meet this problem. Since the discovery (Godel, Taub) of solutions 

of the field equations with non-vanishing curvature everywhere in the absence of 

gravitating matter, this argument from uniqueness no longer applies. In a sense 

this is-a violation of Mach’s principle. But now that we have come to believe 

that space is no less real than matter, Mach’s principle has lost its force.” 

Therefore we find it eminently satisfactory, and a real accomplishment of our 

theory, that we get both an absolute time frame, an absolute coordinate system 

for velocities, (thanks to our construction of special relativity below) and an 

.absolute space for rotations as a direct consequence of our algorithm. Of course, 

this puts us under the obligation, eventually, to prove that our coordinate system 

has no experimental consequences (other than those of the order of magnitude of - - 
the background radiation) in conflict with Current demonstrations of relativistic - -. 
invariance in the-laboratory. We believe our construction accomplishes this, but 

the reader will have to judge this himself. We anticipate that, if we can get the 

particle physics right, the background radiation will emerge in due course, but to 

discuss that question further here would take us beyond the scope of this paper. 

4.1 THECONSTRUCTIONOF SPACETIMEVIAARANDOMWALKMODEL 

The basic model by which we go from the bit string universe to space-time 

was pioneered by Irving Stein15. Our current approach departs considerably 

from%, and has been adopted partly in response to detailed private criticism 
- r -. 
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by Michael Peskin and Elihu Lubkin; we are much indebted to these physicists 

for the time and care they have taken in trying to understand an approach that 

is so far removed from the conventional continuum physics. 

Stein’s basic idea was to consider a random walk with a finite number of steps 

of fin.ite length h/me. In the context we have already established, this can be 

represented by an ensemble of bit strings which are subsegmen_ts of _an ensemble 

of address strings with the same label starting between universal address string 

lengths B and B+l and ending between address string lengths B+b and B+b+l, 

where we consider only the last b bits in each string. Between B and B + 1 we 

assume (see below) that there was an euent involving label L1 and any other label 

Li, and at B + b a second event involving label L1 again and any other label Lj. 

At this point we have to look ahead to the interpretation we will ultimately give 

relating our construction to our version of Feynman diagrams. The only concept 

we need here is that in a basic event the label lL1 which will occur, by our 

rules, as one of the legs of an event involving L1 is the antiparticle to Ll. We 

further assume that, once we have provided sequential time (which cannot be 

done between TICKS, but only in relation to a sequence of TICKS, as we will 

explain in more detail below) that all legs in the basic reference diagram are 

incoming, and that an incoming antiparticle is, following Feynman, equivalent to 

an outgoing particle. Then L1 is both incoming and outgoing in both events, and 

the ensemble of bit length b which connects the two events carries this label label 

between the two events; L1 will eventually become a set of.conserved quantum 

numbers. 

” - We now start to introduce our basic interpretive paradigm by assuming that 

macroscopic laboratory euents occuring in finite space-time volumes AzAyAzAt 

will take place only when an euent also occurs in the bit string universe. Consider 

in particular two counters separated by a macroscopic spatial interval S larger 

than their non-overlapping spatial resolutions which fire in sequence with a time 

interval 7’ which is again larger than their time resolutions. Assuming (which 

can be checked experimentally, with enough effort) that the conserved quantum 

numbTrs which are related to the firing of the two counters correspond to some 
- ~. -. 
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particle with those quantum numbers, we can then define the velocity of the 

particle between the two events as v =S/T. Correspondingly, in the bit string 

universe we can define the “velocity” connecting these two events by 

v=< N’ -N)>/(Nl+ti)=<N’-N”>/b (4.1.1) 

where N’ and No are the number of l’s and O’s respectively in_ an address string 

in the.ensemble and <> is the ensemble average. We can now take the next 

step and assume that the ensemble represents a biased random walk of b steps 

with a probability 

p =< N’(v, b) > /b = (l/2)(1 + v) (4.1.2) 

of taking a step in the positive velocity direction defined by our two counters and .- 
a probability 

q =< A+, b) > /b = (l/2)(1 - v) (4.1.3) 

_ of taking a step in the negative direction. The velocity of the peak is given by 

Eq. (4.1.1) and is obviously bounded by 

-15 v 5 +1 (4.1.4) 

while the standard deviation from the peak is 
- - 

- - - c(v, b) = (bj.iq)li2 = (b/4)li2[i - v2]112 (4.1.5) 

These relationships are exhibited graphically in Figure 3. Thus the random ” - 
walk model, specified by the two parameters b, v is equivalent to an ensemble of 

bit strings of length b, or to a binomial distribution specified by the same two 

parameters. 

Stein’s starting point was that the standard deviation of such a biased ran- 

dom walk, or binomial distribution, is algebraically suggestive of the Lorentz 

contraction. He then went on to relate this standard deviation to a space co- 

ordiii%e and derive the Lorentz transformations. Since he did not provide an 
- ~. -. 
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operational paradigm like ours, many people found his derivation hard to follow, 

let alone accept it. We believe that his basic idea was correct, but have adopted 

the alternative being developed here as, hopefully, more convincing. 

Once we have taken the basic interpretive step of identifying the two counter 

firings in the laboratory with two labeled events in the bit string universe con- 

nected by a random walk of b steps, a great deal follows. As already noted, the e 
parameter u can never exceed +1 or be less than -1. We can therefore make our - 
first dimensional statement in a physical sense by claiming that our interpretive 

postulate introduces a limiting velocity for any connection between two events 

which is uniquely and unambiguously defined. Clearly we can identify it with the 

limiting velocity c of laboratory experience which, to our knowledge, has never 

been exceeded in any laboratory context where the sequential firing of counters 

was well understood. .- 

Our next problem is that if we consider 011 the address strings labeled by ~51 

in this segment of our evolving universe, there is no reason to expect that the 

ensemble average will have any particular value; in fact the randomness of our 

construction would seem to guarantee that the most probable value is zero! Thus 

we have to make it part of our interpretation that there are in U subensembles 

of the appropriate character to support our eventual dynamical interpretation in 

terms of physical scattering events. That we can select from U such ensembles 

for any value of u and b we care to choose is easy to establish. The algorithm 

which does this is easy to construct; the coding is given at the end’of Appendix 

IV. Thus our universe certainly contains binomial distributions, or random’walks. 

Our problem is to construct a dynamics that tells us when they can be interpreted 

as physical scattering events. We have a lot to do before this is justified, so the 

reader is urged to be patient. 

Accepting the first part of our basic interpretive paradigm, we are in much 

the same position as the kinematic theory of special relativity which does not 

specify the nature of events but treats them as giuen. Then, since our postulate 

specifies a limiting velocity and the possibility of “light signals”, i.e. the address 

strin@ Ib corresponding to +c and Ob corresponding to -c, we can establish 
- ._ -. 
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the Lorentz transformations in a conventional way in l+l Minkowski space; by 

taking as empirical the three dimensions of space these are then extended to the 

full F’oincare transformations in 3+1 Minkowski space. This was the point of 

view adopted in our preliminary report on this research35 . But we believe it 
. 

instructive to attempt to follow instead, so far as we can, our version of the Stein 

derivation. 

Although our definition gives an absolute significance t’o BT as has been dis- - 
cused above, the current practice of physics for most purposes relies on relative 

rather than absolute coordinates. To construct these we consider three con- 

nected events, the first of which, symbolized by [12], occurs when U has acquired 

bit length B12 for the addresses, involves ~51 and L2, and happens at a spatial 

coordinate which for the moment we call 512. We identify this position macro- 

scopically with the firing of-a counter in thelaboratory (or an equivalent basic 

event in nature) as already discussed. The second event [23] involves labels L2 

and I+, occuring at a universal bit length B23 = I312 + b2, is assigned coordinate 

(23 = <12 + 52. The third event [31] involves label & and again label Ll, com- 

- pleting the connection to the first event; its coordinates are I331 = BB + b2 and 

c31 = 523 + &. The geometrical situation this defines is illustrated in Figure 

4. Clearly we have defined a “triangle” with sides labeled by lL1, lb, 1L3 and 

spatial coordinate intervals 

51 = t31 - (12; c2 = cl2- 523; 53 = <31--$9 = Cl + (2 (4.1.6) 

- - -. 
where we have touse quotes on triangle because the vertices are volumes and not 

. - points. Similarly the bit length intervals between the three events are 

b2 = B23 - B12; b3 = B31- BB; bl = B31- B12 = b2 + b3 (4.1.7) 

Our intuitive picture is to think of Ll,&, L3 as labeling three “objects” 

that in some sense encounter one another in three connected scattering events. 

Eventually we will succeed in constructing from these objects (which we will find 

that we have to think of as labeled ensembles rather than as individual strings) 
- ~. -. 
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ensembles which describe “free particles”, and will discover that the labels for 

the sides of the triangle ‘Ll, 1L2, -J& can be thought of either as “antiparticles 

moving backward in time” it as “particles moving forward in time”. For the 

moment it is less conterintuitive to take the second view, briefly introduced above 
. _ 

in connection with the Feynman rules, and define their velocities in the usual way 

bY 
Y- - s 

- VI = W-s ~2 = 52/b2; ~3 = t3lb3 (4.1.8) 

This is all familiar enough, except for the fuzziness of our vertices. 

We now return to our space time construction, concentrating for the moment 

on the connection between the two events [12] and [31] labeled by lL1 (cf. Fig.4). 

We assume that this connection is to be represented by a random walk of bl steps. 

The problem is to construct an ensemble labeled by lL1 with the appropriate 

statistical properties to give us a random-walk characterized by the parameter 

Vl = (l/b1 that heretofore has only been defined geometrically. The point of 

view we adopt is that the basic program has run long enough so that there are an 

enormous number of strings in U all labeled by lL1 when the address length is 

B12. Consequently when their address length has increased by bl bits, there will 

.be an enormous number of addresses in the ensemble containing bl random bits 

added by TICK at the end of each string. Therefore, even if bl is a small integer 

we can, by applying PICK to this ensemble a sufficient number of times and 

lopping off these last bl bits, construct an ensemble with the ensemble average 
- -. 

Vl =< N1 -No > lb1 (4.1.9) 

with vl as close as we like to any preassigned value. A specific algorithm for doing 

this is given in Appendix IV. In this way we can actually construct a random 

walk, characterized by the parameters bl, vl and labeled by lL1. Following Stein, 

we will call this ensemble an object. As in our construction of the hierarchy, we 

claim that this information is already contained in U whether we extract it or not. 

Clearly our universe contains an enormous number of objects, each characterized 

by esGntially any velocity we wish to consider between -1 and +l. 
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A more critical question than the existence of objects, which we believe we 

have now demonstrated, is whether in fact event [12] occured at string length B12 

while “time is standing still” between TICK’s and event [31] in fact occured when 

the string length had increased by bl bits to B31. Since B12 and B31 are both 

unknown and unknowable at this stage in the construction, the question is not 

whether any one event has happened or will happen, since clearly this happens 

many,many times in the evolution of the universe. We can start-our Gnsideration 

with-some event of the class we are considering as a reference point, and then ask 

whether the second connected event will occur after only bl steps in the random 

walk. To this we can only give a statistical answer as follows. 

Returning to Figure 4, we see that although the most probable “position” 

for finding a member of the ensemble is at vb, we have a SO-50 probability of 

finding it anywhere within ~(v, b) = (b/4)[l,v2]1/2 of the peak. Since our whole 

analysis is predicated on the assumption that the event [31] did in fact occur, 

we take account of this statistical uncertainty by defining the spatial coordinate 

interval bl between the two events by 

& - vlbl = a(vl, bl) = (b1/4)‘/2[1 - v:]‘/~ (4.1.10) 

Note that in this definition we have been careful to use the geometrically defined 

parameter vl = &/bl rather than the parameter u used in the preliminary dis- 
. . cussion. This a critical step, which we claim follows from our statistical analysis 

of the situation we are attempting both to describe and to understand. With this 

- definition of velocity and position understood, we have a similar defining equa- 

tion for the connection between spatial interval, number of steps and velocity 
. _ 

connecting the remaining events. 

4.2 THERELATIONSHIPBETWEENDIFFERENTCOORDINATESYSTEMS 

Up to now we have relied on the fact that there is a unique coordinate system, 

given by our constructive algorithm for U, in which the velocity associated with 

the intermediate string in each event is, by definition, zero. By associating each 

of the three connections between each of the three events we are considering with 

three7pacial intervals si, three finite bit string lengths biy and three velocities 
- r -. 
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“i = <i/hi, i E [II 2,3] and by invoking the random walk model as our basic 

interpretive device we have succeeded in arriving at the the three basic relations 

,$ - v;bp = (bp/4)12[1 - (v;)~]~/~ (4.2.1) 

where we have added to the notation the superscript “0” to remind us that 

so far this relationship is justified only in a particular (universal and defining) 

coordinate system. 
_ - s. 

- 
Our next critical step is to relate the three events, and more significantly the 

intervals between them, to descriptions in different coordinate systems. Consider 

first the description of the situation in which we wish to assign to object 1 a 

zero velocity. This could happen to be the case already for some class of three 

connected events of the type events of the type we are considering. In that case 

the spatial interval our rule-requires us to assign to the connection between [12] 

and [31] is a(0, by) = (by)l12. 

The thoughtful reader may already have wondered why in our basic definition 

we took the position of the event to be a standard deviation beyond the peak 

- of the distribution rather than on the near side. The answer is that in the case 

of zero velocity, this would specify a negative direction for the random walk 

‘excursion, which would not make sense when we are talking about zero velocity 

with no reference sense for + or - direction. When we are through, only relative 

and not absolute direction will survive for the small (in this case 3) event numbers 

we are now considering. The same will happen with time, in spite of our unique 

- (complexity increasing) “time’s arrow sequential character for the bit’ string 

universe as a whole. But this is getting ahead of our story. 
. - 

Having recognized this implication for the constructions/definitions already 

established, we are now in a position to explain what we mean by coordinates 

in a “coordinate system” in which object 1 is “at rest”. Referred to the basic 

coordinates in which it took by steps, it will have wandered a distance 

[; = a(0, by) = (by/4)‘j2 = (ry - b$/[ 1 - (vY)~]~/~ (4.2.2) 

wheme have made an obvious algebraic use of Eq. (4.2.1). 
- ~. -. 
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Whether the non-conventional route by which we have obtained the Lorentz 

contraction, and the first half of the Lorentz transformations in I+1 Minkowski 

space is in fact a “derivation”, as we are inclined to believe, or a “definition” is 

a question which the reader will have to decide for himself. In any case these 

were.the critical steps for what follows. We have included the derivation since it 

follows in a “straightforward” (which as usual in the jargon means after many 

recursive iterations and much agony) way from our bit string universe. More 

signiificantly; aswas already foreseen by Stein, the same random walk model will 

allow us to get a new insight into the foundations of quantum mechanics. But 

this is yet to come. What is important to realize at this point is that once we 

have achieved the result, the precise statistical formula by which it was achieved 

drops out; for instance, it would not matter if we had used probable error rather 

than standard deviation. What is critical is the proportionality between the 

statistical uncertainty and [l - v21112. The--general features of Stein’s insight 

are therefore, from our point of view, (a) that any random walk has a built in 

limiting velocity, which by SOme route is more or less guaranteed to end up in 

special relativity, and (b) that the narrowing of the peak in a biased random walk 

as it approaches the limiting velocity has the same algebraic form as the Lorentz 

contraction factor. Therefore we are convinced that these general features will 

‘survive in any successful attempt to put constructive physics on a digital basis 

whether or not the reader finds our particular route convincing. 

But we have more work to do-before we can arrive at the Lorentz transforma- 

- tions-for the basic triangle which we wish to relate to laboratory coordinates. For 

the quantities alr-eady under consideration, we adopt the notation rt, bf, vf. We 
. _ have,seen that according to internal reference to the events [12] and [31] object 1 

wanders by an amount cl. But this wandering is not a laboratory phenomenon. 

If we wish to take object 1 with zero laboratory velocity as the reference system, 

and take event [12] as the origin of coordinates, then we must have that e: = 0 

and hence that vi = (i/b: = 0. But because of our initial argument, we insist 

that we can also take 

- (; = (cy - vyby)/[l - (t&211/2 
- ~. -. 
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which is consistent since it does insure that (1’ = 0 thanks to our initial assump- 

tion that vy = ty/by. 

This still leaves the quantity b: in this new coordinate system undefined. 

Here we must return to the fact that we are “breaking in” to the system at 

a stage where the universe has been evolving for a long time, and recognize 

that whatever the actual content of the memory in the simulation, we have no _ - e 
immediate way in the laboratory to access the “universal time” B. We are allowed - 
to make use of the structural information which comes from the fact that events 

occur, and that in Borne coordinate system the intermediate states have zero 

velocity. As we have seen, by invoking the random walk model this allows us 

to construct the first half of the Lorentz transformation for spatial coordinates. 

At this point we must recognize that our choice of the 1 bits as representing 

steps in the + direction was arbitrary; we could just as well have chosen the 0 

bits, since this would not alter our fundamental assumption of zero velocity for 

the intermediate strings in the events. More than that, since we cannot access 

the bit string universe directly, our formalism must not only be indifferent to 

- the algebraic sign of velocities, but must not allow us at this stage to determine 

anything other than relatioe velocities. We recognize this fact by asserting that 

.our description of the interval between the two events [12] and [31] has to be able 

to be constructed starting from the coordinate system in which object 1 is at rest, 

and constructing a random walk which will connect this system to the one in 

which we started where object -1 had velocity vy. Since, as we have already seen, 
- the universe has a sufficiently large number’of appropriately labeled ensembles so 

that we can construct a binomial distribution, or random walk, for any choice of 
. _ the parameters v, b we can clearly construct the ensembles we need. But if we are 

to delete any reference to the absolute universal coordinate system, the number 

of steps b: must be defined in a new way, as already noted. We choose to do this 

by noting that the relation between the two coordinate systems now must have 

the relative velocity -VT rather than +vT, a familiar requirement. Consequently, 

we claim, that by applying the same analysis as before, we can define 61 by 

- 6: = (i$ + +;)/[l - (vY)~]~/~ 
- ~. -. 

(4.2.4) 
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This is the last critical step we require for establishing the space-time kinematics 

of special relativity as a consequence, or more modestly as consistent with, our bit 

string universe, since we now have the connection between intervals and relative 

velocity. Further, it now follows algebraically that 
. - 

and that - -- 

by = (b; + &;)/[l- (v?)~]‘/~ 
Y- - s 

b; = (by - v~&/[l- (v?)~]‘/~ (4.2.6) 

(4.2.5) 

completing our derivation of the Lorentz transformation. 

So far it seems that we made little use of objects 2 and 3, but in fact they 

provided the critical zero velocity intermediate states that got us off the ground. 

Clearly we can now go on and derive the Lorentz transformations referring to 

their velocities. 

One further point deserves mention. Since, as already noted, the algebraic 

sign of our velocities has now only a relative significance, we have not only lost 

any reference to “universal time” but also to the the unique evolutionary sense 

of time in the underlying model. Hence, we can treat our “time parameters” b as 

negative or positive without affecting the formalism we have established. Relative 

time sense can be established for-events connected by macroscopic intervals, but 

i _ 6% is aPP ro ria e in kinematic special. relativity) the absolute time sense has P t 
been lost. Thus, at this stage, we claim to have demonstrated “time reversal 

. - invariance” for this piece of the formalism. At a later stage, when we have 

developed quantum mechanics, we will recover time irreversability. Our point of 

view, with which Lee concurs,36 is that the “time irreversability” which leads to 

the second law of thermodynamics is correctly identified with the irreversibility 

of quantum mechanics, as we have discussed long ago6. In this respect we are 

essentially on the same footing as conventional theories. Further, when we come 

to cosmology, the universal time sense is ready to hand, without having to go to 

general relativity. We believe this to be a strength of our approach. 
- ~. -. 
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Since we have already insured that the triangle connecting the three events 

closes, and our random walk derivation insures that no velocities can exceed 

one, we trust that it is obvious we have now derived the full geometry of l+l 

Minkowski space in the limit of such a large number of steps that b can be treated 

as a continuous variable. But the underlying integral character of the steps will 

become critical for us in the next section. 

To proceed from the l+l Minkowski space which we have now-constructed - 
to 2+1 and 3+1 space is straightforward. We first consider, as in Figure 5, 

appropriate line intersections with velocities along the lines for which we can 

construct appropriate velocity ensembles and make the appropriate transforma- 

tions for 2+1 space. It hardly seems necessary to spell out the algebra here. 

The transformations we have already established suffice to define the invariant 

intervals .- 

(4.2.7) 

not only for j referring to any of the three particles or the coordinate system 

0 with which we started but for any coordinate system in which object i has 

any arbitrary velocity v bounded by fl with respect to the coordinate system in 

which object i has zero velocity. The fact that we have defined our connected 

events in such a way that the triangle (now in 2+1 space) closes allows us to prove 

algebraically that the coordinate perpendicular to the direction of the velocity 

transformation must be unaltered. Of course now the random walk ensembles 
- - 

- must be constructed in such a way that the addresses for each label contain two 

subensembles referring to the vector velocity components, but the construction . - 
is obvious and will not be spelled out here. 

To go on to 3+1 space is equally straightforward, using the paradigm given 

in Figure 6. Obviously we must now use three subensembles with the same label 

to refer to the three vector components, but that is a detail. There is only one 

subtlety, namely that we have to stop with 3+1 space! The reason is that so far 

all the labels within a particular level are indistinguishables. Hence we are only 

allowFd four distinct lines at this stage in the construction. When we go on in 
- ~_ -. 
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the next section to assign parameters (in fact masses) which distinguish different 

labels, we can go on to construct multidimensional configuration spaces. But our 

basic space of description remains 3+1. 

We note also that since our lines and intersections are necessarily always 

labeled, the space can immediately acquire chiral properties once we have any way 

of generating interactions. Again this should be obvious from Figure&,. where the 

fact that the vertices carry distinct labels required us to draw two figures rather 

than one. In structural chemistry they would be referred to as stereoisomers. If, 

as in classical chemistry, the basic interactions (electromagnetic) are non-chiral, 

the energy levels of the two isomers are identical, and the chiral properties can 

only show up in dynamical interactions where the macroscopic geometry defines 

the chirality. But if our bit strings labels turn out to have chiral properties (and 

they had better when we come to “weak interactions”) we see that the fact that 

our space is defined in terms of labeled events rather than in terms of an achiral 

background will make “parity non-conservation” a natural consequence of the 

construction. We find it pleasant that this possibility emerges so early in the 

construction. 

To summarize what we claim to have shown, we start from our basic bit string 

universe, subdivided into growing ensembles labeled by the levels of the combina- 

torial hierarchy, and show that from these we can always construct subensembles 

corresponding to a random walk -with a specified velocity bounded by a universal 

limiting velocity. By assuming that this-random walk represents an object whose - -. 
coordinates are defined by three appropriately chosen events, we then show that 

” - this allows us to describe the relationship between the coordinates of the objects 

engaging in the events with specified relative velocities and derive the Lorentz 

transformations. Here we use the contraction factor of the biased random walks 

and the fact that our definition of velocity necessarily implies a universal limit- 

ing velocity. The transformations are algebraically identical to the usual Lorentz 

transformation, except that the derivation requires the “time” coordinates to be 

integers. We then show that this suffices to construct the full geometry of l+l, 

2+1,and 3+1 Minkowski space, and that our basic space of description must 
- ~. -. 
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stop there. We leave it up to the reader as to whether we have “derived” space- 

time from our bit string universe, or defined it starting from that basis. What 

we do claim is that our procedure is self-consistent, and provides an adequate 

basis for what follows. 

4.3 CONSTRUCTIONOFMOMENTUMSPACE 

Our next problem is to go from the mathematical coordi4;ttes we have suc- 

ceeded in constructing to dimensional coordinates that can be used for the pur- 

poses of physics. Since we have a universal limiting velocity, so far simply unity, 

we obviously equate this to c, the limiting velocity of special relativity. Since 

we have a random walk model the obvious way to make this dimensional is to 

associate with each label some invariant step length lo. This will be justified if 

we can connect the labels by some specified procedure to laboratory events. For 

that purpose it is more convenient to use the concept of mass as the identifier 

of objects. We then can introduce a second universal constant h and connect 

this to step length by taking lo = h/me. Clearly we can identify this with the 

step length in the coordinate system in which the object carrying this label, step 

length, and now mass, is at rest. But then the Lorentz transformation properties 

we have already established require that in a coordinate system with velocity 

.v, the step length be Lorentz contracted, i.e. that 1 = lo[l - v~]~/~. This in 

turn allows us to define a second coordinate system dependent quantity E = 

mc2/[1 - v2] lj2. This is then related to the step length in any coordinate system 

bY 
- - 

- -. 

I= he/E (4.3.1) 

Thus, when we have done a lot more work, we will find that our discrete step 

length is the basic Einstein-deBroglie quantization condition connecting energy 

to phase wave length or (for light) frequency. 

So far this step is purely definitional and only on dimensional grounds are we 

justified in calling E ((energy”, or for that matter calling m “mass”. However, if 

we take the second step of defining 3 = m 8 /[I - v~]‘/~, where 3 has the spatial 

signGance already established, these definitions and our Lorentz invariance yield 
- ~. -. 
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immediately the invariant relation 

E2 - p2c2 = m2c4 (4.3.2) 

-. We now have constructed the usual Lorentz invariant coordinate description of 

a momentum space for free particles. 

It is at this point that we “break in” to the system of description by provid- 

ing a basic definition of a new process in U which can be associated with those 

happenings which initiate the chain of happenings that lead in the laboratory to 

the firing of a counter. For this purpose we need to connect our mass parame- 

ters to each other in such a way that they can be measured in the usual sense. 

Mach realized long ago that Newton’s Third Law, or momentum conservation, 

is the critical component in the observational definition of mass ratios. As he -- 
showed, this allows us to define these ratios relative to some standard reference 

mass and that this works because empirically mass ratios so defined are (within 

experimental error) scalars and independent of the order in which they are mea- 

sured. This remains true in special relativity if we take care to use the definition 

of momentum we have introduced above. What we need is a process in our bit 

string universe that can be identified with a momentum conserving collision. The 

‘feature of such a collision that we pick is that in a system in which the vector 

sum momentum of the the two particles is initially zero, the intermediate state 

formed by the collision has zero velocity. Since we have in effect a particular 

coordinate system available to-us from the construction (with cosmological in- 
- -. 

terpretations already mentioned) and our definition of event in that coordinate 

system does have zero velocity for the intermediate states S3 because the ad- 

dress part of string S3 has an equal number of zeros and ones, we have already 

accomplished this. 

As a matter of fact, if we return to our basic definition Eq. (4.0.1) and 

refer to Fig. 4 we seem to have done too much. Each object which enters our 

paradigmatic triangleleaves with its velocity unaltered, if we assume, as was done 

above in going from the specific situation to the general Lorentz transformations, 

that We keep on constructing ensembles with the same velocity parameter as the 
- ~. -. 
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bit length b increases. We have “momentum conservation” all right, because our 

events as defined up to now do not lead to scattering; they are simply “crossings”. 

What we have at this point is simply the correct relativistic kinematics for a 

system of “free particles”. 

The situation can be rectified as follows. We enter the main program by 

inserting a flag which tells us what labels are involved in events following some s 
particular TICK and before the next TICK occurs. We allow the universe to run - 
for b TICKS, and then enter the program again looking for any two labels (which 

occured the first time in two diflerent events), and then keep looking for an event 

in which either of these two labels occur. This may not happen before the next 

TICK, in which case we keep on looking between each subsequent pair of TICKS 

until it does, and record the bit length b, counting from the TICK when the first 

two events occured. We now can form a vector velocity ensemble for each of the 

two labels which meets the criterion 

ml 81 /[I - (TJ~)~]‘/~ + m2iJ2 /[l - (v2)2]‘/2 = 0 (4.3.3) 

Clearly this defines the initial legs for a momentum conserving collision. In 

the same way we can follow the two labels after the collision and look for two 

subsequent events, and construct ensembles for the final state legs which again 

conserve momentum. In this way we demonstrate that our universe does indeed 

contain not only crossing_events, but momentum conserving elementary scatter- 

ing events. To calculate the probabilities for such scatterings will take a lot more -. 
work. We content ourself in this chapter with having, we believe, demonstrated 

. - that our bit string universe has been shown to contain the usual kinematics of 

conventional relativistic particle mechanics, in spite of its digital basis. Since 

we already have the correct Lorentz transformation properties for velocities - 

a concept defined in both coordinate and momentum space- we trust it is now 

obvious that our elementary scattering events will conserve momentum in any 

coordinate system, and have the needed properties for connecting up to labora- 

tory scattering events. But we have to do a lot more work before this can be 

madGonvincing. 
- ~_ -. 
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We now claim that we have shown our basic random walk model to lead to the 

usual relativistic kinematics of free particles and momentum-energy conserving 

“point” collisions - points in the sense that we can assume all magnitudes we 

need consider large compared to the inverse number of steps l/b. In fact we now 

have a formal way of taking that limit simply by letting our universal constant 

h --) 0. We emphasize that this approximation is just that and nothing else. It 

explains for us why physics was able to get so far using cc&tin’uum%odels, but 

it doesnot mean that, even conceptually, our space time is the continuum space 

time of special relativity. Ours is a space of discrete events with discrete random 

walks in between, a point which has also been emphasized by Stein. Hence we 

do not have a “correspondence principle” in Bohr’s sense. In fact, we claim that, 

contrary to his basic assumption, we have shown that it is possible to construct 

physics without assuming a. continuum space-time background. Parker-Rhodes 

has a different, but conceptually similar, way to achieve the same result.14 In this 

approximation we can use rods and clocks in the laboratory to connect up the 

firing of counters to particular sources of particles, measure mass ratios, cross 

sections, and so on. Thus at this point we have the kinematic basis for a classical 

relativistic particle physics connected to laboratory practice. This theory is, of 

course “scale invariant” because of our approximation that the step length is zero. 

‘To go on to the quantum theory we must obviously retain the discrete aspect of 

our bit string universe and not throw it away in this fashion. We have done so 

here only to establish contact with macroscopic experience. In the next chapter - - 
we will show that the underlying-discreteness also has macroscopic consequences - - 
in agreement with experience. 

. - 

- 
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If we had a way of “reaching into” the universe and identifying the precise 

integers between which an event occurs and then counting the steps in the random 

-. walk to the next event, the “objects” constructed in the last chapter could serve as 

our basic particulate description. But these events occur at the sub-microscopic 

level which our hands and eyes can never- reach. The closest way that has been 

found so far-to-approximate what we are looking for is to construct a “counter” 

of macroscopic dimension AZ and time resolution At which will “fire” when an 

event of specified type (learned from experience, and theoretical analysis) occurs 

somewhere within this space-time volume. The counter is constructed so that the 

initial event leads to a chain of events (usually some sort of ion cascade) which 

magnifies the effect of the initial happening to the point where it can make a .- 
macroscopic record - an audible click, a bit on magnetic tape, a developable 

grain in a photographic emulsion,... Our -problem is to relate this macroscopic 
result to the underlying bit string universe. 

The counter technology just described is already enough to accomplish a 

great deal. In the approximation in which the space-time volume of the counter 

can be considered to be a “point”, we have already seen that we have the full 

particle kinematics of special relativity. By finding (eg. radioactive) sources 

of particles in nature, or constructing them using vacuum and electromagnetic 

technology (accelerators),_we cangive a laboratory definition of a source of parti- 

cles as anything which fires a counter. We can discover “absorbers” which when - -. 
interposed between source and counter keep the counter from firing. Using these 

. - we can construct a sequence of slits or holes which define a beam of particles. 

Using counters in the beam, we can measure their velocity, or velocity distribu- 

tion, and calculate the experimental uncertainty in these quantities arising from 

the finite size and time resolution of the counters. Since this procedure has been 

discussed elsewhere3’ , we refer the reader to that publication for details. Given 

collimated beams of particles, we can set up two in-two out elastic scattering 

experiments and measure mass ratios relative to any particle chosen as a stan- 

dard%ng relativistic energy-momentum conservation. From this we can go on 
- _-, ~. -. 
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to study more complicated situations in which novel types of particles are pro 

duced in the interaction.38 This suffices conceptually for understanding much of 

the experimental practice of high energy particle physics. We see that this type 

of measurement is essentially classical, once we have learned from Einstein that 

particles can be created out of energy. That fact itself can be understood thanks 

to Wick’s profound analysis3g of Yukawa’s meson theory,40 as an inescapable 

semiquantitative consequence of the coupling of relativity toquantum mechanics. 

But this still does not suffice for us to construct a scattering theory for quantum 

particles. 

5.1 “FREE PARTICLE" BASIS STATES 

Returning to the bit string universe, all we have so far is that when two coun- 

ters separated by a macroscopic space and time interval larger than the volumes 

and time resolutions of the counters have fired, some random walk connecting 

those two volumes has occured. But we do not know within those macroscopic 

volumes where this random walk started and ended. To meet this problem, we 

construct an ensemble of objects (which are themselves ensembles) all character- 

ized by the same vector velocity 3 and the same label (or mass) chosen in such 

a way that, after k steps, each of length 1 = (h/mc)[l - (v/c)~]‘/~, the peak of 

the random walk distribution will have moved a distance 1 in the direction of 3. 

We take as our unit of time the time to take one step, St = I/c. It is important 

here to realize that we are debarred from using any other definition. Our steps . -. 
are digitized, and we have no way as y-et of assigning meaning to fractions of a - - -. 
step. We do have a clear understanding of what we mean by a sequence of steps, 

- - which justifies our use of them as specifying a “time sequence”, even though we 

do not carry with that many of the customary concommitents of the concept 

of “time”. Once “time” is understood in this digital sense, the velocity of the 

peak of each subensemble in this coherent ensemble has a velocity c/k. We call 

this coherent ensemble of ensembles a free particle of mass m, velocity 3, and 

momentum 7; = 773 3 /[l - (v/c) ] 2 lj2. We assume that the size of the counter AZ 

in this direction and in the plane perpendicular to this direction is so large that 

we cZi ignore end effects; we return to these below. 
- ~. -. 
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There is a second “velocity” associated with this ensemble of ensembles, 

namely that with which something moves at each step always in the direction 3. 

We call this vph; clearly uPh = kc, and uvPh = c2. Associated with each of the 

two velocities and the label (or mass) there is a characteristic length 

bh =l=hc/E;X=kl=h/p (5.1.1) 
F- - s 

Our-next step is to show that these coherent ensembles of ensembles, which we 

can clearly construct algorithmically from our bit string universe by extending 

procedures already developed, has experimental consequences that can be exem- 

plified in the laboratory. 

5.2 THE DOUBLE SLIT PARADIGM 

We now consider our coherent ensemble of ensembles specified by ?j and m in- 

cident on a %creen” perpendicular to 3 made of absorbers containing two holes 

(or slits in the two dimensional approximation in which the distances perpen- 

dicular to the line between the holes and to ?j are so large as not to produce 

appreciable end effects) a distance d apart. This geometry is illustrated in Fig- 

ure 7. This is all well and good in the laboratory where we have established the 

‘meaning of absorbers. In the bit string universe the absorbers can be thought of 

as containing so many events that their consequences are so diffuse as not to affect 

the progress of the experiment. Our coherent ensemble will pass through these 

two holes dividing into two subensembles without loosing its-coherent properties. 
- -. 

This is our answer to the old question of “which slit” the “particle” goes 

through. So long as the coherence is not destroyed, it goes through both slits. 

This is possible for us because our “particle” is a coherent ensemble of ensembles 

of indistinguishables, and not a single entity. But if there is a counter in the slit 

and a scattering occurs, the coherence is destroyed; in that case we know that the 

particle went through that slit. More detailed analysis reveals that this class of 

events will lead to a single slit interference pattern. Thus we are led to the same 

conclusion as the wave theory when it is analyzed in this way37 even though we 

haveused a digital basis. 
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At some large distance D behind the screen we set up a counter array in a 

plane perpendicular to 3. We further assume that the source is a distance S 

on the other side of the array, and is equipped with a counter which fires when 

the particle leaves the source. Calling the time interval between when source 

and detector fire T, the velocity between source and detector is v = (D + S)/T. 

By making D and S large enough, and assuming that the source has a velocity 

spectrum which includes V, we can select in this way particles whose v is as 

precisely known as we like 37 . This step is necessary to insure that all elements in 

the coherent ensembles we consider have the same v to requisite precision. Only 

such pairs of events will provide data for the experiment. 

It is important to realize that our precision is now no longer limited in prin- 

ciple by the finite resolution AzAt of the counters. All we need to do is make 

the experimental setup long enough. It is this fact that makes the concept of 

velocity rather than space-time fundamental for a quantitative development of 

scattering theory, as was realized long ago by the S-matrix theorists. We have 

also seen that, once our bit string universe contains a large enough number of 

- labeled ensembles, we can also construct the appropriate binomial distributions 

describing any value of velocity to arbitrary precision. So we are making contact 

at the appropriate point. But the random walks still enter into the picture when 

we now go on to find out where we are most likely to have the detectors fire 

. . in the counter array as a function of the distance x away from the center line. 

Because of the coherence properties we have built. in to our definition of “free 

_ particle”, this will be most probable when. the two path lengths to the detector 

are an integral number of coherence lengths X apart, since this is the only place 
. - where all the peaks of the distribution line up. At any other geometrical con- 

figuration, some of the distributions will have lower probability amplitude, and 

the occurance of the event will be less likely. Hence our bit string universe and 

definition of free particle predict that we will find maxima in the distribution in 

z characterized by an integer n (counting away from the center line) which occur 

at positions xn given -by(cf. Fig.7) 

- nX = xnd/D (5.1.2) 
- ~. -. 
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We now claim to have shown that our bit string universe contains something 

related to “deBroglie wave interference”, and that by defining- velocities and 

counting maxima under appropriate circumstances, we can measure h, which we 

are now justified in identifying with Planck’s constant. We have also derived the 

deBroglie wave length and the relativistic phase wave length he introduced (Eq. 

5.1.1); Hence in the limit of negligible mass, we have the basic Einstein-Planck 

quantization condition E = he/A as well; The fact that energy is “quantized is 

thus,-for us,-a direct consequence of our digitized step length. 

It is important to realize that our theory is still, in principle, “scale invari- 

ant” because all we we have defined are mass ratios taken from experiment. If 

there were in nature stable elementary particles with arbitrarily large masses, we 

could with sufficient ingenuity find a way to measure arbitrarily short distances. 

In fact, all we know how to do is to give elementary particles like the electron and 

proton very large energies. But when we try to use these as probes, what we end 

up doing is to create more particles by the Wick-Yukawa mechanism, which frus- 

trates any direct space-time description of the internal structure of “elementary 

- particles”. What is usually done is to assume that the second quantized theory 

of the matter field, which uses Lagrangian densities defined (mathematically) in 

terms of a continuum space-time, can meet this problem. But as was pointed out 

long ago by Bohr and Rosenfeld,41 the second quantization of the matter field 

. . _ cannot be given an operational definition, making this whole conceptual frame- 

work suspect. Current research b-y quantum field theorists attempts. to meet the 

_ problem by trying to calculate the quantized mass values found in nature from 

the nonlinearity of their fundamental theory, but we believe it is fair to say that 
- - this program has not yet succeeded. We will see in the next chapter an alterna- 

tive way to get one stable mass ratio, and the absolute mass scale of our theory, 

from digital considerations. But before we do that it will be useful to show that 

our theory can be extended from free particles to a quantum scattering theory, 

and approximates free field theory in an appropriate continuum limit. 

5.3 “PHOTONS”; WAVE MECHANICS 

Now that we have seen that we can construct from our bit string universe 
- ~_ -. 
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basis states with the internal periodicities (but not yet the “continuum” wave 

structure) of the conventional relativistic deBroglie theory for free particles and 

asymptotic energy-momentum conservation, our next problem is to find our how 

the underlying statistical bit string structure leads to scattering. Although we 

could proceed to construct our scattering theory directly in an algebraic fash- 

ion,we choose to first set up the conventional wave theory limit in order to un- 

derstand in a more familiar context the algebraic rules werlnvoke in”momentum 

space. .To do this we must return to the bit string universe and explore in more 

detail the connection between label and address which we have already built into 

the theory. 

For the purposes of our preliminary discussion it will suffice to use only the 

simplest possible labels, those corresponding to level 1 of the hierarchy. These, 

as we have already seen, are-(lo), (Ol), and (11); they close under discrimination. 

Up to now we have concentrated on two in-two out events, which occur between 

TICKS, but if we return to the basic flow chart (Fig.l), we see that there are 

two other types of process going on between TICKS, namely discrimination and 

complementation. Discrimination between two strings gives us a third string 

which, if it is not already in the universe, is added to it. If that string is already 

present, and the complement of either of the initial strings chosen by PICK is 

not already present in the universe, that complemented string is added to the 

universe. If all five are present, we have what has been called an event and again 

the universe does not go TICK: Thus, so far as the labels we. are now considering 

gcr, there are six cases illustrated in Figure.8. These occur between TICKS with 

equal a priori probability. 

If we now think of the label as referring to a dichotomous quantum number 

such as charge, we can, for instance, think of the ensembles of ensembles labeled 

by (10) as a particle of positive charge, labeled by (01) as an antiparticle of 

negative charge, and labeled by (11) as a quantum which externally will appear 

to be neutral but internally contains the charges of a particle-antiparticle pair. 

This interpretation is reminiscent of the Fermi-Yang model for the pion. For 

the events, since in the universal coordinate system the intermediate state will, 
- ~. -. 
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by definition, have zero velocity, and the complemented strings reversed velocity, 

these are a primitive version of four leg Feynman diagrams with all particles 

incoming or all outgoing. But since the external time sense has to be established 

by linking these up to other events, as we have already seen in our construction 

of “space-time”, we also have the usual Feynman rule that an antiparticle moving 

“backward in time” is equivalent to a particle moving “forward in time”. In the 

conventional theory, this is derived from. the CPT theorem. -Here-we claim to 

de&e this basic theorem from our fundamental definition of event. 

Of course there is a lot more to the CPT theorem than this primitive example. 

In particular, the reversal of velocity direction must not reverse the helicities 

for spin l/2 particles. If we treat a second dichotomous pair of bits in the 

label as referring to the helicity state this will follow in due course, (cf. below). 

Further, again as we can see from the constructions in the previous chapter, these 

basic processes are momentum conserving A little thought should convince the 

reader that the complementation rules will also allow us to guarantee momentum 

conservation at the vertices, and that in both cases this will continue to be true 

in any coordinate system. Thus we have the basic ingredients for a momentum 

space scattering theory. The remaining problem is to construct a dynamical 
‘theory by connecting up basic events and vertices in such a way that we can 

actually calculate scattering amplitudes for physically observable processes and 

compare the predictions with experiment. 
- - 

The simplest case we can consider is one in which all thesteps in the address - -. 
are taken in the same direction, that is the address strings are all l’s or all 

. - 0’s. It is clear in this case that the random walk has no dispersion and that 

our objects (or particles) will all move with fc, a fact already noted by Stein. 

Thanks to our identification of the step length 1 = he/E we clearly have no 

trouble in taking the zero mass limit, which is required for consistency with 

our relativistic kinematics. Whether our theory will actually predict that the 

labels associated with-such particles have precisely zero mass, is too early in the 

construction to speculate about. Fortunately our theory will not be in conflict 

withexperiment if the photon turns out43 to have a mass ~3~ - m,e-137 or 
- ~. -. 
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if some or all of the neutrinos have small finite masses, for which there is some 

controversial experimental evidence. In that case, the present discussion refers to 

an approximate (and convenient) model, and is not fundamental. We hope this 

will become clearer as we go on. 
. . 

For massless particles it will be simplest to think of our dichotomous variable 

as helicity and for the simple case at hand to assume that in dimensional units it F- - 
will have magnitude h/4?r. To justify this numerical value will take a lot of work, 

as will the demonstration that it is a pseudovector (i.e. has the transformation 

properties of an angular momentum). For the moment all we require is the 

dichotomous character. Then the label (10) with the address (llll...l) can be 

thought of as a neutrino with positive helicity and (01) with the address (llll...l) 

as referring to a neutrino with negative helicity. Then the reflection operation 

which takes (llll..l) to (0007l...O) will indeed-reverse the vector direction without 

reversing the helicity, showing that our “helicity” is indeed a pseudovector. It 

is important to realize that we can define pseudovectors in this way between 

TICKS because our definition of the direction of velocity is defined directly in 
- terms of bit strings. However, to define time reversal we would require a sequence 

involving at least three ticks, and to get time irreversability many more than that. 

Once this is understood the Feynman rules we have already derived work in the 

conventional way. We conclude that if we start with only one type of neutrino, the 

antineutrino has opposite helicity and we get the usual two component theory 

in which neutrino and antineutrino have opposite chirality. Thus we do have 
- the chiral properties we noted in the last chapter as implicit in our method for 

constructing space-time. 
. - 

As is well known, neutrinos have no classical analog, so will not directly serve 

our purpose of constructing the photon. In our notation the four possible two 

component neutrino states are 

UL = (Ol)(llll...l): left handed neutrino,+c 

UL = (lO)(OOOO...O): left handed neutrino,-c 

i?R = (lO)(llll...l): right handed anti-neutrino,+c 

DR ~(Ol)(OOOO...O): right handed anti-neutrino,-c 
- ~. -. 
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According to our Feynman rul& the antiparticle to a left handed neutrino 

is right handed, and the neutrality of the neutrino does not allow us the other 

possibility in this notation, which we will see in the next chapter will require us 

to assign additional slots for the helicity quantum numbers of charged particles. 

Of course our choice of the particle as left-handed is made to conform to the 

usual conventions which describe parity non-conservation in beta-decay. As in 

conventional theory, we cannot get the other variety by a Lo’renfz tra&formation, 

since a.particle--traveling with light velocity cannot be brought to rest. 

We now extend our discussion to level 2 of the hierarchy, but for the moment 

need not use the full structure, which is discussed in the next chapter. What we 

need is two dichotomous variables and the the helicity we have already introduced 

extended to two spin l/2 particles combined to make spin 1 states traveling with 

light velocity. By an obvious extension of the notation already introduced, the 

four photon states are 

7; = (1010)(1111...1): right handed photon, +c 

_ 7;; = (lOlO)(OOOO...O): right handed photon, -c 

7; = (0101)(1111...1): left handed photon, +c 

7; = (OlOl)(OOOO...O):left handed photon, -c 

Again these states cannot be brought to rest by a Lorentz transformation, 

and the reversal of the velocity_ dpes not change the helicity, so the spin is again 

i _ a pseudovector. The Feynman rules still apply. 

. - It is important to. realize that we have to go to this level of label complex- 

ity before we can construct a classical limit. Our two-component neutrinos are 

the simplest particles the scheme allows, but are intrinsically chiral and hence 

non-classical. 0ur“photons” have two internal states which provide us with a 

pseudovector polarization of (in units we have yet to justify) spin h/2?r, corre- 

lated with the direction of propagation. For our current purpose it is only the 

existence of this internal dichotomous degree of freedom and not the subsequent 

interpretation which matters, as we now demonstrate. 
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We now have developed enough internal structure in our bit string universe 

to ezpluin, with appropriate phenomenological input, the early nineteenth cen- 

tury wave theory for polarized light. Since our “photons” are composed of two 

coherent ensembles of ensembles (particles) with different dichotomous quantum 

numbers, all that need be added to the construction of the coherent ensembles 

previously discussed is that when they are combined coherently, a macroscopic 

meaning can be given to the internal spacing within a step 1ehgth”between the 

two-ensembles; this parameter is called the phase. By a sufficiently detailed 

operational analysis (standard undergraduate physical optics, if taught from an 

operational point of view) we claim that, just as we were able to understand the 

“double slit experiment” and reduce it to measurements which can be refined, 

macroscopically, to any desired practical accuracy, we can give operational (lab- 

oratory) meaning to phase.. In the undergraduate laboratory this amounts to 

the usual optical bench experiments using polarimeters and quarter wave plates 

and a monochromatic source to construct and analyze elliptically polarized light. 

As in classical physical optics, the overall phase of the system remains beyond 

experimental reach. 

Long before the nineteenth century development of the wave theory of light, - - 
Newton had tried to understand the phenomenon of the rings in terms of “fits - - -. 
of transmission”- and “fits of reflection”, and tried to understand what we now 

- _ call “polarization” in-terms of light particles being rectangular (“having sides”). 

Thus his approach to optics was particulate, digital, and contained two internal 

states. One might say that we are returning to a Newtonian model in that sense, 

but must relate it to a continuum model because of the subsequent development 

of physics. Because of the success of the mechanistic interpretation of Newtonian 

physics as applied to-vibrating strings, and later to elastic solids, it was natural 

for nineteenth century physicists to think of periodic phenomena in terms of wave 

motiZii. Ignoring for the moment the internal degree of freedom, what we have 
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constructed so far from our bit strings, in the zero mass limit where X = h/p = 

he/E = Xph is the coherent amplitude ( we will justify this term- below) 

A(%, t; X) = 5 S(% + nX f Cl) (5.3.1) . . 
n=O 

Since this tells us that, within the moving region where the 6 - functions occur, 
F- - m 

- 
A(z + X, t; X) = A(%, t; X) +0(1/N) (5.3.2) 

this allows us to assume in first order in that approximation that A(%, t; A) N 

a[(% f &)/A]. We have seen that the parameters z, t are mucroscopicully defined, 

and have computed and related to experiment in a macroscopic context a means 

of measuring the microscoptc parameter X in-the laboratory by counting. So far 

we have only a start on the Newtonian description. 

In the nineteenth century context, it was natural to interpret these discrete 

phenomena in terms of a continuum theory using the periodic functions sin and 

- cos2a[(%/h)f(t/T)] with T = X/ c, or more generally or more powerfully in terms 

of the solutions of the wave equation 

(a/a%)2u( %, 1) = (l/c2)(a/at)2a( %, t) (5.3.2) 

which are a(% f ct). This left open what these amplitudes referred to. In the - - 
context the easiest thing to do was to--think of them as the some physical dis- - -. 
placement in an-elastic solid. This led to a difficulty, since it was obvious from 

” _ the experimental values of the. wavelength and the velocity that what was mea- 

sured must be a time average over many oscillations, and the time average of 

these periodic functions over many cycles approaches zero. But in the vibrating 

string or elastic solid analogy, it was also known that the energy stored in the 

oscillations is positive, and proportional to the time average of the square of the 

amplitude of oscillation. So again it was natural to assume that the intensity of 

the light as measured was proportional to the time average of the square of the 

amplitude. 
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The triumph of this continuum model came when it was realized that the two 

states of polarization of light could be modeled as two amplitudes transverse to 

the direction of propagation and at right angles to each other, and by choosing 

the phase between them appropriately could describe either linear or circular 

polarization, or any degree of elliptical polarization in between. Hence Hamilton 

was able to predict conical refraction and see it demonstrated in the laboratory, 

which settled the question of the adequacy of the wave theory’ of light for most 

physicists. The critical experiment for the nineteenth century was based on the 

fact that Newton’s derivation of Snell’s law required the velocity of light in a 

medium with index of refraction n to be nc, while the wave theory required 

c/n. To explain the experimental result in terms of a particle theory would have 

required coherent ensembles of particles, and a detailed discussion of the coherent 

scattering from atomic centers, as in the theory we are now constructing. The 

conclusive explanation of the lower propagation velocity in material media was 

achieved by Rayleigh using the wave theory, with propagation velocity c in the 

space between atoms. Thus in the absence of experimental evidence for the 

particulate nature of light, the wave theory appeared to rest on an unshakable 

foundation. 

This long excursion into nineteenth century physics has been taken for two 

reasons: (a) first, to show that two internal discrete states, plus the assumption 

of a continuum model for coherent periodic phenomena gives the macroscopic- . -. 
microscopic connection we seek; and -.(b). second to explain the origin of the - - -. 
amplitude squared rule for the interpretation of periodic phenomena. But from 

- _ our point of view, this modeling can just as well apply to our bit string universe 

provided only the discrete, periodic phenomena we have constructed and now 

provided with an internal dichotomous degree of freedom allows us to introduce 

a measurable phase between these two degrees of freedom when they are are 

assumed to be averaged over time in macroscopic experiments. As we have argued 

before, and will continue to argue, this success of classical (and later quantum) 

field theory does not allow us to extrapolate this continuum model down to 

infinr5simal distance. What it doea allow us to do is to claim that we have 
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a right, when all counters in an experiment include a large number of steps, 

1 = he/E measured in terms of laboratory standards of length and time, to 

upprozimute our bit string results by the conventional continuum wave theory 

model for relutioistic deBroglie waves in terms of the real, complete set of basis 

functions sin[2n(pz f Et)/h] and cos[2?r(pz f Et)/h]. 

[From here on we follow the convention of high energy physics of taking 
c - s 

c = 1 = h/2n, which leaves the only physical dimensional parameter as mass, - 
and dimensional analysis confined to establishing the mass of one reference par- 

ticle, to which all dimensionless mass ratios of the mathematical theory are re- 

ferred]. 

In order to justify this statement we consider the boundary condition pro- 

vided by a counter of finite spatial resolution Aa in the wave theory, and prove 

that the same result can be-derived from our digital model (Eq. 5.3.1) to order 

(l/N)-where N is the number of steps we need to consider in our basis states. 

Assume that the counter is centered at z and fires at t = 0; since the finite 

time resolution has been discussed elsewhere37, and adds nothing conceptual to 

- the discussion, we will assume that it is so good that only the spatial resolution 

matters. Then to insure that our particle was somewhere in this region at that 

time, we must make up a wave packet with different momenta of amplitude f(p) 

such that 

T dPf(P)e’P-” = e(.z - AZ) - @(z + AZ) (5.3.3) 

- -. 
Therefore, by Fsurier inversion 

. _ 
(1/2x) ‘y dzei#’ ‘r dpf(p)e@‘” = T[ dpS(p - p’)f(p’) (5.3.4) 

--a2 --oo 

and hence 

f(p’) = ( 1/2xp’)[eiflAt - e-iflAt] = (i/np’)sin(p’Az) (5.3.5) 

But if we apply the same boundary condition to the basis states of Eq. (5.3.1) 

notini that n must now run between -N and +N, our boundary condition 
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becomes 

+r dpf(p) E:,Nb(z + nx) = e(z - AZ) - e(z + AZ) 
-CO 

(5.3.6) 

-Y But the mathematical operation of Fourier inversion can just as well be applied 

to this formula as to Eq. (5.3.3). Doing so, we recover Eq (5.3.5) plus correction 

terms of order (l/N), which proves our theorem. To extend-our discussion to 

deBroglie coherence lengths for finite mass and hence to deBroglie waves we need 

only represent the bit string ensemble by 6(%-t-d-d&h) = S[(p%+nh-Et)/h] 

We therefore claim to have derioed wave mechanics as an upprozimution to our 

digital model in a form (laboratory boundary conditions based on counters of 

finite macroscopic size) which will serve for most of the practical applications 

of scattering theory. Further, we can now derive the Heisenberg uncertainty 

relations for continuum variables in the usualway. Thus we claim to have proved 

that we have constructed free particle quantum wave mechanics on a digital basis 

as an upprozimute theory. 

While this paper was in the final stages of preparation, it was brought to our 

attention by I. Stein that W.H.Lehr and J.L.Park (J.Muth.Phys. -18, 1235 (1977)) 

have developed a random walk or stochastic model as the basis for a derivation 

of the Klein-Gordon equation, thus getting the continuum limit in another way 

than our approach here. In their model they find that relativity requires them 

to digitize their time with a unit r = a/ - - mc2, so while not identical to Stein, it 

is closely related. J.C. van den Berg informs us that yet another derivation of - -. 
the Klein-Gordon equation from a stochastic basis by N.C.Petroni and J.P.Vigier 

appeared recently (Faundutions 01 Physics 13, 253 (1983)). This reference con- 

tains a number of references to related work. In both cases the “particle” takes 

chaotic steps with the velocity of light, whereas, as we have seen above, in either 

Stein’s approach or ours the velocity in the random walks can have any value 

bounded by c. We have also recently encountered work in the imaging problem 

in radio astronomy which clearly indicates that when one is dealing with infor- 

mation arriving through continuum waves analyzed by classical techniques, one 

cann% tell whether the original input was in fact discrete or not. In particular, 
- . . -. 
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the sequence of &functions which we have used above to relate our bit strings to 

a wave theory is known as the shah function, named for a letter in -the Russian al- 

phabet. The history of this imaging problem has been reviewed in a forthcoming 

paper by R.N.Bracewell, which will be published by the Cambridge University 

Press, and the function itself is discussed in his book, The Fourier Transform 

and its Applications, New York, McGraw-Hill, 1965. Also relevant is a paper by 

Bracewell on the discrete Hartley transform which has been submytted to the 

Jbukzl of the bpticul Society. This is of particular interest because it shows 

how the complex Fourier transform can be readily represented by two real func- 

tions that avoid the fi ambiguity in a way that provides distinct computational 

advantages, This material makes it clear that the semi-quantitative approach 

used above to make the passage from the bit strings to a wave theory using the 

counter paradigm, which we believe is adequate for the purposes of this paper, 

can be given precise mathematical formulation in a well understood context. It 

is important to recognize that, although we get conventional scattering theory 

(see below) in this way, our digital basis cannot be thrown away. We will see in 
_ the next chapter that it allows us to calculate the proton-electron mass ratio in 

agreement with experiment, a result not yet achieved by the continuum theory. 

But we have a lot more work to do before this calculation can be justified. 

Even more important than the justification of this continuum approximation 

in wave theory by recourse to-well understood laboratory practice, is the real- 

ization that we must take the squares of amplitudes, appropriately averaged, in - - -. 
order to make contact with our laboratory paradigm taken from physical optics. 

. _ Hence we claim to have justified our earlier contention that the basic entities de- 

rived from our bit string universe are properly called probability amplitudes and 

not probabilities. We reserve the term probability for a number p E [0, l] where 

the value can be any rational fraction in that interval, or an approximation to 

some irrational or transcendental number in that interval, established by some 
well defined finite algorithm. They obey the usual rules of clussicul statistics and 

are to be interpreted in terms of conventional frequency theory and the “law of 

large7iumber.s”. In an appropriate context all their moments and correlations 
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and the “law of large numbers”. In an appropriate context all their moments 

and correlations can be defined in a conventional way. One of the purposes of 

our “operational analysis of the double slit experiment”37 was to prove that the 

counting statistics of such an experiment, using deBroglie waves and counters 
. . 

in both slits, obey these classical rules. Of course the probability amplitudes of 

conventional quantum theory, or our own version of it, do not. This is the basic 

problem for statisticians, like Patrick Suppes, who try to%mderstaEd quantum 

mechanics in terms of classical statistics. They are quite prepared to accept a 

degree of nonlocality which horrifies many practicing physicists, but find it hard 

to accept probabilistic concepts which do not allow all moments of a distribution 

to be defined, and “correlations” incompatible with the properties of probibilites 

bounded by 0 and 1. 

As already discussed, a digital theory of light was not considered a viable op- 

tion in-the nineteenth century, in spite of Newton’s early start in that direction 

and his continuing authority. The wave theory of light could be well modeled in 

terms of an “amplitude” taken by analogy from experience with elastic solids. 

- This model got strong support from the connection Maxwell was able to forge 

between the phenomenological theory and the “obviously continuous” electro- 

.magnetic waves that Hertz succeeded in generating in the laboratory. Einstein 

got rid of the mechanical uether which served as such a useful and fruitful prop to 

the nineteenth century imagination, but clung to the continuum concept (again 

fruitfully). Yet his own work in 1905 destroyed, by his interpretation of the pho- 
- toelectric effect, that continuum basis and brought the theory back to events that 

are discrete and localized, such as developable grains in a photographic emulsion. 
. _ 

Careful experimental work proved that the concentration of energy required to 

produce these laboratory phenomena could not be accounted for by the contin- 

uum theory, except in an average sense. 44 We hope that our approach reduces 

the mystery connected with this fact. 

Of course that was the beginning of the story, not the end. For us, that 

comes with the Bohr-Rosenfeld analysis 41 already cited. Their analysis of the 

meas=eability of the electromagnetic field makes use of complicated, classical 
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apparatus within one wavelength of the radiation being studied (eg. a low fre- 

quency radio wave). Yet, assuming that the material apparatus is restricted by 

the Heisenberg uncertainty principle, they succeeded (after two years of effort45 

!) in showing that the usual commutation relations, more economically derived 

by second quantization, follow from a detailed operational analysis. Since we 

have already proved that we also get the uncertainty relations in the appropri- 

ate context, we can accept their -analysis .for the electromagnetic field. BUT, as 

already emphasized, they point out that the the analysis is only possible when 

there are only two dimensional constants (h and c), and cannot be extended to 

the “second quantized matter field” with m a fixed parameter; that theory is no 

longer scale invariant. 

Now that we have free particle wave functions and the “amplitude squared” 

rule in contact with experiment in terms of our model, it might seem that we are 

through. At first sight one might quarre! with our extension from the electro- 

magnetic case to matter waves, but as already noted, our theory goes through 

just as well for finite mass as for the particular limiting case we have invoked. 

To settle any unease on this score, consider the scattering of a spin l/2 parti- 

cle from a spin zero target with a p-wave resonance. For the i = l/2 state, 

this divides an unpolarized beam into two beams in a manner that is precisely 

(mathematically speaking) analogous to a nicol prism. Further, if the particle 

has a magnetic moment, a permanent magnet with a gap containing constant 

magnetic field of appropriate length and strength -will change transverse polar- 

ization to longitudinal polarization, which is precisely analagous to the’action 

of a .quarter wave plate. So the whole optical bench type of experiment with 

nicol prisms and quarter wave plates (and a digital detector for the photons) can 

be repeated for spin l/2 particles. In any case, it would be inappropriate in a 

fundamental theory for us to introduce more than one paradigm for connecting 

the bit strings to the probability of registering counts in the laboratory. 

What does not follow so easily is the use of complez rather than real (&) 

amplitudes in quantum mechanics. Of course it is convenient, as in electrical 

engirEering to use e *i(pz-Et) wave functions and calculate intensities by taking 
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the absolute square. But there is no necessity for doing this for one particle 

problems in quantum mechanics. In fact Bohm and Vigier have shown that 

it is quite possible to reproduce all the results of non-relativistic one particle 

quantum mechanics with a real, classical “hidden variable” theory,- although 
. 

many physicists find their theory bizarre, and physically unmotivated. So we now 

turn to two particle scattering problems for our attempt to meet this problem. 
c - s 

5.4 _SCATTERLNG THEORY 

Since we now have standard relativistic particle wave mechanics for free 

particles, it would seem that we could now develop scattering theory in a con- 

ventional way. This true up to a point, but there is a critical conceptual differ- 

ence. We have no Hamiltonian, so we cannot calculate scattering amplitudes as 

the matrix elements of such an operator between appropriate scattering states. .- 
This problem was met some time ago46 by constructing a “Democritean scat- 

tering-theory” starting from free particle wave functions and arriving at the 

standard Goldberger-Watson wave function 47 for NA particles in and NB par- 

ticles out. The essential point is that the scattering amplitude then becomes a 

kinematic quantity describing any conceivable experiment of this type, including 

those which do not conserve flux. Then we are under the obligation of supplying 

dynamical equations for this amplitude which guarantee flux conservation, or in 

technical terms are unitary. 

We consider first the elastic scattering of two particles in the usual geometry 

_ shown in Figure 9. Since the technical. problem of using “wave packets” is 

adequately discussed in standard texts47, we will ignore this complication and 
- _ use the free particle basis with precisely known initial and final momenta, as is 

customary. The initial state starting from two particles with momenta Zi and 

energies ci = (k? + m?)1/2 a I is then simply ei(jtl 'P1+%2'i12-~~~-~2t). Note that we 

are using an on shell or sing/e time model consistent with our bit string universe. 

If we now define 

- it = z1 + x2; E = e1 + c2 
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q = (m2 & - ml ~2)lh + m2) 

A2 = (q2 + mT)l12 + (q2 + m2)‘12 = 61(q2) + c2(q2) 

2 = (ml ?I+ m2 32)/( ml + “2); 3 = 31 - 32 

the initial state wave function becomes 

(5.4.1) 

One advantage of this step is that only the first factor refers to the laboratory 

coordinate system, and is easily transformed to any frame; hence the remaining 

wave function has a Lorentz invariant significance. Further, in this zero momen- 

tum frame (where, as we have already seen it is most convenient to discuss our 

bit string universe) there is no explicit reference to time; we have “stationary 

Staten wave functions. 

So far our wave function assumes only the incident state. Both for simplicity 

and because we will develop an amplitude of this type from our bit string model in 

the next section, we will assume that the scattering is spherically symmetrical in 

the zero momentum coordinate system. Then the elastic scattering wave function 

. . will be 

- -. ei(+2) +. *( q2)eiqi/x (5.4.2) 

in the asymptotic region where the counters are located. Flux is conserved pro- - _ 
vided that 

nz2) - T’(q2) = Wq2) I m2) I2 (4.4.3) 

where p is the appropriate density of states in momentum space. The probability 

of scattering, or cross section, is c$q2) = 4n 1 Z’(q2) 12, and can be directly 

compared with counts in detectors. Thus our descriptive job is complete. The 

taskof the theory is clearly to calculate Z’(q2). 
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The unitarity condition clearly requires T to be a complex number, and leads 

to well known experimental consequences - in particular wave interference terms 

between the unscattered and the scattered wave function in appropriate angular 

regions. We could therefore fall back on this as the reason why we are required to 

use complex amplitudes in our theory, just as we justified the amplitude squared 

rule by comparison with experiment. But we claim there is a more fundamental 

reason connected with our bit string universe. If we make u’p wav”e’ packets in 

time such that for large times in the past (i.e. in the region of the collimators 

which define the beams) only the first term in the wave function is present. As 

was pointed out by Lippmann and Schwinger48 an easy way to accomplish this 

within the formalism is to put into the time-energy factor eDiEt multiplying the 

scattering part of the wave function the replacement E + E + iv where q is a 

small positive quantity, and. the limit q + 0-T is implied. Then at large negative 

times this term is exponentially damped. In momentum space this leads to the 

wave function 

Tad)+ = e(q2)S3@ - 6) - T(q2)/[c(q’2 - e(q2) - io+] (5.4.4) 

where c(q2) = (q2+m ) 2 l/2 is the proper factor for a free particle (not field) state 

to guarantee Lorentz invariant normalization, and since we will use it below we 

have assumed ml = m = m2. 

In the conventional theory the states with d2 # q2 the d states are called - - 
“virtual” and in the momentum space..integral equations for the scattering am- - -. 
plitude are summed over. The factor l/[c’ - 6 - iO+] then guarantees asymptotic 

” _ energy-momentum conservation. Clearly we have to perform a similar sum over 

all possible bit strings when we describe the same situation in the bit string 

universe; we have now learned that this is the proper weighting factor in the con- 

tinuum limit. The question is whether we can justify it in our own basic terms. 

The limit is easy, since we have the same asymptotic requirement. But we are 

summing over discrete, rather than continuous energies, thanks to the fact that 

our minimum step is 6t = l/c and the quantization condition E = he/l. In fact 

we m that the minimum energy step 6E = h/St and hence that for a spread 
- ~. -. 

71 



i 

in energy 6E and time 6t we have that 6E6t 2 h. We emphasize that this is 

not the Heisenberg uncertainty principle, which we nave already seen comes in a 

conventional way from limitations on measurement due to finite counter size. It 

is due to the fact that nothing happens between TICKs; we must take at least 
. 

one step in a random walk for anything to happen. This fact will be important 

for us later when we see how our theory avoids the self energies of quantum 

field theory. It is certainly natural for us in the bit string uiiivers”e to assume 

that-the weighting factor as we move away from the asymptotic conservations 

stepwise by E’ = E + n6E should be proportional to l/[E’ - E]. But then, 

since n=O can occur in the sum we would produce an infinity, violating our ba- 

sic finite assumptions. Therefore we argue that the best way to avoid this is to 

use instead l/(E’ - E - ;SEj which indeed goes to the proper limit (SE = iO+) 

in the continuum momentum space theory. We hope at a later date to replace 

this plausibility argument by a calculation, but will not hold up this paper for 

that rexnement. If this argument is accepted, we have now made the connection 

between conventional scattering theory and our construction, and can proceed 

_ to N particle scattering theory along the lines previously developed. 

5.5 A MINIMAL UNITARY (RELATIVISTIC) SCATTERING THEORY 

So far what we have done is to work up from the bit string universe to rela- 

tivistic free particle wave functions, and in the last section to remind the reader 

that if we have unitary two particle amplitudes, no matter how obtained, we can 

from them construct a relativistic and unitary N-particle scattering’theory using 

- reiativistic Faddeev-Yakubovsky equations. Our next step is to show that our 

construction provides us with the elementary driving terms from which this the- - - 
ory can be constructed. Returning to Fig. 8b we see that the bit string universe 
provides us with three basic events, so we start with these. 

Since the intermediate state has zero velocity by definition and some mass 

which we will call p the most probable value for its energy will be ~1. The 

prescription used in scattering theory for the probability amplitude due to this 

intermediate state is to say that the energy as a function of the final momentum 

4 is Ijroportional to l/[c(d) - p- iO+], which when integrated over all positive 
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values of (q’)2 will give a delta function that insures energy conservation (c(q2) = 

~((6)~). The simple prescription used here is independent of the direction of q, 

so all directions of scattering are equally probable, and the scattering is spher- 

ically symmetric. The coefficient of this amplitude must be chosen such that 

the number of outgoing partices is equal to the number of incoming particles, 

which is summarized by saying that the amplitude is “unitary”. In the jargon 

of relativistic quantum scattering theory .such an amplitude would’-be the sim- 

plest version of an “s channel resonance”. The iO+ prescription is required so 

that the singularity c = p only occurs in the specification of the integral, and is 

needed to specify which branch of the square root singularity in c to take in that 

integration. 

The situation we are now considering is an extension of the simple events pic- 

tured in Figure 8 to those possibilities in which the intermediate particle (of mass 
p) occurs not just between two TICKS but engages in all random walks which, 

when summed, will lead to the energy-momentum conserving elastic scattering 

selected by our initial and final boundary conditions. Since we have already seen 

- that our vertices conserve momentum, if the final particles have momenta & and 

$2 (from which the asymptotic final selection picks out & = 8 and 22 = -g), 

,the intermediate particle will have energy cc1 = [($I + &)2 + F~]‘/~. For the 

simple cases where the event is elementary (occurs between two TICKS with no 

intervening random walk) the vector sum of the final momenta, like that of the 

initial momenta, is zero and ccc - = ~1; clearly this will also be true for any other 

- ctie”ln which this vector sum vanishes. The problem is how to weight these cases 

relative to those when the energy differs from p - the “off shell” states in the 
. - 

language of scattering theory. 

As we have seen in Sec. 5.1, the time unit for the random walk that the 

intermediate state of mass p engages in between the two vertices in an extended 

event (i.e. one that leads to asymptotic energy-momentum conservation when 

all possibilities are summed) is 6t = I/ c and hence the minimum energy by 

which these intermediate energies of these random walks can differ from each 

otherTcalled 6E is given by Eq.(5.1.1) as 6E = .h/&. We emphasize that this 
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is not the “uncertainty principle” but simply the digitization of energy in a 

particular circumstance arising from our discrete time steps. Any~extended event 

will therefore have an “off shell” energy ep(n) = p+ n&iE with n E [0, 1, . . . . N], 

where as we have seen, if the universe has been ticking long enough, N can be 

as large as we like. As we go to more and more steps in the intermediate states, 

we will have a harder and harder time finding in the finite segment of U referring 

to our particular scattering experiment to find strings whZch’wil1 iiiatch up to 

our energy-momentum conserving boundary conditions, so it is clear that the 

weighting factor should fall off as we go farther and farther “off shell”. The 

simplest choice would seem to be proportional to l/[cP(n)]. But this will not do, 

because it is infinite when n = 0 which violates our absolutely basic requirement 

that the theory give only finite results. Since we cannot introduce fractions 

of a step, and as we have seen must include the n = 0 case, the solution we 

adopt is to use instead l/[cP(n) - p - &YE]. Naturally, this choice of a small 

imaginary part to remove the singularity is motivated by our desire to reproduce 

conventional quantum scattering theory in the continuum limit, and we cannot at 

this stage claim that this introduction of imaginary amplitudes is forced on us by 

the construction we have been following. But we do believe it is astraightforward 

postulate consistent with what has gone before, and hope some day to give a more 

‘convincing argument. 

Once this argument is accepted, and for convenience (because we have not yet 

gone to the work of reducing thewhole theory to digital operations) we take the 

_ continuum limit, we still have the quest-ionof how to relate ecr to the laboratory 

variables in terms of which the scattering problem is actually formulated. This 

- we d,o by simply equating it to the energy corresponding to the external particles 

when they are off shell, 2[(q’)2 + m2] = (s’)‘j2, (where, for simplicity we have 

taken both incoming - or outgoing - masses m to have the same magnitude) and 

by adding these scattering processes to the initial state (Eq.(5.3.1)) obtain the 

basic momentum space wave function for two particle scattering 

+i(d,d) = c(q2)s3(ij- if)- G(q,d)/[2[(d)2 + m2]1/2 - p - iO+] (5.3.2) 

The finction G which actually determines the strength of the scattering has not 
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yet been determined by our argument. It is restricted by the requirement that 

the overall normalization of the wave function be the same as if no scattering 

occured, and is the technical way in which the “unitarity” or “flux conservation” 

property of the theory is met. But this is familiar to scattering theorists, and of 
_ . 

no conceptual importance for us at the moment. 

This starting point for the minimal unitarity scattering theory (MUST) was 

shown by James Lindesay’ to lead to a consistent, unitary relativistic three 

particle scattering theory including three particle bound states, elastic and re- 

arrangement collisions and breakup. In the appropriate non-relativistic kine- 

matic region this theory leads quantitatively8yg to the logarithmic accumulation 

of three particle bound states first found by Efimov4g . In Efimov’s treatment 

the logarithmic accumulation occurs when IuJ/R approaches infinity where a is 

‘. the two particle scattering length and R is the finite range of forces. That this 

effect should emerge in a relativistic treatment which has only one free param- 

eter (p/m) is somewhat startling, particularly in what can reasonably be called 

a “zero range theory”. Yet the lack of scale invariance in the relativistic theory 

provides the “range” parameter h/me, which allows the quantitative results of 

the two calculations to be compared. This is the more remarkable in that the 

‘integral equations which provide the dynamics of the two theories are different 

in detail, and the way in which a finite result is obtained (except in the singular 
‘. _ 

limit) is mathematically quite different; in particular one cannot go from one - - 
equation to the other by taking- a “correspondence limit”.. This is fortunate, 

since the occurance of an arbitrary parameter R in a fundamental theory would 

. - be for us more than just an embarrassment. 

-- 

The next critical step was taken by Noyes and Lindesay” who realized that 

this basic model could be brought into closer contact with elementary particle 

theory by assuming that the parameter /A is not arbitrary but connects a “par- 

ticle” mass m to a quantum mass rng in a specific way. In particular, if the 

quantum and particle “bind” kinematically to make a “bound state” with the 

samma. (m + mQ + p = m) and quantum numbers as the“particle” the two 
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particle driving term leads, via the relativistic Faddeev equations, to single quan- 

tum exchange (cf. Figure 10a). In technical terms, an s-channel bound state 

leads by this mechanism to the correct lowest order t-channel exchange, and the 

amplitude is unitarized in a covariant manner by the integral equations. Further, 

this -covariant theory (which is simple enough not to require approximation for 

accurate numerical solution) goes in the non-relativistic approximation to the 

usual equations for scattering by a Yukawa “potential”. Thus we have derived 

from our bit string universe a first approximation usable in nuclear physics, and 

in the small quantum mass regime an accurate approximation to Rutherford scat- 

tering and the Bohr hydrogen atom. By adding the postulate that two quanta 

can “bind” kinematically to a particle to form a state with the same mass and 

quantum numbers as the particle we can also describe quantum-particle scatter- 

ing in the two particle sector of a three particle theory with the correct lowest - 
order driving terms (cf. Figure lob). 

The extension of this approach to the four particle sector via relativistic 

Faddeev-Yakubovsky equations is beyond the scope of this paper. Since the 

theory can be developed from relativistic free particle deBroglie wave functions 

without invoking the digital basis, it is being pursued vigorously in that con- 

text. In particular, the connection between this relativistic quantum mechanics 

of finite particle number and quantum field theory (where the “kinematically 

bound” states of the finite theory and the corresponding “time inverse” vertices - - 
are represented by creation and -destruction operators - with resulting infinities - - 
that have to be- “renormalized”) is being explored50 . So we will not discuss 

this development further here, For the purposes of this paper, what is impor- 

tant is that we have made effective, and we claim mathematically and physically 

rigorous, contact between our bit string universe and current active research in 

elementary particle physics. 

It is important to realize at this point what we have, and have not, claimed 

to accomplish so far. We claim that we have a definite algorithmic structure 

whit% can be connected by unambiguous rules to the practice of high energy 
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particle physics, with the usual wave interference phenomena, including a prac- 

tical approximation that is (so far as we can see) unlikely to get. us into trouble 

with known experimental information. We have, in common with quantum field 

theory, two universal dimensional constants h and c with the same practical con- 

sequences. What we do not have is a third dimensional constant of the dimensions 

of mass, or energy, or a coupling constant not expressable in terms of h and c. 

This is, of course, also true of conventional theories. The arrest ‘frontier of 

research in this area consists of attempts to use the phenomenological symmetry 

schemes and the non-linearities of quantum field theory to yield a single coupling 

constant producing a “grand unification” from which the particle masses can be 

computed. This hope rests on an analogy to the quantum mechanics of the solid 

state where many connected modes can produce spontaneous symmetry breaking 

and a ground state (with a gap) lower than the non-interacting free mode basis. 

Still more ambitious schemes (eg “supergravity”) would take this single coupling 

constant to be deriveable from Newton’s gravitational constant G, and to get all 

masses and coupling constants which are observed as deductive consequences of 

one or another symmetry scheme. 

In spirit the current attempts at unification are in one sense not very different 

from ours, and have the historical advantage of having reduced an enormous 

amount of very complicated experimental data to understandable form along 

the way. But our basic approach requires us to view the attempts to generate 

order out of non-linearities (which were initially infinities) in the continuum as 

_ amistake, or at least as a very complicated way to get at something that might 

prove to be much simpler. Since we are allowed one mass on dimensional grounds, 

and since the only stable baryon (or quasistable with a lifetime greater than 103’ 

years) - the proton - and the energetic scale for many high energy phenomena(1 

Gev) that, superficially at least, do nor involve protons are approximately the 

same (1 Gev w mpc2), we try the simpler alternative of taking the baryon mass as 

our basic third dimensional unit. In the next section we will try to convince you 

that this gets us pretty far, and provides some justification for the constructive 

mathematical work which has been developed in this paper, and earlier. 
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6. STABILIZATiON OF PARTICLES 

We have now seen that our construction gives a complete phenomenologicul 

.. theory for relativistic N-particle scattering if we supply the masses and coupling 

constants from experiment. We took care in our original construction to show 

that the label-address schema was sufficient to construct the approximate theo- 

ries of relativistic particle mechanics and relativistic quantum scattering theory 

without specifying the content of the labels. We thought this important because 

it shows how to carry through a reconstruction of quantum mechanics on a dig- 

ital basis independent of the combinatorial hierarchy which gave it birth. Hence 

we can hope for acceptance of that aspect of the work without getting into the 

Einstein-Eddington program of understand how and why it might be possible to 

compute the masses and dimensionless constants of physics from first principles. 

While some physicists can see the point to getting rid of the continuum, which 

after all is never observable in physical practice, the idea that things which are 

clearly physical entities might also have a digital basis tends to stick in their 

craw. 

But one motivation for taking the approach seriously came from the remark- 

able coincidence between the cardinals of the hierarchy and the scale constants of 

physics, and was strongly-reinforced by Parker-Rhodes’ success in computing the 

proton-electron mass ratio in agreement with experiment. It is time to face this _ -- 
problem head onand attempt to show in this chapter that, given the digital basis 

- .- for quantum mechanics we have now firmly established, it is possible to obtain 

significant physics out of the combinatorial hierarchy labeling scheme itself. This 

is the objective of this chapter. The work is incomplete, since we have yet to get 

a scheme for quarks, larks (i.e. leptoquarks), heavy leptons and all that which 

is competitive with the grand unification schemes on which so much of current 

elementary particle theory and experiment is focused. But we believe we have 

gone far enough to show that we have exciting possibilities which, hopefully, will 

engage the imagination of theorists who come to our work with fresh eyes. 
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6.1 DICHOTOMOUS QUANTUM NUMBERS GIVEN BY THE HIERARCHY 

In our previous discussion of the hierarchy we showed that the mapping 

matrix scheme connecting levels 1 and 2 starting from the basis (lo), (01) is 

easy to construct. The explicit mapping matrices which have the three DCsS 

formed from this basis, rearranged as strings, are a = (lllo), b = (llol), c = 

(1100). From these we can form the 23 - 1 = 7 DCsS’s {a}, {b}, {c}, {a, b, a + 

c, a, c + a}, {a, b, c, a + b, b + c, c + a, a + b+ c}. 
- 

t-9, (4 c, b + _c>,( Recalling that 

(with + for discrimination) a + a = 0, we see that all seven sets are closed under 

discrimination. 

Even at this level, there is an ambiguity in physical interpretation which has 

to date resisted definitive solution. Instead of taking the obvious basis given 

above, we could have replaced (10) or (01) by (11); we cannot use all three 

because, since (lO)+(Ol)+( li)=(OO), only two of the possible basis strings are 

linearly independent. Then the mapping -would give us u = (0011) in the first 

case or b = (0011) in the second. These two alternatives are not distinct, since 

the rule by which we rearrange the mapping matrices as strings (so long as 

it preserves the cyclic order) is still arbitrary; further they both lead to the 

same maximal DCsS: {(OOOl), (OOlO), (OOll), (llOO), (llol), (lllo), (1111)). But 

,they produce an alternative choice, not only in one of the basis vectors, as al- 

ready indicated, but also in terms of two of the three DCsS with three mem- 

bers, i.e. between {( lllO), (llol), (OOll)}, {(llol), (llOO), (0001)) in one case, 

and {( lllO), (OOll), (llol)}, {(ilao), (OOll), (1lll))‘in the other. 
_ -- 

Nevertheless -it is possible to reduce the ambiguity and obtain significant 

. - clues’ to physical interpretation. The simplest place to start is with the first 

representation. The three basis strings are of the form (llyz), which guarantee 

that the seven strings in the maximal DCsS are all of the form (wwyz). In 

contrast, the eight remaining possible non-null strings are of the form (wxyz) 

with w # z. Thus the only 4 X 4 matrix which has these seven as eigenvectors 

and none of the eight is the one illustrated as A in Figure 11. Thus the simplest 

approach to the problem is to leave the first two rows untouched. So far as we 

can ~55, the remaining six mapping matrices are unique up to one ambiguity, and 
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are illustrated in Figure 11. This ambiguity is unimportant, since it corresponds 

simply to a relabeling of the rule which takes us from a 4 x 4 matrix to a string 

with 16 bits. That our choice of representation does indeed give us seven linearly 

independent strings, and hence a basis for level 3, is also illustrated in Figure 

11. The simplest structural feature that emerges is that we can use no less than 

10 slots to meet the problem, and that as already argued the remaining six slots 

must be null. Thus, using strings of length 16 we can repfeseht th”e first three 

levels of the hierarchy by using the first two bits for level 1, the next four for level 

2, and the last 10 for level 3. This will be used below for physical interpretation. 

Construction of the mapping matrices using the alternative basis is a little 

more cumbersome, and we have yet to approach the uniqueness achieved in the 

last paragraph for the first basis. That such a representation can be achieved 

by using the methods explained in AppendixIIc is clear, but the details are still 

under investigation. We have gone far enough to have some confidence that the 

2+4+10 = 16 representation for the first three levels has a basic significance. But 

the reader is warned that the scheme we follow below for physical interpretation 

- is tentative, and may have to be revised when the theory is further articulated. 

In chapter 5 we showed that the two slot notation for level 1 supports an in- 

terpretation in terms of the starting point for a two component neutrino theory. 

We now go on to interpret the four slots provides for us at level 2 as refering 

to the helicity states of electrons and positrons according to the scheme given - 
in Table II. We see that we now have the correct quantum number content and 

connections for lowest order QED, and can go on to a full lowest order dynam- 

- - its once we supply th-e appropriate momentum factors and interpretation. We 

believe it possible to develop from this starting point and the minimal unitary 

scattering theory8j10 (extended to Faddeev-Yakubovsky equations’l) a finite par- 

ticle number version of QED; results will be presented elsewherem. Further, by 

combining levels 1 and 2 we have the basic six fermions (VL, PR, ei, el, e& ei) 

for Weinberg’s51 weak-electromagnetic unification in the leptonic sector, as well 

as the basic lowest order diagrams once we invoke the minimal unitary scattering 

theorE our explanation of mass differs from his, as mentioned above. 
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The full quantum number scheme which relates this construction to the labels 

in the bit string universe is still under investigation50. Our tentative scheme for 

the first three levels, making use of the mapping matrices is given in Table III. 

We see that at level 1 we have two component neutrino theory in which, when 

we add the address label corresponding to zero mass, has UL, = (IO...O)r6(111..1) 

establishing our helicity convention. At the combined levels 1 and 2 we have 

the two helicity states of the photon, coupling to electrons-and ‘positrons by 

t-he extension of Figure 2, W +, W-, 2’ as vector bosons, and the longitudinal or 

coulomb photon. At this point the particles and quanta are still massless; reversal 

of velocity [i.e (lll...l) --+ (OOO...O)] d oes not change the direction of spin, proving 

that it is indeed a pseudovector. At level 3 we find the baryons of strangeness 

0 and fl as the obvious interpretation, and the proper number of and quantum 

numbers for the usual pseudoscalar (because they are bound states of fermion- - 
antifermion pairs) and vector quanta. We might seem to have a problem with 

the appearance of two longitudinal or coulomb photons. However if one takes 

the Wheeler-Feynman point of view that all quanta are ultimately absorbed, the 

unitarity condition in the minimal unitary scattering theory fixes the mass in 

terms of the coupling constant, or visa versa. J.V.Lindesay, A.Markevich and 

G.Pastrana52 find that in the weak coupling limit for e2 N l/137 the mass of 

the photon m7 N mee -137 which is not in conflict with any known experiments 

as has already been noted43. Then the two SZ = 0 photons are simply the 

vector and scalar photons in a four-component theory, and the problem is solved. _ - 
With some care, and free use of the minimal unitary scattering theory7-lo, it is 

possible to show-that all the usual Feynman diagram rules apply, and hence that 

our theory is CPT invariant at level 3. At level 4 we will have 16 X 16 quantum 

numbers. The problem of getting quark quantum numbers, heavy leptons, or, as 

looks promising from the numerics, tiahons will be studied after level 3 is under 

control. 

6.2 THE MASS RATIO SCALE AND THE UNIT OF MASS 

Independent of the details of this scheme, we see from the basic randomness 

of om construction that at level 3 the exchange of a “coulomb photon” will oc- 
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cur with probability l/137 compared to all other alternatives. This allows us to 

calculate the electron mass as the expectation value of its coulomb energy in a 

coordinate system at rest by a statistical average mec2 =< e2/r > using e2 = 

hc/2n x 137. The calculation itself was originally made by Parker-Rhodes14 start- 

ing from a very different construction of space time and the combinatorial result; 

we provide here a modification of our previous discussion of this calculation13. 

Taking as our basic mass the baryon mass mg (because-of the cTnnection to 

the -gravitational constant G) and noting that the heaviest system to which the 

coulomb photon system couples directly is a baryon-antibaryon pair, the minimal 

distance we can consider in a system starting from rest is half a baryon Compton 

wavelength. We therefore scale r by r = (h/2mgc)y, 1 5 y < 00. The charge 

in the lepton must separate by more than r into two lumps which by charge 

conservation we can write in terms of a dimensionless parameter x as ex and 

e(1 - x), where x is a statistical variable reflecting the fact that we have both 

charged and neutral leptons and baryons: Hence 

< e2/r >= (hc/2w X 137) < x(1 -2) > (2mg/h) < l/y >= mp2 (6.2.1) 

and 

mg/ml = 137a/ < x(1 - 2) > < l/y > (6.2.2) 

Since we have now established our space as necessarily three-dimensional, the _ - 
discrete steps in y must each be weighted by (l/y) with three degrees of freedom; 

hence 

(6.2.3) 

Since the charge must both separate and come together with a probability pro- 

portional to x(1 - 2) at each vertex, the weighting factor is x2(1 - x)~. For one 

degree of freedom this would give 

l 3 l 2 _ < x(1 -x) >= [ix (l- x)3dx]/[&x (1- x)2dx] = 3/14 (6.2.4) 
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Once the charge has separated into two lumps each with charge squared propor- 

tional to z2 or (1 - z)~ respectively, we can then write a recursion relation13y14 

K, = ([x3( 1 - z)3 + K,-1z2( 1 - zy]dzJ/[~ z2(l - z)2dr] (6.2.5) 

and hence 

-- K, = 3114 + (2/7)K,-1 = (3,14)C~~;(2;7)i 

- 

(6.2.6) 

Therefore, invoking again the three degrees of freedom, we must take < ~(1 - 

z) >= K3 and we obtain the Parker-Rhodes result 

w/ml = 
137n/[(3/14)[1+ (2/7) + (2/7)2](4/5)] = 1836.151497... (6.2.7) 

Since the electron and proton are stable for at least 103’ years we identify this 

ratio with mp/m, in agreement with experiment, thus setting the basic mass 

ratio scale for the theory. Whether this mass ratio remains unchanged and we 

can calculate the masses of unstable baryons and bosons from our dynamical 

theory is under investigationN. 

As already noted, the absolute unit of mass in the theory must be approx- 

‘imately the proton mass because of our identification of 21n + 136 with the 

inverse gravitational coupling constant. Since the calculation given above is a 
. . _ 

mass ratio, its success is independent of the absolute value of this unit. The cor- - - 
rections which take us from our single..dimensional mass parameter mg to the _ -- 
empirical value for the proton mass, given G (or equivalently to the empirical 

- .- value-for G, given mp) and to the empirical value of the fine structure constant 

will have to come from level four of the theory, where we must also find a place 

for the equivalent of quarks and heavy leptons. Since we will then have 256 quan- 

tum numbers to play with, this will be challenging but not obviously impossible. 

Other problems, such as building up the electromagnetic field from our photons 

and the gravitational field from gravitons (we can obviously make the latter - so 

far as quantum numbers go - from leptons as spin 2 helicity states) is similar to 

that ti any theory which starts from the weak coupling limit. 
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The reader immersed in special relativity may be troubled by the ticking 

universe, which provides a universal time, and the fact that our zero velocity 

criterion which defines the basic momentum-conserving events (29 = iV1 -No = 

0) would seem to single out a particular coordinate system. We have been led 

to the construction which places scatterings between TICKS because we cannot 

allow our events to have a continuum limit in points; else we would get back 

to the agony of infinite energy at each point, which it ha&-taken so” much hard 

technical work for quantum field theory to deal with. Our “virtual” processes 

occur in the “void” as finite fluctuations which cannot be directly accessed by 

experiment. We claim this is a strength rather than a weakness. As to the special 

coordinate system, we claim to have shown that we can still define macroscopic 

velocities v to arbitrary precision, and derive (or, according to some like Michael 

Peskin, define) the Lorentz transformation, thus recovering special relativity as 

a macroscopic approximation. As to the special coordinate system we claim that 

empiri?ally there is such a coordinate system which defines v = 0 by the 2.7’K 

background radiation. This is no more an embarrassment for us than for special 

relativity; the fact that it occurs so naturally in our theory we again count as a 

strength rather than a weakness. Clearly we still have to show that we can get 

the particle physics right, and then go on to show that the big bang emerges from 

our initial generation operations. This is a problem for future research. We are 

encouraged by the fact that we have only one type of mass in the theory, and in 

that sense have no place for a difference between gravitational and inertial mass. - - 
Further, if we do indeed succeed in getting.spin 2 gravitons in the weak coupling - - 
limit, we can hope to recover gravitational theory from that starting point, a 

problem already discussed by Weinberg53 . As to the big bang itself, scattering 

events labeled by the full level 4 quantum number scheme can only start when 

the 256 bit hierarchy scheme closes off and we have 2256 - 1 conserved labels 

in U. If we can get our microphysics right, this is a reasonable estimate for the 

baryon number and lepton number of the universe. 

Our final point is that by focusing on velocity rather than space and time 

as bZGc we believe we have the correct fundamental starting point for unifying 
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macroscopic quasi-continuous measurement with a digital model, a point of view 

already stressed by S-matrix theorists. Further, our ticking universe allows us to 

fuse the special relativistic concept of event with the unique and indivisible events 

of quantum mechanics. Whatever else survives from this attempt to construct 

a digital model for the universe, we are convinced that this is the correct place 

to connect relativity with quantum mechanics in a fundamental way. We close 

by remarking that the cosmologitial implications of the model are nIXin conflict 

with- experience. 
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7. SUMMARY and CONCLUSIONS 

In this paper we have argued that the three dimensional constants which 

connect physics to mathematics are now, experimentally, defined by counting 

integers, and hence that a digital model for physics is more appropriate than 

the conventional continuum models. We provide a simple algo&hm-*which leads 

to a growing universe of bit strings which contains unique happenings which we 

call events. To relate these to laboratory experience we assume that when two 

spatially separated counters fire in an ordered and distinct sequence, there were 

two events in the bit string universe connected by a random walk representable 

by a labeled ensemble of bit strings. From this basic interpretive paradigm we 

conclude that our connections between events have a limiting velocity which we 

identify with the laboratory limiting velocity c. From this we claim that the 

kinematics of special relativity follows as & approximate macroscopic theory. 

By postulating that our labels can be put into correspondence with masses 

measured by mass ratios to a standard mass, we identify our random walk step 

length with the Compton wave length and define energy by E = he/l. Then 

our spatial kinematics allow us to define relativistic vector momentum and a 

second length h/p. We postulate compatible with our bit string construction, - -7 
that events which lead to the firing of counters conserve energy and momentum - - 
macroscopically. -By constructing coherent ensembles of ensembles we find we 

can identify h/p with the deBrogile wave length in the double slit paradigm and 

hence measure the unit of action in our theory as Planck’s constant. Further, we 

show that our basic counter paradigm then allows us to construct the deBroglie 

wave theory for free particles as a continuum approzimation. From these free 

particle states we then can construct a quantum scattering theory using relativis- 

tic Faddeev-Yakubovsky equations. The driving terms in these equations can be 

related to our bit string construction, completing the link between our theory 

and tli5 practice of elementary particle physics at. the phenomenological level. 
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At this point we claim to have provided a consistent and rigorous basis for the 

reconstruction of quantum mechanics on a digital basis. Like quantum mechan- 

ics, this theory so far contains two universal constants h and c, some arbitrary 

particulate reference mass such as mp or me, and dimensionless mass ratios and 

dimensional or dimensionless coupling constants which have to be taken from ex- 

periment. In conventional theories this basis is used to construct quantum field 

theories and from them to attempt to identify unifying symmeIries %hich reduce 

the number-of empirical parameters. But these theories currently are bound up 

with continuum models and infinities which have to be manipulated away. We 

find this repugnant in a fundamental theory, and take another route to attack 

the common problem. 

We explore in detail the label structure provided by the combinatorial hierar- 

‘. thy mapping matrices and make tentative identifications which at least have the 

quantum numbers for weak-electromagnetic unification and the lowest hardonic 

states described by SU3 when the first three levels are combined. This work is 

_ still in its infancy, and will not become convincing until the minimal unitary scat- 

tering theory has led to more detailed results. But we, at least, find the degree oif 

unification we have achieved exciting, and hope others may as well. Independent 

of the details of the scheme, we claim to have now put the Parker-Rhodes calcu- 

lation of the proton-electron mass ratio on a firm basis thus providing the mass .. _ 
ratio scale for our theory. The previous identification of the terminal cardinal 

of the hierarchy with the gravitational--coupling constant in. terms of the proton . -- 
mass then completes the dimensional content of the scheme. On dimensional 

. . grounds we then have no place for a difference between gravitational mass and 

inertial mass; in that sense the “equivalence principle” is already built into our 

scheme and is not a separate postulate. Getting spin 1 photons and spin 2 gravi- 

tons from the weak coupling limit is a task we anticipate will be completed in 

the foreseeable future. The construction of general relativity as a gravitational 

theory would then beon essentially the same footing as any attempt which starts 

from the same weak coupling limit. The cosmological implications of the theory 

do nZ, at this stage, give us any conceptual or experiential difficulty, and provide 
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us with a preliminary estimate of the mass of the universe which is of the right 

order of magnitude. The critical task in that respect is obviously to first get the 

elementary particle physics right. The basic idea with which we wish to leave 

the reader is that by invoking a ticking universe in which everything happens 

between ticks, we avoid the infinities of the continuum theories and believe we 

have unified relativity and quantum mechanics at an appropriately fundamental 

level. < - m 

This paper has benefitted greatly during the course of its preparation by 

comments and criticism from John Amson, Ted Bastin, Clive Kilmister, Michael 

Peskin, A.F.Parker-Rhodes, Irving Stein and J.C.van den Berg, but in no sense 

presents a consensus of this diverse group. 
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hierarchy 

level 

Table I 
The combinatorial hierarchy 

1 B(1) = H(1 - 1) H(1) = 2BQ) - 1 M(1) = [M(l - 1)]2 C(1) = ,&H(j) 

0 - 2 2 
1 2 -3 4?-- - 3 

2 * --3 7 16 10 
3 7 127 256 137 
4 127 21n - 1 ( 256)2 2127 - 1+ 137 

Level 5 cannot be constructed because M(4) < H(4) 

. .- 
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Table II 

Interpretation of the second level of the combinatorial hierarchy 

in terms of electrons, positrons and gamma rays 

eL et ei ej& Q H 

inside the hierarchy 

basis 7~+ei 

'PL -- 

7~+ei 

1 1 1 -0 -1 .-l/2 

1 1 0 0 0 -1 
1 1 0 1 +1 -l/2 

discriminate 

closure G 

4 
7R 
70 

- 

0 0 1 0 -1 +1/2 et+ei 0 1 1 0 0 0 
0 0 0 1 +1 +1/2 et 0 1 0 0 +1 -l/2 
0 o-1 1 0 +i ez+7R 0 1 1 1 i-1 +1/2 

1 1 1 1 0 -0 e,++ejj 0 1 0 1 +2 0 

outside eL et ek e& Q H 

-1 8- 1 0 -2 0 

ei -k 7R 1 0 1 1 -1 +1/2 

et 1 0 0 0 -1 -l/2 
ec + ej$ 10010 0 



Table III 
Interpretation of the first three levels of the combinatorial hierarchy 

in terms of particles (fermions) and quanta (bosons) 

Level 1: 

particles us 100000000 0 (5 

-- CR 0 1 0 0 0 0 0 0 0 0 0 
quantum 20 110000000 0 0 

Level 2: 

particles G 001000000 0 0 

“L+ 000100000 0 0 

G 000010000 0 0 

4 0 0 0 0 0 1oi-o 0 0 

quanta: - 

basis 7L 001100000 0 0 

wL 10111000000 

w,+01110 100 0 0 0 

discriminate 

closure wR+010001000 0 0 

WC1 0 0 0 1000 0 0 0 
‘. _ 

7R 110011000 0 0 

- 70 1 1 I 1- I1 1.. 0 0 0 0 0 
Level 3: 

,_ particles pi 0 9 0 0.0 010 1 0 0 

PL 0000000110 0 

nL 000000100 10 

fiL 000000010 10 

c;o 0 0 0 0 010 0 0 1 

cjjo 0 0 0 0 010 0 0 1 

-00000 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

00000 

0 1 0 0 0 

0 0 1 0 0 

0 0 1 0 0 

01000 

0 1 0 1 0 

0 0 1 0 1 

1 1 1 0 0 

1 0 0 1 1 

CO 000000100 0 0 
- EO 000000010 0 0 

quanta n, P, *, K K*, 4 ( 1,293 1 ev~lCoulomb (1111111111111111) ) 
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Appendix I.TIIl3 INCHOATIVE HYPOTHESIS 

An Introduction to The Theory of Indistinguishable8 

bY 

A. F. Parker-Rhodes M.A. Ph.D. -- 

[A version of this paper was presented at the second annual meeting of the 

Alternative Natural Philosophy Association, King’s College, Cambridge, 1981.1 

From time to time the suggestion has been put forward that the paradoxes, 

puzzles, and contradictions, which still plague theoretical physics despite its im- 

,pressive record of successes, might perhaps be cleared up, if we had knowledge 

of a level of being anterior to the physical, which might furnish the raw material, 

so to say, out of which the known furniture of the universe, in particular the - - 
subatomic particles, could be seen as being made. Such suggestions have all, so - - 

far, come to nothing, for various reasons. The great difficulty in implementing 

the idea is that the contents of this new level, if it is to have any explanatory 

power, must be absent from our present world picture. Knowledge about it must 

therefore be gained, if at all, by using means of knowing which are themselves 

unknown. 

This difficulty would disappear, if we could use another well-tried strategy of 

the Eientific method, namely to postulate the existence of some entity, suitably 
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described so that inferences could be drawn from its assumed existence, which 

could be tested against known or accessible phenomena. But if this entity is to 

be a new hype-physical plane, it must be defined in such a way that its own 

non-observability is a plausible inference from the definition, and at the same 

time so that other more constructive inferences about what is observed might 
F- - e 

follow. I claim-that such a definition can be found, by a principled search, and 

leads directly, by way of some difficult and at times surprising mathematics, to 

a tenable theory. 

I do not claim however that the theory was discovered in any such principled 

manner. Having no grasp of the difficulties involved, nor any foresight of the 
.- 

length of time required to fill in the numerous gaps, it came about by serendip- 

ity, as do most successful and unsuccessful theories. But an autobiographical 

account of a mathematical theory, even a well-written one, is not the right thing 

if understanding it to be attained. I shall therefore proceed as if I were expound- 

ing a well-known system to intelligent students, except that most of the real 

mathematical bones of the theory, to which I offer here only an introduction, 

. . _ will be filleted out. 
. - 

I.1 Unorderubles . -- 

There is a well-known theorem in Set Theory, that any Set of n members, 
. - 

finite or infinite, can be simply-ordered. This is surprising, on two counts. That 

it should be provable from the axioms commonly used implies that orderability 

is tacitly concealed among them and might need to be extirpated; and that it 

might not be true is an affront to common sense, of the kind that might well have 

found it its own place in a revised set of axioms. Common sense tells us that any 

two tEngs, or concepts, can be arbitrarily labelled as first and second. Common 
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sense, however, refers to the world of experience, and if we are to venture into 

a realm where observations (and u fortiori common sense) cannot guide us, such 

ideas as this might be wrong. 

My first step is then to admit unorderable things into my basic axioms. If the 

hypo-physical plane were to consist of such, our not having rioticed it hitherto 

would be superficially accountable (at least), and the first major difficulty of 

defining what we are talking about would be overcome (there are plenty more!). 

This means however that we abandon Set Theory; and since so much of normal 

mathematics is based on Set Theory (or supposed to be), we shall be unable to 

get much help from the existing literature in constructing a mathematical system 

to describe the Inchoative Plane. But if not Sets, then what? It is of course well 

known that not all classes are Sets, and, assuming that we are dealing with a 

plurality, or something with aspects of plurality anyway, we shall at least have 

classes. When we come to setting out an axiom system, differing from that of 

Set Theory as adumbrated, I shall call any class to which the new axioms apply 

a Sort, and the whole system will then be Sort Theory. (I capitalize “Sort” to 

distinguish it from othersortsof sorts, and “Set”,.too, to set it apart form the 

- set of colloquial %etsn. 

From this point of view, the main peculiarity of finite Sets (which can be 

considered as a special class of Sorts) is that their cardinals and ordinals are 

always numerically equal. A Sort, on the other hand, can have any ordinal not 

greater than its cardinal. If all the members of a Sort are mutually unorderable, 

they all occupy the same position in any ordering, which we call the first place, 

so thZ the ordinal is 1. If every pair is orderable, then the ordinal is n. These 
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are classed “perfect” and “ordinable” Sorts respectively; in the general case of a 

“mixed” Sort 5’ we have 1 Co S < n, ‘S = n. 

I.2 Triparitous Mathematics 
. ._ 

Suppose now that we have a class containing two entities. If these are identical 

the cardinal of the class, and therefore its ordinal, is 1. Were-we then mistaken 

in saying that the class contained two entities?That would be too harsh; it might 

well be the natural way of reporting experiences we need to discuss, even though 

we know, as in a fairy-tale, that we cannot really experience them. If however 

our two entities were not really identical, but still unorderable, the class will 

have the cardinal 2, and the ordinal 1; it is a perfect Sort. There is no “mistake” 

there; but we have met up with twin entities. These don’t exist in the real world, 

but of course we are assuming that they- do so in the Inchoative Plane. And, 

of course, we might meet with entities which are not even twins, but orderable, 

and in that case, back in the everyday at last, we shall have a class with both 

cardinal and ordinal equal to 2. But we still shan’t know whether to call it a Set 

or a Sort, until we know what else is likely to turn up. 

We have therefore, when dealing with situations such as that described above, _ - 

_ to-reckon with three “parity-relations”--among entities; they may be either iden- 

tical, or twins, or distinct. In normal mathematics we have only two: equal 
- (- 

or unequal; I shall call such a theory “biparitous”, as opposed to “triparitous” 

mathematics, where we have three parity-relations. Strictly, of course, we are 

not three but six, for whereas not-equal is the same as unequal (and vice versa), 

not-identical means either twins or distinct, and likewise all the negations are 

disjunctions of the other two. In both systems, cases may arise where we do not 

know-what parity-relation obtains between two things, but this of course does 
-. ~. -. 
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not count as an additional parity-relation, 

Triparitous mathematics (as far as I am concerned) uses the.same system of 

inference as classical, in which a proposition is either true or false (or undecidable) 
. 

but never both at once and always (if decided) one or the other. To admit a 

third parity-relation is not to be confused with accepting a third truth-value (as 

in intuitionist mathematics where not-not-P does not entail P). 
e 

The imaginary entites among which the “twin” relation of unorderability 

holds are called “indistinguishables”, or “ibs” for short. It is important, in enter- 

ing on an unfamiliar field, not to cut corners; that is why I use separate terms for 

the relation of twinship and the things that exhibit it. The abstract relation, and - 
the associated notations, exist in the mathematical sense, once they are located 

in a consistent theory, and no questions need be asked so long as we are doing 

pure mathematics. But in a theory that is to be applied, we must at some point 

pass over to thinking what the mathematics means, and in our case we say that 

a a and b are twins” means that there are two indistinguishables, denoted by the 

symbols a,b, or that a,b are ibs. 

It is part of the hypothesis which I am examining that such a remark is - - 
allowed as sensible in relation to the Inchoative Plane. In the world commonly . --. 

thought of as “real”, there are of course no ibs. They exist, if at all, in a non- 
- - 

ordinary reality, and- we speak of them (as in a fairy-tale) aa if they exist in 

the same sense that ordinary objects do, hoping that in the end we shall come 

to conclusions which can be compared with actual experience. In fact, things do 

turn out thus, and so we shall be tempted perhaps to say that the ibs are real after 

all, even “more real” than electrons and protons; this would be nonsense. Reality 

is a merent matter in each plane, and it would tend to clarity of thought to 
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recognize this more clearly than has been customary hitherto. Some philosophers 

have long been pointing out that it makes a good deal of possibly unexpected 

sense of our sense-data to assume that there exists a physical world outside of 

-. us; in a similarly instrumentalist spirit, I claim that what we have to assume this 

physical world is like makes, here and there, more sense if we assume that there 
c - e 

exists an inchoative world, of which the physical world, in part at least, is the 

observed expression. I don’t need to claim that the Earth “really” moved round 

the sun (even today a geocentric view would make only a negligible dent in the 

cosmological principle). 

I.3 Indistinguishables or Unorderables? 
- 

The only virtue of thus going beyond our familiar concepts is the promise of 

more simplicity than physical theories are currently coming up with. In fact, a 

lot follows from the root idea that at the “bottom” of the objective world there 

exists an infinite class of unorderable entities. But to prove it we have to reduce 

this idea to proper mathematical form, and there are many steps before we can 

even begin to look for possible empirical consequences; it is therefore important 

. . _ to keep in mind this initial simplicity of the concept, which it will be all too easy 
- - 

to lose sight of. - - 

The first diffi&lty is that the property of “unorderability”, easy though it is 
^ (- 

to grasp in the imagination, does not lead by itself to the more difficult but more 

productive idea of “relative identity”. Two ibs separately encountered cannot 

be distinguished from one ib; the decision between identity and twinship can be 

made only between members of one class defined in the relevant context. We 

cannot get away with saying that separated ibs cannot be identical if they are 

obsernd simultaneously, even if we allow ourselves, as we have not done, to speak 
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of “observation” at all; for simultaneity presupposes time, and time, as a property 

of the physical world, is one of the things we hope to explain, and Certainly cannot 

be used in the beginning without corrupting the whole argument. In fact, the 

~. nearest we can get to the idea of simultaneous observation is that it defines a 

class of things so observed - which is where we started from. 
c - m 

It turns-out eventually that, starting from relative identity, we can prove 

that ibs are unorderable, as a theorem; but not vice versa. So we have to incor- 

porate relative identity into our axioms, and immediately encounter another and 

much bigger difficulty. For as soon as we make the parity-relation of twinship 

dependent on class membership, the notation in which our theory is expressed be- - 

comes context-dependent; for the classes must be defined in the relevant contezt, 

which means they are liable to change as the argument proceeds. Normal math- 

ematical notation is context-free, subject to conventionally accepted exceptions 

such as sin2 0 = (sin Q2 # sinsin 0 # (sin- ’ e)-2, which are already awkward 

enough. It follows that we shall not be doing “normal” mathematics, but some- 

thing requiring unusual care and vigilance if proper standards of rigour are to be 

maintained. 
- - 

_ Furthermore, we have said little enough, in saying that the notation is 

context-dependent. The rules of dependence have to be discovered and precisely 
. .- 

formulated. This can be done thanks largely to work which has already been 

done in mathematical linguistics, which enables us to work out, step by step, the 

effect of the third parity-relation on the meaning of various possible formulae. 

What we find takes the form of a substitution rule to be applied to indistinguish- 

ables, corresponding to the rules allowing “free” interchange between equals and 

no in&change between unequals; the new rule is of course more complex, and 
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refers to the syntax of the formulae.. But it is definite and clear, and leads to an 

“axiom-schema” replacing the much simpler (and usually unstated) one of nor- 

mal mathematics. The price is paid when we come to scan all our formulae to see 

-‘: whether they mean what we take them to mean in the light of this substitution- 

rule; the only compensation is that it is usually (but not always) possible to 
e 

express what one wants to in the new formalism. When this cannot be done, it - 

means you are trying to express nonsense. It seems that this mathematics can 

only be interpreted in formalistic terms - which is more or less what one might 

expect in treating of entities so elusive as our ibs. 

I.4 Peculiarities of Sort Theory 
- 

In many ways Sort Theory works out differently from Set Theory. One 

peculiarity is for example that the members of a Sort are always Sorts; there is 

no analogue of members of Sets which are not themselves Sets. In consequence 

of this, structures in the Inchoative are not hierarchical in the way of having 

members which have members . . . till eventually we reach a bottom level. In place 

of this kind of thing however we do have functional hierarchies, the arguments of 

a “higher” function being themselves functions on “lower” arguments, and here 
- - 

we do eventually reach bottom with arguments which are not functions. - - 

There are may odd things about Sort mappings. Any mapping from a Sort 
” . 

onto a perfect Sort gives identical images for all its arguments, namely a free 

choice among all the elements of the perfect Sort. But in reverse it is otherwise; 

each element of a perfect may be mapped onto a distinct element of an ordinable 

Sort. But of course in neither case can we have an inverse mapping. One effect of 

these lapses into triviality is that the number of different functions which can be 

definEl over a perfect Sort is very limited. A function of two arguments can have 
- ~_ -. 
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at most three different values, according to what arguments are chosen; it must 

moreover be commutative and associative. The latter restrictions apply however 

many arguments are involved, and outweigh the slowly increasing number of 

“: values which might appear; there is in fact only one three-argument function 

(not reducible to combinations of others), and that exists only for the perfect 
e 

Sort of cardinal 4. No (irreducible) functions of more than three arguments exist - 

at all. 

The only non-trivial functions of one argument are called, with a little license, 

“endomorphisms”, because they carry one element of a perfect Sort into another. 

But there are only two possible results, the argument unchanged, and a free choice 

among the lot. It follows that two endomorphisms which have the same invariant 

subdomain are identical, and it can be shown that those with different invariant 

subdomains are twins; the Sort of endomorphisms over a given perfect Sort is 

therefore itself a perfect Sort. 

There is however one kind of function, of a rather trivial kind, which gives 

a little extra variety, which I call “multiplets”. A multiplet is an ordered or un- 

ordered class of multiplets, or an unordered class of members of one perfect Sort. 
_ 

The simplest example is a pair; -a more complex one is an- ordered quadruplet - - 
of a pair, a singleton, another pair, and a triplet, where the first two and the 

second two are naturally unordered and the whole has cardinal 4, ordinal 3. All 

pairs taken from a perfect Sort are mutually twin, and form the “pair-Sort”; the 

pair-Sort of a Sort of n twins has cardinal An = n(n + 1)/2. 

There are no functions definable over any perfect Sort which are not reducible 

to some formula containing functions of one two or three arguments and multi- 

plets7Over mixed Sorts of course may more functions can be constructed, but 
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since any mixed Sort can be expressed as an ordinable Sort of perfect, or smaller 

mixed, Sorts, all they yield is reducible to a mixture of familiar- functions over 

Sets and those over whatever perfect Sorts are involved. 

A particular problem is posed by ordinable Sorts, which contain no twins. 

They are Sorts insofar as they are associated with other Sorts which are not 
c - e 

necessarily ordmable; but in the absence of these they are indistinguishable from 

Sets. It is important, for the exposition of the theory, not to call them Sets, 

provided we remember that for every ordinable Sort there is an isomorphic Set 

with the same extent (to use the Set-theoretic term). This is called the equivalent 

Set of the Sort. Mixed Sorts also have equivalent Sets, whose members are Sorts, 

but it is not usually necessary to remember this, so that Set theory has in this 

case a very limited application. 

I.5 Rational Sorts 

The definition of Sorts has been so framed, that any class which is directly 

subject to empirical observation, and so of evidential value in the scientific 

method, must be a Set. It cannot be a Sort, but it may be the equivalent Set 

of an ordinable Sort (which hides an exception to the rule under a transparent 
- - 

verbal camouflage). Thus if we are given a Sort S which is not ordinable, the - - 
proposition that “S exists” is empirically undecidable. 

Now suppose that we can construct, from the members of S and functions 

definable over S, a Set S’ (that is to say, a class all of whose members are either 

identical or distinct), in which each element of S has a representative (that is, a 

mapping exists from S to 5”) such that the twinship or distinction between any 

pair of elements of S can be determined from their representatives; and in which 

each Rmction of S is represented by some function defined over S’ such that the 
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value derived from given representatives in S’ is the representative of the value 

given by the corresponding members of S under the function of--S represented. 

Then we call S’ (with the required functions) an “autogenous representation” 

of S.- In such a case, we can legitimately infer, from the proposition “5’ exists” 

alone, that “S’ exists”, and since S’ is a set, it is possible for there to be empirical 
c - e 

evidence for S’. If such evidence is forthcoming, we are then justified in saying - 

that this evidence would be explained by the existence of S, since that is a 

sufficient condition for the existence of S’ also. 

Clearly, individual instances of this will not be strongly evidential, though the 

more cases we find, and the fewer failures, the better the matter will stand. Much 

depends on how many Sorts turn out not to have autogenous representations. For 

if S’ were not autogenous, we cannot infer S from S’; additional assumptions 

will be required beside the mere existence of S, so that the existence of S is no 

longer a sufficient condition for that of S’, and as it is certainly .not a necessary 

condition there is no valid case for S at all. 

Any Sort for which one or more autogenous representations can be con- 

structed is called a “rational” Sort, or RS; the above argument shows that there 
- - 

could be positive empirical evidence explainable by a rational Sort,. but not for - -. 
any non-rational ‘Sort. 

Now thanks to the relative poverty of functions and/or mappings among 

Sorts, it is possible without too much trouble to discover whether or not any given 

perfect Sort is rational, and in some cases to construct mixed Sorts which are so. 

Mixed Sorts in general can be considered as unions of perfect Sorts, and may be 

rational though not all the latter are; all ordinable Sorts are of course trivially 

rational by virtue of their equivalent Sets of autogenous representations. We 
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can thus expect a definitive answer to the question, “Which Sorts are rational?” 

The answer is, hardly any. Perfect Sorts with 0, 1, 2, or 3 members are RS’s, 

also a mixed Sort with 2No members, and mixed Sorts including any of these 

“: together with the Sorts of endomorphisms up to a certain level, leaving no gaps 

in the series; all other Sorts are RS’s only if they are constructed as unions, 
r - e 

intersections, direct products, etc., from among these basic RS’s, and so offer no 

additional information to that deriving from the latter alone. 

It may be of interest to explain the nature of failures to find autogenous 

representations, by considering the perfect Sort of 4 members. This turns out to 

have a function of three arguments which has no representation, and a symmetry 

condition among its members which is not satisfied by any representation. The 

latter failure is reproduced for all larger perfect Sorts. In the case of Sorts of 

endomorphisms, the only available representations are in terms of structures 

analogous to matrices, the numbers of which that are available can be shown to 

be insufficient if we continue the series long enough. 

I.6 The Inehoatiue Hypothesis 

At the beginning of Section I.5 I proposed that the Inchoative Plane might be 
- - 

characterized as an infinite class of unorderable entities. Even when sharpened up - - 
by the replacement of “unorderable” by “indistinguishable”, which can be defined 

‘- (mathematically) by the theory of Sorts this seems rather a bare statement. We 

can now however use it in a genuinely testable hypothesis, which can be stated 

thus: 

1. There is an infinite class of indistinguishable propertyless entities, call the 

Inchoative Plane; 

2. -There is a physical entity manifesting the structure of each biparitous 
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representation of every rational Sort of indistinguishables in the Inchoative 

Plane: 

3. There are no other physical entities than these, or such as are anylysable 
. ._ 

in terms of these. 

I call this the “Inchoative Hypothesis” in its “strong form”; a weaker form, e 
which alone-1 claim to give evidence for, is obtained by deleting the clause (3). 

Even the strong form does not make the Physical Plane correspond to the Inchoa- 

tive, because the entities it contains may not be (indeed are not) deterministic in 

their behaviour. If it were true, however, unlikely though that is, it would go a 

long way towards validating an apriorist philosophy of physics. This is a strong 
- 

motive for not taking it seriously, though it probably cannot be disproved on 

present knowledge without disproving (2) also; but I shall mention a few proba- 

ble counter-examples to (3) in Section 1.14. 

-. . 

Clause (1) is a mainly metaphysical support for clause (2); but not wholly so. 

The term “propertyless” is inserted for the following logical reason: had I said 

“indistinguishable black entities” this would imply that some more black enti- 

ties, necessarily not in the Inchoative because they would not be indistinguishable 
- - 

from the black ones, exist; therefore clause, (3) could not also be true. The term - -. 
“infinite” is also probably consequential for the interpretation. If “metaphysical” 

means “without testable consequences” (as it often does in scientific discourse), 

then the epithet cannot strictly be applied to (1); neither is (1) incapable of ana- 

lytical formulation, being embodied as we assume in the axioms of Sort Theory. 

Nevertheless, it is clause (2) which has to run the gauntlet of comparison 

with the known physical world. It comes through, if not scatheless, with no fatal 

woutis (as presently diagnosed). That it does so is, at first glance, very surpris- 
- ~_ -. 
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ing, and makes it difficult not to take the Inchoative as a serious hypothesis. I 

* shall look into the strategy of testing it in the next section, but .-meanwhile two 

points in clause (2) need some comment. 

First, the expression “physical entity”, occurring in a context where none 

of the common limitations can be presupposed, has a highly inclusive sense. e 
Microphysical events, space, the uncertainty-principle, protons, gravitation, are 

among the kinds of things comprehended under this term. Second, note that the 

term “autogenous” is not used of the “representations” mentioned; it is of course 

assumed in the definition of a rational Sort, but if a Sort is known in this way to 

be rational, there is no logical reason for discounting other representations which 

satisfy the mapping relation as candidates for empirical interpretation. These 

non-autogenous representations I call “secondary”. 

I.7 A Pattern of Families 

I have mentioned that, for any perfect Sort, there is another perfect Sort 

whose members are the endomorphisms on the first; and so on of course without 

limit. In the case of a rational Sort, it can be shown that if an autogenous 
‘. _  representation can be found for the Sort or endomorphisms over it the union 

_ - 
of these two Sorts is rational. The means for constructing- representations are _ -- 

however limited, -and as soon as we reach the point where none can be found, the 
- i- 

sequence of rational Sorts terminates. This relation of endomorphism generates 

Sets of RS’s which I have called “families”. 

All the RS’s turn out to belong in one or another of six such families; two of 

these are intimately interrelated and are best treated as one, and one is trivial. 

The families contain different numbers of RS’s, which form the palindromic series 

1 oo’B 00 1. The first consists of the empty Sort alone. The second has the 
- -. ~_ -. 

109 



singular Sort II10 as its initial member, and contains an ordinable Sort of every 

succeeding cardinal n. The 8 refers to the combined families 02.-and 03, which 

contain the perfect Sorts 020 and 030 with two and three members, which have 

respectively five and one descendants, with cardinals 3, 5, 10, 137, and 171037 

(approx.) in 02, and 3, 10 only in 03. The second infinite family stems from the 
r - e 

initial Do00 and the final 1 contains the all-inclusive infinite Sort representing 

the Inchoative Plane as a whole, which does not call for any specific physical 

interpretation except presumably the Universe. The presence of this totality- 

term is an unusual and welcome feature of the theory. 

The second infinite family is sensitive in an interesting way to the mathemat- 

ical philosophy with which we approach it. If, with the strict intuitionists, we 

will have no truck with “completed infinities” the initial Sort Do00 exists and is 

rational but all the rest and the “total” RS are identical with the first. If we ac- 

cept completed infinities in the Sorts themselves, as being appropriately beyond 

.the reach of the mind, but reject them in constructing autogenous representa- 

tions on the grounds that these have a practical role, then the family is indeed 

infinite, but all have the same cardinality; this is a close analogue of Dl. Finally, - - 

the most indulgent view about infinities allows the Sorts in Do0 to run through 

all the Carnapian infinities NN. The “total” RS exists (non-identically) only for 

the last two philosophies, the second making it equal to cardinality to the RS’s of 

Doe, the third giving it an extent beyond any cardinality. The second allows us 

to see the family Do0 as a picture of strictly objective observations; the first does 

not allow for any representation of observation as conscious, while the third can 

accommodate an infinity of subjective states as well: which neatly explains what 

sort of people prefer each view of infinity, but tells us nothing about physics. 
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I.8 Secondary Representations 

It might be feared that the introduction of secondary representations of RS’s, 

combined with the strategy of allowing a separate interpretation to each repre- 

-‘I sentation, would widen the field beyond the possibility of definitive testing. It 

is true that the possibility of finding a secondary representation previously over- 
@  

looked cannot be ruled out, but to entail a new interpretation it would have to 

be non-reducible to any previous one, which seems unlikely. All we need to say 

about this is that the total system is slightly more open-ended than it may at 

first seem. In fact, there are only two cases where secondary representations are 

known. 

The families DO and Dl, being inherently ordinable Sorts, have none (or 

no primary ones, if you prefer). 02 does have collectively a secondary repre- 

sentation (which however omits the RS D2f with five members), namely the 

combinatorial hierarchy of Bastin, Noyes and Kilmister. This can be axiomat- 

iced within the biparitous mathematics of the system, and is thus capable of 

interpretation in directly physical terms, whereas primary representations can 

only be interpreted as classes of indistinguishables which have to be correlated 
- - 

with physically observable predicates to become fully empirical. 03 also has a 
- - 

secondary representation, but this is contained within that of 02. Do00 has a 

secondary representation by non-terminating simply-ordered sequences of digits 

(virtually = real numbers < 1). 

Among secondary representations, the combinatorial hierarchy occupies a 

unique place, since its biparitous character makes it much more straightforwardly 

interpretable than its primary rival. I nevertheless do not count the results from 

that varter as directly relevant to the success of my hypothesis, since they are 
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logically incapable of providing evidence for it. 

I.9 Varieties of Interpretation 

For primary representations we have to seek interpretations which are faithful 

to the logical structure of the Sorts involved. In the case of ordinable Sorts, like 

those in family Dl, we look for -an ordered class of distinct t_hings_; in general 

however our interpretation must be first as some system of indistinguishables, 

to which distinct, often numerical, predicates can be assigned in the course of 

“observing” them. 

The principal types are “aggregatesn, “thresholds”, and “liberties”. An ag- 

gregate is a fixed usually small number of indistinguishables, usually thought of 

in physics as a kind of object but more naturally as so many slots where specific 

quantities of charge, mass, spin, and so on can be entered. This writing-in of 

specific quantities is precisely analogous to the writing-in of specific values for 

the components of a vector, whether they are spatio-temporal coordinates or say 

angular measures defining the orientation of the spin axis. In each case we are 

predicating something observable of something in itself unobservable, but suscep- 

tible of interpretation as having the appropriate role. The temptation to think of 

the coordinates as a “kind of objkct” arises when their values are dimensionally - - 

congruent with those predicated of actual objects, which are then seen as the 

sum of a set of smaller constituent parts. Hence the description of baryons, etc., 

as being made up of quarks. 

But, it may be objected, isn’t there evidence that those are evidence of dis- 

crete centres of scattering within the proton, for example? If what is an aggregate 

is deemed an object, the location of that object is not precisely defined, and if 

atteKpts are made to fix its position various results within an experimentally- 
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determined range will be obtained.. If one can actually “see” the object the 

uncertainty may be ascribed to “vibration” (as with atoms in a.-crystal lattice) 

composed of vector components; if this description is inappropriate, what one 

-‘: does -observe will be whatever is understood as appropriate. Call them vector 

components, call them quarks, what’s in a name? 
c - m 

The secormmain type of interpretation of rational Sorts is as “thresholds”. 

When a number of particles all having the same descriptors (quantum numbers) 

are assembled within so small a space that the spatial location vectors no longer 

serve to distinguish them, they become truly indistinguishable, and ought then 

to be observable only in the numbers allowed for RS’s. In fact, experimental 

difficulties make it impossible to assemble in this way more than two or at most 

three similar particles, so a direct test is (& usual) not feasible. But it is possible 

to calculate what would happen if one could collect larger numbers; what we 

find is that in every case there is a threshold number, at which the aggregate 

becomes unstable. For example, an assembly of (about) 171037 nucleons within 

the Compton radius of one of them produces the smallest possible black hole; and 

‘. _ 137 electron-positron pairs so packed initiates a chain-reaction of pair-production 

and so would “explode”. These ihresholds correspond to the cardinals of RS’s, 
. -- 

as the theory says they should. 

Last of my three main types of interpretation I have called “liberties”, mean- 

ing by this that the indistinguishables involved in them are most easily recognised 

as the degrees of freedom of some system. Of this kind are the three dimensions 

of space, the ten degrees of freedom specifying the flavour and colour of a quark 

(three for colour, and still only seven d.f. among the known quantum numbers). 

This East is one of the few cases where a mixed RS shows its composition from 
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two perfect Sorts of cardinals (three and seven respectively) in the interpretation 

assigned to it. Not all interpretations belong to these three types, however, as I 

shall now explain. 
. 

1.10 Space and Time 

Whereas in the strictly biparitous theory of the combinatorial hierarchy it is c - 
possible to discern a definite order of appearance of the various structures, no 

such ordering can be postulated for the theory of indistinguishables. The total 

repertory of RS’s coexist with no time-like ordering; at most within families 

is there an order of dependence which might be significant (and which in the 

family 02 is in fact the same as the “order” of the combinatorial hierarchy). - 
Thus, while the latter theory must start without any space-time framework the 

Theor; of Indistinguishables has one from the first quite independently of the 

interpretation of the finite families, based on the families Dl and Dco. 

The members of the simply-ordered denumerably-infinite family Dl are the 

only items in our theory which are all ordinable Sorts, and therefore may cor- 

respond to something empirically observed. It is commonly acknowledged that 

all the empirical data of microphysics come from the observation of “particle in- 
- - 

teractions” or events; we need therefore. have no hesitation iu saying that family - - 
Dl correspond to the totality of events (in this sense of the term). 

This “totality of events” constitutes a discrete “space” in the topological 

sense, and it is possible to show that to specify any event we need to give it a 

position in an infinite succession having a first term, and for any such position 

can give it a position in up to three independent twin orderings, each of which 

is finite but unbounded; and that this is the sum total of the information of 

this kmd which is available. Any event therefore can be specified by a set of 
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four coordinates, one of which refers to a structure of a different kind from the 

other three; any method of specification not reducible to this form is either in 

general inadequate, or redundant. The space-time structure of the world is thus 

-‘: determined a priori, and only the methods by which we can investigate it, and 

the manner of its subjective apprehension, remain to be considered. 
c - m 

That for everyday purposes space, as thus defined, seems to be “continuous”, 

follows merely from the fact that the discrete events, whose disposition it de- 

scribes, are far too small and close together to be discerned as discrete by our 

organs of perception. Physicists however have become accustomed to considering 

situations where only a few events are relevant, often indeed only one of them. 

And in this last case at least it is clear that the notion of space as given by the 

above theory simply has nothing to say. At least two events are needed to provide 

any standard of measurement; and to provide an event with a position defined 

as required, at least four other events, making five in all, must be taken into 

account. Very small regions are thus not catered for by the apparatus provided 

by family Dl. 

Empty space, if that’s what we are talking about, is nothing much to worry - 

. about; but the “space” surrounding one event is commonly thought of as con- 

taining various fields which can be described, we often think, only by reference 
. . 

to a coordinate system. These coordinates are in fact derived by imaginging the 

familiar spatial structure interpolated into regions as small as we care to con- 

sider. If the nature of space is as I have described, this must be nonsense, and 

its results must be wrong. As is now well known, they are; quantum theory is 

provided as a remedy, and for many purposes it works wonderfully well, but few 

woulrbe prepared to explain zuhy it works, except in special cases. 
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I.11 D&ordinate Space 

Where the space based on Dl fails, we turn to its palindromic complement 

Doe, where we find in Do00 an RS which has like Dl a secondary representation, 

already briefly mentioned. This representation has the structure of an infinite 

Boolean lattice; points are separated not by spatial intervals, as London is from 
c- - e 

CJambridge,_but more like the separation of East from North, by rotations. Every 

point has an infinite number of neighbours. Moreover, almost all the members of 

Doon are twins (Do00 is “almost perfect”), so that any mapping onto this Sort is 

(at most) completely unspecified; for this reason, I call the space which we infer 

from it the “disordinate space”. If it is right to assume that this is the kind of 

space which takes over when the discrete space of Dl is no longer applicable, then 

the basic trouble with working in conventional infinitely-divisible space is that 

its points are really mapped onto disordinate space, so that literally anything 

can be any where. 

The result is not total chaos. There are few problems that statistics cannot 

be applied to, and this isn’t one of them. “Disordinate statistics” is in principle 

simple enough, and though its results are sometimes bizarre, that is only to be 

expected. In selected cases, the technique seems to-work well. 
- - 

Disordinate space has infinite connectivity; it is in fact a realization of a 

concept which has recently come into prominence in quantum physics, that of 

“wormholes”, according to which the connectivity of space at very small distances 

increases without limit. But my disordinate space offers no such gradualism. 

Connectivity is infinite albeit in general tempered by a finite probability which 

offers at least a qualitatively similar smoothing of the transition. 

This raises the question, what is the connectivity of ordinary large-scale 
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space? It appears that this is not a.question which it is customary to ask, per- 

haps because it cannot (yet?) be decided by observation. Now the geometrically 

simplest way of constructing space from the events of Dl gives us a hypertoroidal 

space, whereas cosmologists seem always to assume (so tacitly as to suggest it 

is not an assumption) that the universe is hyperspherical (or parahyperboloidal). 

There are enough data supporting the inherently more obvious-assumption of hy- 

pertoroidal space to persuade me in general to assume that it is true. It may be 

long before the matter can be settled by observation, but theoretical consistency 

will probably give the answer much sooner. 

I.12 Particles as Aggregates 

It is a basic point of my theory that indistinguishables as such can never be 

observed. Yet there are many things which are repeatedly observed (or so they 

say) which appear to be - apart from accidents of position or momentum - 

strictly indistinguishables. Electrons with identical spins, or example. Strictly 

speaking, it is only the strong form of the Inchoative Hypothesis which entails any 

consequences from such observations - but if the so-called elementary particles 

are to be themselves counted among the exceptions, we shall have explained 
- - 

very little. Furthermore, it is generally .accepted that some of these particles are - - 
indeed aggregates of unobservable entities, as the theory predicts. If hadrons, 

. i- why,not leptons? - 

Because, up to now, there has been no evidence of any kind of compositeness 

for leptons, and so no motivation for still further conceptual complications. One 

might add that if quarks are essentially involved in the strong interactions (as 

are the forelimbs of birds in flight) then particles which don’t participate in that 

force-(flightless vertebrates) shouldn’t have them. All the same, as many an 



amateur numerologist must have discovered, it is easy enough to invent a set of 

lepto-quarks which will “fit” the known leptons in the same manner that classical 

quarks “explain” the various hadrons. My theory suggests that it may be more 

profitable to draw inferences from assuming such a structure than to look for 

direct evidence of their existence, which we have no right to expect anyway. 
c- - e 

The theory makes a plain prediction: that, given that there is no essential 

epistemological difference between leptons and hadrons (which has never been 

suggested) then the former are aggregates of five “partons” of which at any one 

time three are lepto-quarks (“larks”). These correlate like quarks with the RS 

02; with 3 + 2 = 5 members. As to the partition of the various supposedly 

quantized attributes among these partons, the requirements of the theory entail 

that only identical or random dense values can be considered for the partons in 

situ (e.g. not -l/3,2/3,2/3), and that identical values would have to be constant 

- and so imply in implausible measure of self-identity for indistinguishables, as well 

as contradicting the hypothesized quantity of propertylessness. So we end up with 

‘a random and perpetually shifting partition of charge (and spin?) subject to all 

. . . adding up to the electronic charge (or zero for neutrinos) and a second constraint _ 

of the same nature - because 02; is a mixed Sort of ordinal 2 1 leaving us 

- with-a system of-three degrees of freedom. 

&y such partition of the electronic charge will clearly endow the particle 

with an intrinsic electrostatic potential, and hence with at least the corresponding 

mass. The model described enables us, with the help of the aforementioned 

“disordinate statistics”, to calculate the resulting mass. It comes to 

m = 0.23440233 c&d 

where& is the fine-structure constant, d is Planck’s constant divided by 2n, and d 
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is an assumed minimum distance of approach between the partons (that it is finite 

is required by the theory, and of course a zero value leads to infinite potential). 

If we identify this d as the Compton radius of the proton (this being the heaviest 

-‘y stable particle and so giving them smallest d), and a as l/137 following on the 

identification of the RS 023 with the electromagnetic field, and giveg its accepted 
r- - m 

empirical value m comes out equal to me as near as the known errors in & and _ ~’ 

d allow. 

There is nothing here to call in question the assumed parton-structure of 

the electron, except that the value of cr assumed is not the empirical value of 

the fine-structure constant. The latter is defined within the framework of a 

quite different model of the system, and an attempt to quantify the effects of 

this difference in the models enables us to account for most of the discrepancy. 

Overall, this kind of results gives a little support to the model on which it is 

based, but is by no means conclusive in that regard. 

I.13 Further Results 

A number of other conclusions and predictions can be derived in the course 

of developing the interpretation of the theory. Most of these are relatively of - - 

. little weight, and some work against the correctness of the hypothesis. 0f.a kind 

too general to carry much weight are for example prediction of conservation laws 
- (- 

applying under specified conditions to energy, angular momentum, and linear 

momentum; and of the irreversability of mass action. Difficult to assess is the 

conclusion that, if the connectivity of space is hypertoroidal, there is no reason to 

expect conservation of chirality, which however would characterize hyperspherical 

connectivity; all one can say is that since (a few) cases of asymmetrical chirality 

are known, this favours the hypertoroidal theory. 

119 



More interestingly, we can predict the existence of an upper limit to the veloc- 

ity with which a particle may travel, from the minimal topological requirements 

for the distinctness of time from space; which is by no means original, except for 

-‘: the fact that this distinctness is itself predicted by the theory. Much the same 

status attaches to the prediction of a finite limit to the accuracy of simultaneous 

complementary measurements (Heisenberg’s principle). c - m 

There is a long but straightforward argument which sets an upper limit on 

the number of distinguishable particles of a given kind which might (ideally) 

be “observed”. This leads, in the case of nucleons, to an estimate of the mean 

density of matter in the universe many times in excess of current astronomical 

estimates, but close to the value which, according to relativity theory, would 

make the overall curvature of space zero. This, if not merely a coincidence - 

and the uncertainties in the numerical values concerned forbid us to dismiss this 

possibility - seems to show something, but it is hard to know .precisely what. 

With the same proviso (now almost stultifying) we can derive a tolerable estimate 

of the gravitational constant G. 

It can fairly be claimed that the density of matter is the one apparently 
- - 

counter-factual result the theory- has yet come up with; and in view of the un- - - 

certainties commonly expressed by astronomers when discussing their evidence, 
.3 I 

even this may not be so bad as it may seem. So, in the end, the weak form of the 

Inchoative Hypothesis emerges slightly battered, but surviving. Nothing how- 

ever can be said in favour of the strong form, which maintains that everything 

should be in some sense explained either directly or indirectly. The following 

things for example remain untouched: masses and lifetimes of the unstable par- 

ticles-(though Kari Enqvist has had some successwith the masses of hyperons); 
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disappointingly, perhaps, this theory has nothing original to contribute to the de- 

scription of the tweslit experiment, only a translation of the “probability-wave” 

account. There are of course many other gaps of a like kind which it would be 

-‘: tedious to list. 

I have deliberately not claimed any support from the combinatorial hierarchy 
c - m 

work, since this is conceptually independent, even though logically compatible 

with the Inchoative Hypothesis. There are many reasons for hoping that some of 

the gaps left by the latter may eventually be filled by the former; if this happens, 

we shall approach a little nearer to the essentially implausible “strong form” of 

the hypothesis. 

I.14 Philosophical Implication8 

The Theory of Indistinguishables has no immediately evident practical con- 

sequences. The most it might do is to lead eventually to a simpler and perhaps 

more comprehensible presentation of existing physical theories, whose quantita- 

tive results, and in many cases the routes by which they are arrived at, will 

remain as they are or nearly so. But it may have an effect on the way we look 

at the world about us, through two factors of which one is new and the other 
- - 

revived from long ago. - - 

The new factor is the concept of “planes”. Two of these are generally rec- 
- (- 

ognized in one form or another, the physical and the organic. The reductionist 

view, that all organic phenomena should be ultimately explainable in physico- 

chemical terms, would in effect abolish the distinction between these, but is 

becoming ever less tenable. Some would claim the “human plane” as a third, at 

least partially within the purview of science. I however wish to add one at the 

other%rd. If my theory is accepted, there is an Inchoative Plane, of which many 
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aspects of the physical plane are logical consequences. If the strong form of the 

hypothesis were to be established, this would partially reduce the physical to the 

inchoative, and so threaten the distinction between these planes. This I do not 

-Y expect to happen. 

From this point of view, the virtue of the present work lies in The extreme 

simplicity of the Inchoative as described by my theory. Because of this, whatever 

it can explain is explained in a very strong sense. If sound, therefore, it repre- 

sents a real advance in our understanding of the nature of the world, however 

much remains unexplained. It would mean that the physical plane is in part 

transparent, and in part determined by strictly physical principles for which we 

must continue to seek physical explanations as we have always done. In this 

search however it will surely help, if we can go some way towards eliminating 

_ certain things from the latter category, as being inevitable according to the kind 

of principles I have been dealing with here. 

But the notion of different planes is not the only characteristic of the theory 
_ of indistinguishables. Precisely because of the great simplicity of the initial - - 

: _ assumptions, it takes a rather large stride in the direction of a-priorism; and 

this will be unwelcome in many quarters. It is not, in strict logic, an a-priori 
- (- 

theory; it makes a few non-tautologous assumptions (notably of the existence 

of the Inchoative), from which it draws conclusions which are experimentally 

falsifyable - and perhaps will be falsified. I believe a strictly a-priorist theory is 

logically impossible. But a radical diminution in the number of presuppositions 

required has much the same psychological effect, in that it suggests that the 

worldis at bottom unexpectedly simple. That is-far from the impression given 
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by quantum theory today, and for many may be a welcome change, so far as it 

goes. 

But it cannot but call in question a lot of things in which a huge investment 

of dedication, and money, has been sunk, perhaps in vain. There will be many 

deaths before such a conclusion can be admitted. It is still too early to attempt 

to name sue-h lines of research, and I shall not try; but whoever accepts the new 

theory must expect to meet some destructive as well as (I hope) constructive 

effects. 

There is one more point to make. It is still part of the conventional wisdom 

that physical science will never come to an end. This of course is true, obviously 
- 

so, applied to the investigation of the effects of physical principles in all their 

manifold interactions. The reduction of chemistry to physics has hardly begun, 

and might have great consequences if it were to be more nearly achieved. But 

it is equally obvious that in certain directions my theory implies that we have 

already reached a non-physical bedrock. In effect the Inchoative Plane is a no-go 

area for physicists. It fills, much more literally and plausibly, the role which 

Fridtjof Capra tried to ascribe to sub-atomic physics in his book “The Tao of 

Physics” - the role -of being directly accessible to‘ the mystics. If it does exist, 
- - 

it is a terminus. -How much of the present muddle could that explain? 

. . _ 

- .- I.15 ~Sbmmary - 

The foregoing remarks are, of course, in themselves only a summary of the 

Theory of Indistinguishables. Further to condense the matter is perhaps to seek 

an excessive shrinkage. The gist of the matter is that, if we assume the existence 

of an Inchoative Plane (in what sense of “existence” it may not be profitable 

to emuire) sufficiently described by the unusual mathematical system of Sort 
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in respect of empirical observations. The hypothesis, that all and only these, 

among the infinite contents of the Inchoative PLane, are reflected in the known 

physical world, meets with many successes, a few doubtful ones, and no failures 

-.: that-cannot be, at least for the nonce, outfaced. Some spectacular quantitative 

computations have some relevance to the question. I claim that it is reasonable to 
r - e 

conclude that if there were indeed such an Inchoative Plane, a fair scatter of basic _ 

physical principles would find therein a common explanation; and some might 

think the theory worth attention on the grounds of its unusually wide compass 

alone. For all that, there is plenty of work still for real physicists to do, and the 

changes are that their work will tend both to expand the scope and erode certain 

aspects of the theory. If my work gains any attention, it will long be controversial, 

and in- due course superseded. If it has any utility in the meantime, it will be 

to bring into question some of the meta-scientific attitudes and presuppositions 

- which underlie the present chaotic state of fundamental physical theory. 
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Appendix IITHE COMBINATORIAL HlER.ARCHY 

bY 

Clive W. Kilmister 

11.1 Browerian Foundatiqns for the Hierarchy 

[A version of this paper was presented at the second annual meeting of the 

Alternative Natural Philosophy Association, King’s College, Cambridge, 1980.1 

The particular algebraic model for which the results of this paper have been 

found is developed from one described by Bastin, et.al. in Ref. 13 of the main 

text. It is based on three discrete processes and an equivalence relation. A typical 

functioning of the system consists of discrete steps, in each of which one step 

of one of the three processes takes place. Which process is involved may be - - 

. determined by outside considerations or by the state of the machine at the time 

(just-as, in a Turing machine, the next act is determined by the contents of the 
^ (- 

square being scanned and by the state of the machine). It is important for the 

particular kind of model we have in mind, however, to realise that the model is 

not to be thought of as being given in a complete form at the beginning of the 

investigation but rather as developing in a recursive fashion as the investigation 

proceeds. A detailed consequence of this is that it is impossible to take the 

equivalence relation as given in the usual way, and a recursive way of specifying 
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it has to be found. 

The constituent parts are:- 

(i) a generating process G which yields new elements to adjoin to a set S of 

previously constructed elements. The actual form of G is not of much importance 

later, but one suitable form which we have employed is that given, in a completely 
c - e 

different context, by Conway (Ref. 17 of the main text). A single operation of G 

is then of the form: 

If L, R are disjoint subsets of S, adjoin {L]R} to S. 

The great advantage of this form of G is that it is completely recursive in 

the strong sense that no starting point is needed. The first element generated 

has to be {010}, h w ere 0 denotes the empty set; this element plays a special role 

and will be denoted by 0. The two possible next ones are (010) and {0]0}, and 

so on. 

(ii) We now introduce an equivalence relation, D, on S; the equivalence classes 

under D will be called locations and any member of a location A ( written a E 

A) will serve as an address for A.[Note that the word address is used here in a 

different sense than in the main text.] The relation D is specified recursively as 

follows: Let S = (0, al, ai, . . . . a;}, be the set of elements already in play (either 
- - 

. . _ 

as a direct result of processes of G or from other operations to be described 

- ‘- below) and a new element 6 be-generated by G. Define by some recursive means 

a function f of two variables, called a discrimination function, so that, if 2 is a 

particular subset of all posssible values of f then the condition 

defines a relation which is an equivalence relation. (To put it more directly, j 

discrikinates between pairs (2, y) which are equivalent and those which are not, 
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because its value for an equivalent pair is never the same as for a non-equivalent 

pair.) The requirement that D should be an equivalence relation imposes obvious 

restraints on j. Sufficient (but not necessary) conditions to insure that these 

restraints are satisfied are 

j(x, 2) E 2 for all 2, 

f(x, Y) ” flu, 4 for all 29 ?I? (II.l.1) c - m 

f (f (x, Y), f (Y, 4) = f (x, 4 for all 2, Y, 2 

For simplicity in what follows we assume all of these to hold. If 6 never turns 

out to be equivalent to any of the existing members of S, it is assigned to a new 

location. 

(iii) In the course of determining the location of b, a number of values j(ai, b) 

will have been determined and (by (II.l.l)j t wo of these will be equivalent only if 

the corresponding ai ‘s are equivalent. Accordingly for each existing address Ai 

we generate a new address F(Ai, B) and for each of these we introduce a minimal 

address rule of the form: 

Number the addresses 0,1,2 ,..., where 0 is the address of element 0. Then 

F(A,B) = the least address (in the usual order) different from all F(A,B’) 

and all F(A’, B) w ere A’-is dikerent from A and B’ is different from B. h 
- - 

Successive values of F can now be found recursively, and it is easy to verify 

that .F satisfies the restrictions- 

F(A,A) = 0; F(A, B) = F(B,A); F(A, F(B, C)) = F(F(A, B), C). (11.1.2) 

Values for F for small values are given in Table AII.l(a). 

The form of the identities (II.l.2) suggest a change in notation, writing 

F(A, W = A + B. We adopt this in what follows and refer to this process, 
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between addresses, as discrimination. It is now straightforward, if a little te- 

dious, to establish the result: 

Theorem 1. Let S be a closed discrimination system. (The table shows how 

-” closed systems arise if we stop at 1,3,7, . ..) Then ISj= 2n for dome integral n and 

there is an isomorphiam between (S,+) and (Vn, +), where V, ia the n-dimensional 
c - e 

vector epace- over the field 22 with two elements, the + in the second bracket 

denoting the usual vector space addition. (Conway (1976)). 

(iv) So far the construction of the model has stressed the process aspect, but 

not the self-organizing one, which involves a hierarchy with interaction between 

levels. This is introduced by an economy proceq in which certain special sets of 

locations can be given a single address, without disturbing the discrimination in 

the minimal addressing process. Suppose that T is any set of non-null addresses, 

and define the discriminate closure of T, T* say, recursively as follows: 

(a) T C T*, 

(b) If B, C are any two different members of T*, then B + C E T*. 

(Note that this form of definition makes a closed discrimination system S 

have the form S = (0) lJ T*, for some T*.) 

Consider now a mapping i of a closed, discrimination system, 3, into itself, - - 
which preserves the discrimination: 

. . I 

qkS-+S,~(A+B)=qb(A)+qb(B). 

Then, from theorem 1, there is an evident representation of (b as an n X n matrix 

over 22, and since such matrices constitute a vector space of dimension ta2, the 

set of all such 4 corresponds to a new closed discrimination system, S2 say. 

(N.BT?‘he vector-space picture suggests that q5 is an element of a different logical 
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type from the addresses A, B, but this is just an illusion produced by the special 

representation.) We may use this for the economy process as follows: 

Let T* be any d.c. (discriminately closed) subset. Then it can be proved that 

-” there exists one mapping 4 with the property that 

4(A) =At,AE T*. 

If also 4 is chosen (as it can be) so that 

c _ _ 

ti(A)=O-+A=O, 

(4 nonsingular), we may use the new address 4 to represent the old set of ad- 

dresses T*, so that the information contained in T* is represented in a more 

economical way at a higher level. 

If, moreover, we choose the 4’s for different d.c. subsets to be independent 

(that is, so that any k such themselves generate a d.c.subset of 2k - 1 members, 

and no fewer), these 4’s will serve to allow the whole process to be repeated, so 

that we have a hierarchical structure as required above. 

Let us call a generation of such a heirarchy complete when it so happens 

that the creation and discrimination operations have been carried out in such an - - 
order as to maximize the information-carrying of the structure. The complete 

hierarchy serves to define bounds on the amount of information that can be dealt 

with. We can then prove 

Theorem 2. There ia [I unique complete hierarchy with more than two 1evela;it 

has successively completed levels of 3,10,137, 21n-1+137 z 1.7 x 1ti8 elements, 

beyond which further extension ia impossible. 

The proof of this result is lengthy and at present clumsy. Instead of describing 

it, I fiefer to indicate how the construction can proceed at lower levels. It will 
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be convenient to have an abbreviated notation for vectors and operators. Write, 

for any vector 2r, 21 = i + j + . . . + k, where the only rows occupied by l’s are 

the ith, jth , . . . . (If we are in a low dimension so that none of i.j, . . . exceed 9, 

-. we can simply write ij...k.) An operator can then be written as an assemblage 

of column vectors, and this allows calculations to be carried our quickly, since 

(p, q,r)l = p, (p, q, r)2 = q. To begin the construction choose-two basis vectors 

in two dimensions, 1 and 2. Then we have to find operators with the invariant 

spaces: 

(a) {l}, and this is evidently the operator (1,12). 

(b) {2}, and this is (12,2). 

(c) { 1,2,12}, and this the unit matrix (1,2). 

It should be noted that there is no choice at this stage. These operators 

may be rewritten at the next level as vectors 134, 124, 14. For some purposes 

it is necessary to keep them in this form but for the mere existence theorem 

it is possible to simplify by taking these as a new basis 1,2,3. There are now 

7 invariant subspaces, and it is possible to find 7 corresponding operators, in 

a number of ways, which are linearly independent. For example, in the three- - - 

. dimensional subspace, the operator (1;3,23) has unique eigenvector 1, and so, 

interchanging the first and second directions (3,2,13) has 2, and (12,1,3) has 3. 
” (- 

In much the same way the three (13,2,3), (1,23,3), (1,2,13) serve for the three 

element spaces, and (1,2,3), the unit matrix for all 7 vectors. It is not hard 

to verify that these are all linearly independent. It is harder to establish the 

existence of the 127 operators at the next level, but several different versions of 

this have now been carried out. The termination of the process arises because 

the diinensionality of the spaces does not increase fast enough to accommodate 
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the number of linearly independent vectors, as is demonstrated in Table AII.l(b). 

We need to understand something of the “geography” of the higher levels. 

Some of this information is really about the structure of the finite group GL(n, 2) 

where n = 256 (or perhaps 16). Such a project will evidently require compu- 

tation, but it is important first to determine what should be_ computed. The 

“model” cases of GL(3,2) and GL(4,2) will be presented at ANPA 83. A certain 

amount of assistance comes from the fact that, if n 2 2, GL(n, 2) is simple and 

therefore has been an object of study by simple group theorists, but to a large 

extent the information they derive is not sufficiently specific for our purposes. 

. . _ 

The number of elements-of Gqn, 2) is easily seen to be (2n - 1)(2n - 2)(2n - 

22)(2”-- 2n-1). It is easier to express it as n* . 2(n - l)* . 22(n - 2)*... = 

2n(n-1)/2g5(n*) where r* = 2’ - 1,4(P) = r*(r - 1)*...2*1*. Thus GL(3,2) has 

order 8.7.3. = 168. Its structure was further anylysed by Steinberg (R.Steinberg 

(1951), Canadian Jour. ofMath. 9, 225.) and he divided it into classes containing 

1, 21, 42, 56, 24, 24 elements. If we compare these figures to some due to Amson 

(private communication), who finds one member with 7 eigenvectors, 21 with 3, 

98 with 1 and 48 which unfix every vector, there is obviously some connection. - - 

_ Infact Amson’s 98 with one eigenvectot split into two subclasses, one of 42 mem- 

bers which permute the remaining 6 vectors in a 2-cycle and a 4-cycle, and one 
._ 

with 56 which produce two 3-cycles. This points to the need to find all possible 

combinations of cycle-lengths, and this is a project on which some members [of 

ANPA] did some calculations (up to the n= 16 case) some years ago. The division 

of the unfixers is more obvious. If A is an unfixer, then for any vector V, Av is 

neither v nor zero; Hence also (A + I)w is neither 0 nor u, and so (A + I) is an 

unfix5. Though it is possible to carry the analysis of GL(3,2) much further, it 
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should be noted that the order of G&(4,2) is 20160, so that already (at the first 

stage where the results would be of interest to the study of the hierarchy) the 

numbers are beginning to become unmanageable. 

However, matters are not quite so bad; in the first place, it is not actually the 

whole group with which we are concerned. We have to deal with a construction 
F- - m 

which considers just those non-singular operators for which none of the vectors 

not in a preferred subspace can be eigenvectors. This lowers the number of 

operators to be considered by only a trivial amount (for example, when n=4 

from 20160 to 18816) but the new set of operators is no longer a subgroup, and 

this suggests that the group theoretic analysis cannot give the fine detail needed. 
-- 

This work is continuing. 

Appendix II.2. On Generation El Discrimination 

[This paper was presented at the fourth annual meeting of the Alternative 

Natural Philosophy Association, King’s College, Cambridge, 1982.) 

The algebraic model is based on three discrete processes, and a typical func- 

tioning of the model consists of discrete steps in each of which one step of one 

. . . _ of the three processes takes place. Which process is involved may be determined 
- - 

by:- 

- (i) outside considerations 

(ii) internal ones,e.g. state of the system at the time, or the constraint that 

the third process cannot be carried out in th early stages. 

What is important here is the requirement that the model is not given in a 

complete form at the beginning but develops as the investigation proceeds. 

.- The first process is a generuting operation G which adjoins elements to the 

(fini@ set S of elements which have already arisen. [I do not know that the 
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details of Conway’s {LIR} construction are important, but G should have in 

i common with Conway’s construction the ability to start with nothing. Since the 

only “nothing” which I know of as freely available is the null set, this suggests 

“: that-G must be some sort of construction in terms of sets.] 

The second process is needed to check whether elements generated are really 
c - e 

new ones or not. A formalist way of putting this would be to say that there 

was an equivalence relation D, and the question, when z is produced, is whether 

Dzy holds for any y in S. We cannot use this way of putting it because, both 

in the specification of D and in checking Dry for any y in S we are supposing S 

completely given, contrary both to the original requirement and to the fact that 

S is growing with the development of the model. None the less this formalist ‘_ 
approach gives two insights: firstly that aome form of memory is essential. I shall 

assume that I can call elements of S but only at random. Secondly it suggests 

- a recursive specification, instead of D, of a function / : S x S --, T ( here T is 

some set, which includes S) with the property that there is a fixed subset 2 of 

S and fry E 2 if and only if x and y are the same element. 

Since f is our recursive substitute for D, we must require 

(i)fzr E 2 - - ’ _ . 
- - 

(ii)fiz E 2 4 fry E 2 

(iii) fzy E 2 and iyz E 2 if and only if fzz E 2 

Any such recursive f will be called a prediacrimination. Two prediscrimina- 

tions f, 7 will be called equivalent, f E 7, if f;cy E 2 if and only if f zy E z 

where f : S X S -+ p and 2 is some subset of S. (Of course it is not ruled out 

that T = T and 2 = 2.) 

??ieorem 1. Every f i.9 equivalent to some g for which 
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(i) gxx = 0 

(ii) gxy = gxy 

WgxW) = dsv)~ 

(where 0 is written for the unique element of a one element 2) 
. . 

Proof 

(a) Define 3 = 0 if x = y, = /xy otherwise. 
c - e 

Evidently ;i = f : and ;ixx = 0. 

(b) Suppose the elements of S to have been numbered by any recursive pro- 

cess; and define 

%xy = min( 7 xg, 7 yx) 

(where0 is counted as the least element and the others 1,2,3,.. are regarded as 

ordered in the usual way). Easily E ZG fi = f and 

E xx =O;Exy=Eyx 

(c) [Conway’s trick] Define 

. . _ 
!JXY = the least elqnent z such thatEz(gZTy) # O,Ez(gxji) # 0, - - 

for all z < x, 8 < y. Then, easily, g z E f f, and, since gxy = 0 if and only 

- _ if x and y are the same element, g satisfies 

gxx = 0 

SXY = !lYX 

!PY = 0 and gyz = 0 --) gxa = 0. 
- -. ~. -- 
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It remains to prove that 

SX(SY4 = !?(SXY)%. 

-,_ It is simplest to verify this by explicit construction as in Conway’s book. From 

the definition go0 = 0, go1 = 1, so gll cannot be 1 but can be 0: gll = 0. 902 

cannot be 1 or 0 but can be 2. Then g12 cannot be 2,1,o-S0 must-be called 3. 

Next 922 =O and so on. 

The requirements on g are exactly those of a discrimination function. It is 

straightforward (if a little tedious) to prove 

Theorem 2. If S is a closed system then ISl= 2”for integral n and there is 

an isomorphism 

(S, 9)  = win7 +2) 

where V, is the vector apace of n dimensions over Z2. 

The third process is an economy process for labeling sets of elements with 

,a single element.[Here follows the usual eigenvalue construction given above in 

AIll.] 

The three processes are carried out in various orders and in this way generate - - 

a hierarchical structure. Call this hierarchy complete [perhaps some other word 

e.g. maximal would be better] when it so happens that creation, discrimination 
- . 

& economy processes‘have been carried out in such an order as to maximize the 

structure. A complete hierarchy then serves to define bounds on the amount of 

information that can be dealt with. Then 

Theorem 3. There is a unique complete hierarchy with more than two leoels 

having successfully completed levels of 3,10,137, 2127 - 1 + 136 elements, beyond 

whiK,further extension ia impossible. 
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However, after the complete hierarchy has arisen (so that the third process 

can no longer intervene) the generation process and discrimination can still pro- 

ceed. One can picture this best in the vector space picture. The elements of the 

vector space have a 256 - bit segment to which further strings are affixed. We 

can call the 256 bit segment the-label and the remainder the address. 

Appendix Il.3 HIERARCHY CONSTRUCTION (second verion) 

[This is a new version for work done about three years ago rewritten for this 

paper 10 April 19831 

By a hierarchy is meant a collection of levels related as follows: 

a) The elements at one level are a basis of a vector space V/Z2, a subspace 

of VJZ2. 

b) The elements at the next (higher) level are non-singular linear operators: 

V, -+ V, (again, of course /Z2). 

c) Each element A at the higher level corresponds to a subset S of the elements 

at the lower level by the correspondence: the proper eigenvectors of A are exactly 

the linear subspace generated by S. (NOTE: Proper eigenvector means Au = u.) 

d) The operators {A} are then vectors in V$. In order to repeat the opera- - - 
tion,_they must be chosen linearly independent at the higher level. 

Evidently if there are r elements at one level, the next one must contain 
I . 

2’ - 1 = r* (say) elements. 

Theorem 1. (The Parker-Rhodes theorem) There is only one candidate for a 

hierarchy with more than two stages (3 levels) and that has successive numbers 

of elements. 

2,2* = 3,3* = 7,7* = 127,127* 
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Proof: The proof is easy, since impossibility results from the fact that the 

operators have n 2 elements and 2n increases too fast. In the case given above 

(Table II.l(b)), h owever, it may be possible to find a candidate, though at the 

last stage the operators cannot be linearly independent, so the construction ter- 

minates. The point of this paper is to show that it is indeed possible. 
6 

Notation. Write for the vector having 1 in its kth place and zero elsewhere 

simply k. For k + 1, /Zz,write kl. For an n X n operator form an ordered set of 

vectors (its columns) in the form (Al,Aft, . . ..An). Then 

(Al, AZ, . . . . An); = Ai 
- 

At-the first level of the hierarchy assume that the two vectors chosen ini- 

tially are 1,2. (The other choices, involving 12, give very similar algebra.) The 

- operators with given invariant subspaces are then, uniquely 

. . . 

Subspace Operator 

01 (1, 12) 

(2) (1% 2) 

{1,2,12) (1,i) - - -I . 
- -. 

Writing the operators as vectors in 4 dimensions they are 134,124,14 respec- 

. _ tively. One can perform a basis transformation to turn these into 1,2,3. Before 

we go on to finds the appropriate 7 operators, it is useful to look at the remaining 

non-singular operators at the first level. These are, in turn: 

(2,l) with proper eigenvector 12 and 

(2,12), (12,l) which unfix every vector. 

Sa there are, at this level, exactly two unfixers. 
- 
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As a next exercise, consider the 3 vectors 1,2,3 in a three-dimensional space. 

We discuss in some detail how to construct operators having the appropriate 

eigenvectors, as the same methods will be needed again. 

(a) Firstly, for all three vectors {1,2,3}, only the identity operator (1,2,3) 

will serve. 

(b) For t-he subspace generated by {2,3}, which we denote-by D72,3) we use 

the Noyea trick of getting the operator (13,2,3). 

(c) For the subspace {3}, we use a direct sum representation, and an unfixer 

on the 1,2 columns, so, for example (12,1,3). 

Consider now the operation of interchange two basis vectors, say 2 and 3. 

This is a linear operation, L, on vectors; in fact L = (1,3,2). But if, say, Au = v, 

then 15; = (LAL-‘)Lu, so that the result of such a change of basis is to make A 

become LAL-l. Now L-’ = L, so if A = (Al,A2, &) we have 

A’=LAL-’ =LAL=(1,3,2)(Al,A2,~)(lr3,2)= 

= (173, ~~(AI,A~,A~), 

and to evaluate this product notice that if a column contains a 2, it becomes . -- 
a 3, and visa vetsa. So A’ = (Al,& ,&) w h ere bars denote the operation of 

- i- 
interchanging 2 and 3. We can-now use these to tabulate the seven operators in 

the following way: 

Su bspace Operator 

ALL w43) Q  

Wk 3) (13,2,3) P 

Dfl73) 1 * 2 (W3,3) r 
- ~_ -. 
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D(1,2) l-3 (1,2,13) 6 

(31 (12~~3) e 

0) 1 * 3 wm rl 
. ._ 

(2) 2 t* 3 (13,2,1) $ Th e seven operators so found are, in fact, linearly 

independent. This can be seen in the following way (for which I am indebted to c - e 
Dr. Mary Warner): 

A basis for 3 x 3 matrices is obviously provided by (l,A,B), (2,C,D), (3,E,F), 

(OAG), W&H), (OAK), P,W, 640,2), (OW. 0 ne simply works systematically 

to put the given set in this form. 

o = (1,2,3)* First step: 

E + Q = (2,12, o)* 

p+a = (3,0, o)* Second step: 

7 + Q = (0,3, q* 

6 + a = (0, 0, I)* 

q+o=(O,23,2) q+y=(O,2,2)* 

p + $ = (O,O, 13) p + c + 6 + a = (O,O, 3)* 
‘. . The final starred elements are obviously 7 of the basis mentioned and so are - - 

linearly independent. 

The above argument is for the set of vectors {1,2,3} in three dimensions. 

The hierarchy construction has them in four dimensions. However it is easy 

to derive a corresponding solution. Let Ai(i = 1, . . . . 7) be the seven operators 

starred, and adjoin one more column. Then the operators 

Ai = (Ai, 14)(i = I.9 es., 7) 

will 6 linearly independent, and have the same eigenvectors. 
- 
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This has established, then, the first two stages of the hierarchy construction. 

The next step is the core of the proof. It is equivalent to proving: 

Theorem 2. Given any 7 linearly independent vectors in Zl’, there exist 127 

-‘: linearly independent 16 X 16 matrices 122 such that 

(a) each is non-singular, 

(_b) each-corresponda to a unique linear apace generated by a subset of the 

7 vectors by the proper eigenvector correspondence. In order to prove this we 

first make a basis transformation so that the seven vectors are respectively 

1,2,3,4,5,6,7. The proof relies on two simpler theorems:- 

Theorem 3. 

(a) There exist (many sets of) 127 non-singular operators Z$ + Zi, one for 

each subset of {1,2,3...,7} in the proper eigenveetor correspondence. 

(b) These 127 operators can be chosen to span Zz X Z$. 

Theorem 4. For n>2, unfixers span Z$ X Zi. 

The use of the theorems to prove theorem 2 is as follows: 

From theorem 3(b)we can select 49 linearly independent operators, say Ai( i = 

1,2, . . . . 49). Denote the remaining operators by Bi(j = 1,2, . ...78). By Theorem - - 
4, for_ n = 9, there are 81 linearly independent unfixers on Zz X Zi. Choose any 

79 of them, 4k(k-= 1,2, . . . . 79). Since 7+9 = 16 one can construct operators of 

the direct sum form: (Ai, &9),(Bj, 4i)(i = I, 2, . . . . 49,j = 1,2, . . . . 78) which are 

127 in number corresponding correctly and are linearly independent. This proves 

Theorem 2. 

It remains to prove the subsidiary results, Theorems 3 and 4. We begin with 

Theorem 4, that unfixers span (if n > 2, since, if n = 2, there are only two 

unfixE&). 
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In n dimensions an obvious unfixer is A = (2,3,4, . . . . n, U) where (from non- 

singularity)U cannot belong to D(2,3,4, . . . . n) and so must be .I or Iv, where 

v E D(2,3,4, . . . . n). But U = 1 will not serve since 123...n is then an eigenvector, 

-'. so u = Iv. 

So long as n 2 3, two unfixers are (2,3 ,..., nJ2) and (2,3 ,..., 13) and their sum 
e 

is (0,O ,..., O,t$3).-- Interchanging 1 and 2 will similarly produce (0,O ,..., 0,13) and 

adding results will give (0,O ,..., 0,12). 

Now perform the automorphism L()L-', where L = L-' = (12,2,3, . . . . n). 

Then 

(12,2,3,...,n)(O,O,..., 0,12)(12,2,3,...,n)= (12,2,3,...,n)(0,0,...,0,12)=(0,0,...,0,1). 

Since this can be produced, we can, by interchanging 1 and 2, 1 and 3,....., 

1 and (n-l), produce in turn (0 0 , ,..., 0,2), (0,O ,..., 0,3) ,..., (0,O ,... On-l). In order to 

produce (0,O ,..., , On) begin with the two unfixers (2,3 ,..., nJ2) and (2,3 ,..., n,ln) 

with sum (0,O ,..., , 0 2n) which, by adding (0,O ,... 0,2) gives (0,O ,..., On). 

Since there is evidently nothing special about the last column, it is clear that 

unfixers may be found to give a 1 in any place at all, i.e. unfixers span. 

‘. . Now to prove Theorem 3 one uses the same procedure in Zi X Zi as has 

been used above in Zi X-Z:. It is, in fact, sufficient to consider the cases: 
. -- 

Eigenvectors- Operator 
- i- 

ALL (1,2,...,7) 

D(2,3,4,5,6,7) (17,2, . . . . )7 (The Noyes trick), 

D(3,4,5,6,7) (12,1,3, . . . . 7) (unfixer in [2]), 

D(4,5,6,7) (2,3,13,4,..., 7) (unfixer in [3]). 

.- When all possible interchanges between 1,2,...,7 are performed so as to list 

the q,4 dimensional subspaces and their operators, the number listed will be 
- ~. -. 
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1+7+21+35=64. Applying the Warner technique, it will be found that these 64 

i operators include 49 linearly independent ones. This completes the proof. 
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Table AIL1 

i (a) Values for F found recursively. .- 

(b) Dimensionality of the spaces vs. no. of linearly independent vectors. 
. . 

A= 

4 WA, B) 
- B-=- 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

b) vectors and dimensions 
‘. . 

No. vectors: 2 3- 

’ -Dimension: 2 4 

0 1 

0 1 

1 0 

2 3 

3 2 

4 5 

5 4 

6 7 

7 6 

8 9 

9 8 

7 127 21n - l_ 

16 256 65536 

2 3 4 5 6 7 8 9 

c - e 

2 3 4 5 6 7 8 9 

32547698 

0 16 7 4 51011 

1 0 7 6 5 4 11 10 

6 7 0 1 2 3 12 13 

7 6 1 0 3 2 13 12 

4 5 2 3 0 1 14 15 

5 4 3 2 1 0 15 14 

10 11 12 13 14 15 0 1 

11 10 13 12 15 14 1 0 

- _- (terminates: dimensionality of the spaces falls behind no. linearly independent vectors ) 

- 
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Appendix IIICOMPLEMENTARITY AND ALL THAT 

bY 

Ted B&in 

[This is Chapter 3 from Ted Bastin’s unpublished book The Combinatorial 

Basis of the Physics of the &uantum] 
c - m 

Bohr is eredited with the remark that “truth and clarity are complementary” 

and Peierls to whom I am indebted for the quotation, adds that Bohr leaned 

heavily to the side of truth. Attempts at clarity about observation, in the sense 

of a brief and definite statement within the intellectual structure that we call 

the quantum theory, tend to run into the difficulties that have occupied us at 

some length already. For example we find the kind of clarity that the physicist 

is used to expect admirably provided in the statements on the subject by Dirac 

that were extensively used in the arguments of the last chapter. However, the 

more satisfying the clarity, the more we find the difficulties thrown into sharper 

relief, and we may set our desired succinctness and clarity only at the expense 

of our being prepared to live with an underlying muddle. From this point of 

. . . _ view the surprise felt by many physicists at the prolixity of Bohr’s discussions 
- - 

of complementarity is misplaced; it is,. to, say the-least, a -moot point whether - - 
or not Bohr should be taken to task for failing to be clear in his presentation 

of a muddle. In any case I shall be presenting the very different judgment that 

Bohr differed from his contemporaries in the mainstream of quantum physics in 

being not prepared to temporize with an incomplete understanding of the basic 

quantum principles, and that the difficulties being as inveterate as I claim, the 

endlessness of Bohr’s search was an inevitable consequence. 

Irthis chapter I shall be concerned with one. question: does Bohr’s comple- 
- ~_ -. 
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mentarity principle enable us to deduce the differences between quantum physics 

and classical physics that appear - in particular - in the uncertainty principle. I 

shall conclude that they do not. It will also follow that - Bohr’s profound critique 

-” not having issued in an explanation - no understanding of these differences exists 

at present. 
c - e 

The doctrine called “complementarity” is one of the principles which guide 

the treatment of observation in mainstream quantum theory. There, it usually 

refers either to the relationship of the particle picture and the wave-picture, or 

to a more technically articulated relationship that exists between certain pairs 

of dynamical variables that appear in the specification and solution of a single 

dynamical problem. In both cases there is an idea of exclusivity in the application 

of two analytical techniques or concepts at a given time, even though both are 

required for the full understanding of the problem. I shall criticize the use that is 

made of the idea of complementarity in mainstream quantum theory severely, and 

it therefore matters what form of presentation of it one takes a representative. 

One could scarcely hope for a more insightful brief account of it as an element in 

that corpus of thinking and knowledge than the following from Born (“Atomic 

Physics”, Blackie, IIIrd Ed. 1944, p. 144). . - - 

“The true philosophical import of the statistical interpretation . . . consists in 

the recognition that the wave picture and the corpuscle picture are not mutually 

exclusive but are two complementary ways of considering the same process - 

a process whose accessibility to intuitive apprehension is never complete, but 

always subject to certain limitations given by the principle of uncertainty. . . . 

The uncertainty relations, which we have obtained simply by contrasting with 

one another the descriptions of a process in the language of waves and in that 
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of corpuscles, may also be rigorously deduced from the formalism of quantum 

mechanics - as inexact inequalities, indeed: for instance between-the coordinate 

& and momentum P we have the relation 
_ ._ 

SQSP > h/4n , 

c - m 

if- 6Q- and SF’ are defined as root squares . . ..” 

In this account, Born is unusually definite among expositors in making the 

Heisenberg uncertainty relation depend upon the complementarity of the wave 

and particle pictures (“corpuscle” picture, as Born calls it). However even he 

leaves the deductive situation ambiguous, he suggests that the strong expectation 

that the complementarity principle gives us that there must arise an uncertainty 

relation, will then be happily confirmed by the more rigorous treatment. Of 

course this would be fine if the more rigorous treatment included a more rigorous 

formulation of the wave/particle duality, but the actual situation is that the 

treatment of that topic that appears in the above quotation is all the justification 

of it that he provides. As a result, his readers are left chasing round and round, 

and never sure at what point they are meant to break into the argument. The 
_ - 

evident - though perhaps never -consciously expressed - invitation is that one - - 

should build up support for the quantum-mechanical approach as a whole by 

deriving a little from each of an array of principles of which the complementarity 

of the wave- and particle- pictures is one. 

We might argue that this is what happens in classical mechanics. There, 

if we ask for a definition of mass, we are referred to statements which presup- 

pose that we already know what force and acceleration mean; and vice versa. 

And ~b on round and round in circles. The closure of the system of definitions 



works, moreover. Everyone who is trained in physics knows exactly how to ap- 

ply the classical theory and what constitutes a proper argument-within it. The 

miraculous-seeming quality of the coherence is what I tried to draw attention to 

-‘: in chapter 1 by my introduction of the term “theory-language”. In the classical 

case we indeed have a closure of the definition system that justifies us in starting 

from any of many equivalent points in our deductive treatment of any problem. _ 

Moreover, as happens with a language, every piece legitimately contributes to 

the meaningfulness of the whole. The vital point, in the case of the classical 

theory-language however, is that the principles that would be invoked in justi- 

fying any one piece would be consistent with those for all the rest, whereas in 

the case of the quantum theory, this consistency is just what is being called in 

question. 

In any case, Bohr did not regard the complementarity principle as being at the 

same level as the technical constructions of the quantum theory. He regarded 

it single-mindedly as an autonomous principle which required no justification 

backwards from the success of the quantum theory. On the contrary it was this 

principle which should carry the weight of the quantum-theoretical vision of the 

world. 
- - 

To pursue this programme, Bohr’s first effort has to be to provide a conceptual 

framework within which the complementarity of pairs of dynamical quantities 

was natural and predicable; subsequently he has to show that the rest of quantum 

physics could reasonably be seen in this setting. It was this second effort that 

made his writings so voluminous, and so involved as to give him his reputation 

for obscurity. It is, as a matter of the general way theories evolve, likely, and 

in myown opinion demonstrably the case, that the difficulties of exposition that 
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Bohr found, and the way in which he found his arguments getting ever more 

complex, indicated that he had not assembled the essential ingredients for the 

solution of the task he had set himself. Whether or not this is true, there is no 

-. one writing on the foundational aspects of the quantum theory at the present 

time who will accept, or even attempt to argue the case for the correctness of 
e 

the conceptual framework supplied by Bohr in the detailed context of the mutual _ 

exclusion of the pairs of dynamical variables. 

The position of von Weizsaecker on complementarity will be discussed in 

chapter 11. It is worth putting on record an opinion expressed by Heisenberg 

a few months before his death. AskedIll what he now felt about complemen- 

tarity, and whether in particular he would support the possibility of there being 

simultaneously incompatible dynamical variables, as a matter of general princi- 

ple, Heiseberg said that he thought that science does indeed throw up situations 

- of this sort from time to time where there seems to be a conflict of principles 

operating in such a way as to close investigation. He said he thought that such 

situations were an augury of major simplifications at the most profound level 

about to emerge, but as yet only to be guessed at. Heisenberg was not to be 

drawn by the further question -whether this point of view did not strike at the 

heart of the Copenhagen philosophy, and drew the conservation to an end by 

.- remarking that it must be time for lunch. 

In spite of this absence of currency for the complementarity idea as a piece 

of organized thinking at the technical (as distinct from the general philosophical) 

level it continues to be presented as an element of the mainstream position on 

quantum theory. If one enquires about the relationship between canonically 

IllConversation with the author. 
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related dynamical quantities, as the accepted way of reaching an understanding 

of the quantum-mechanical doctrine on observation, one is likely to find oneself 

referred to Bohr’s discussion of the general concept of complementarity. It is 

for all the would as though that discussion could give the technical form of the 

dual relations the validity of a sort of counter which could be played at will in c - e 
some sort of game in complete disregard of the circumstances under which the 

exclusion prescribed by the principle would be expected to manifest itself. 

It is not impossible to obtain a short statement by Bohr himself of the com- 

plementarity concept in its general form. The following appears in an essay by 

Bohr entitled “Natural Philosophy and Human Cultures” (Address at the Inter- 

national Congress of Anthropological and Ethnological Sciences in Copenhagen, 

delivered at a meeting in Kronberg Castle, Elsinore, August 1938. This essay 

appeared in Nature, 1&?,268, (1939), and was reprinted in Bohr’s book Atomic 

Physics and Human Knowledge, Wiley, 1957.) 

“Information regarding the behavior of an atomic object obtained under defi- 

nite experimental conditions may, however, according to a terminology often used 

in atomic physics, be adequately characterized as complementary to any infor- - - 

. mation about the same object obtained’by some other experimental arrangement 

excluding the fulfillment of the first conditions. Although such kinds of infor- 
. - 

mation cannot be combined into a single picture by means of ordinary concepts, 

they represent indeed equally essentially aspects of any knowledge of the object 

in question which can be obtained in this domain.” 

This definition makes use of several principles which Bohr considered estab- 

lished in current theory, or which he considered he had himself established, and 

which can be though about separately. Firstly there is the statement about the 
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obtaining of information by an experimental arrangement. This refers to Bohr’s 

position that the units into which it was alone legitimate to analyze knowl- 

edge about the world of quantum objects was the whole experimental procedure 

-‘: together with whatever logical relationships are necessary to demarcate the ar- 

rangement that we have in mind off from the rest of the physical surroundings 
c - m 

of the experiment. 

This position sounds arbitrary until we see it against the special operational 

circumstances of the quantum objects. It is part of what we mean by the term 

“particle” in the classical way of thinking that there should automatically be a 

possibility of defining other-particles in theneighbourhood of the first without 

making any special theoretical provision for their intrusion. If we could not as- 

sume this without question we should not be able to use the dynamical variables 

with their usual meaning. Now in the quantum domain this assumption is con- 

sistently and as a matter of fundamental principle invalid. If we wish to refer 

to a new particle then we must specify a new, and usually much more complex, 

theoretical background capable of describing the combined system. For Bohr, 
. . _ 

the right way to express this specifically quantum view was to stress the unity of - - 

. observed entity and observing system,-and indeed to insist that neither should 

be ascribed reality independently. That it is a correct understanding of Bohr 

to interpret his assimilation of the atomic object (I use Bohr’s phrase) itself, to 

the circumstances of its measurement is further borne out by his giving central 

importance to what he called the “quantum postulate”. This, he says (Atomic 

Theory and the Description of Nature, Cambridge, 1934, p. 52) attributes to 

any atomic process an essential discontinuity or rather individuality, completely 

fore@ to the classical theories, and symbolized by Planck’s quantum of action.” 
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One sees from this quotation that Bohr saw the very discreteness or particularity 

i of the quantum particle as something to be imagined in quite .a different way 

from the way we imagine a classical particle (and the matter of the existence of 

-‘: a background of related particles would certainly be an important part of the 

imaginative apparatus that Bohr would require us to renounce). To set a right 
c - e 

view of the atomic object we had to preserve a lively consciousness of the unity _ 

of object-system and experimental milieu. 

Bohr’s insistence on the quantum postulate was needed as a protection against 

the sort of crudity in thinking about quantum particles which retains elements of 

the “atoms are bits of matter cut up small” variety. The combinatorial principles 

‘.. to be developed in this book are easily misinterpreted as putting the theory into 

the class of statistical theories which use-particles whose discreteness is of the 

classical kind, and it will be useful to bear in mind how important it was to Bohr 

to avoid this misconception. This part of his doctrine is absolutely integral to 

our way of thinking.12] 

The second of the principles which contribute to Bohr’s idea of complemen- 

tarity concerns the inevitability of the classical description using the classical 
- - 

dynamical concepts as the only possible way of talking about the physical world 

in any of its aspects, and in particular in the quantum aspect. This principle is 

obviously connected with the first; however they are not equivalent. The second 

goes much further than first in the way that it asserts that change from the clas- 

sical language is for ever ruled out. Bohr was insistent on this strong prohibition. 

12j1n chapter 1 we discussed how far the classical concept of the particle could 
bebid at Newton’s door and how far he was careful not to commit himself 
in this way. A later discussion in chapter 11 of the ideas of Bohr on what he 
called the “mechanistic concept of the particle” isalso relevant. 
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Any suggestion that one should be open to the possiblity of change in the way 

we imagine the physical world at the basic level of the intuition of spatial events, 

seemed to him entirely fanciful. To the criticism that such self-assurance could 

hardly be reconciled with a modest awareness of the infinite corrigibility of sci- 

ence, Bohr would simply be incredulous. He evidently thought that anyone who 

made proposals of the sort that he was brushing aside hadcfailed toconsider the 

vastness of the task they were proposing, or indeed to set its real nature clearly 

into focus. On Bohr’s side one does have certainly to recognized that most of 

the soi disant exercises in the invention of original conceptual frameworks for 

physical thinking which are intended to handle the unfamiliarity of the quantum 

world, do fall back for their-very expression at a very early stage on the familiar 

imaginative pictures that they were meant to replace. 

The conclusive failure of attempts like these lend colour to the working physi- 

cist’s belief that the familiar approach is simply commonsense about the reality 

of the world. Bohr’s position, however, was poles removed from that of the 

naive realist. In his positivistic attitude to the language of physics Bohr was, 

in a way, being explicit about the dominance of what I have called the classical 

theory-language. He was-rejecting the view that the dominant language was an 
- - 

expression of commonsense about the reality of the world for, of course, sophis- 

tication about the part played-by language in affecting what we say we observe 

is at the opposite pole from simple realism. Yet to a great extent the effect of his 

argument was to make him an ally of those who never questioned the inevitability 

of the classical language because it never occurred to them to do so. 

Among the quantum physicists there is a further class of those who have 

giverrthought to the possiblity of profound conceptual change, and who perhaps 
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would welcome it in principle but who cannot see any likelihood of its coming 

about. Bohr was not in this class either, for he made a very positive virtue of 

the necessity of the classical language. 

A good deal has been written about the influence of idealist ways of thinking 

that may have made Bohr feel that he was on the right track in insi&ing on the c - 
classical language as a necessary form of thought, or at least as a precondition for 

all thinking that could be labelled “physics”. In particular, Bohr may have seen 

an analogy between the part played by the classical language and the synthetic a 

priori place of space and time in the Kantian philosophy. However philosophical 

tenets which do not play a part directly in scientific argument are beyond the 

scope of my discussion. Reference may be made on this, and similar points to it 

Quantum Physics and the Philosophical tradition by Aage Petersen (MIT, 1966). 

The last component that we always find in Bohr’s statements of the com- 

plementarity principle, such as the one quoted above, is that of incompatibility. 

We already have the unity of the operations and language that go to make up a 

measurement; we have the restriction on the scope of that language to that which 

is current in the classical understanding of the world; now we are to understand 

that-there will typically be more than -one such description required to present 

the essentials of any given quanta1 situation, and that these will consistently so 

appear that the provision of one will prevent the provision of the rest. As Pe- 

tersen puts it: 

u 
. . . the experimental arrangements that define elementary physical concepts 

are the same in quantum as in classical physics. For example, in both cases, the 

concept of position refers to a coordinate system of rigid rulers and the momen- 

tum zncept refers to a system of freely moving test-bodies. In classical physics, 
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these instruments can be used jointly to provide information about the object. 

In the quantum domain, however, the two types of instrument are mutually ex- 

clusive; one may use either a position instrument or a momentum instrument, 

-‘: but one cannot use both instruments together to study the object.” (Petersen, 

Aage, Quantum Physics and the Philosophical Tradition, MIT, 1966). 
c - m 

Why not? It is very difficult even to imagine what it would be like to argue 

in favour of Petersen’s assertion, let alone actually to produce the argument. 

(Let me again remind the reader that my purpose is not to argue that it is 

impossible to postutote an exclusivity; it is only to show that there can be no 

case internal to the physical argument in favour of it.) What sort of thing - 
could it be that would prevent one kind of instrument being used because of 

the presence of the other? Or would the argument be that it was the successful 

operation of the one instrument that must inhibit the operation of the other? In 

the latter case, what would the mechanism of the interaction between the two 

be? It is obvious that if one restricts oneself to classical argument then there 

is no reason why one should not, for example, construct measuring techniques 

-. _ which measure momentum and position and other dynamical variables as well 

in indefinitely complex relationship. Indeed it is‘ notorious that,’ far from it 

being the case that simple dynamical variables force themselves on the attention 

- . of the experimenter, -his ingenuity is always stretched by the need to provide 

experimental techniques that exhibit those conceptually simple properties of a 

system that theory demands. 

Commentators usually continue the argument at this point by appeal to the 

uncertainty principle. Thus they may argue as follows: “Suppose we measure 

positlon. Then if we measure momentum this must by the use of scattering with 
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some sort of “test-particle”; however we don’t have test-particles which are small 

compared with the particle being observed (as we always do cltisically). Hence 

the momentum measurement must disturb the position, and this is so merely as 

-‘: a faet about measurement.” In fact we cannot permit recourse to this argument. 

The finiteness of test- and all other- particles is supposed to be a consequence 
m 

of whatever quantized theory we come up with, and to use it in the argument 

about the most fundamental step in establishing discreteness is to beg the whole 

question we are trying to answer. One is inclined to say that if one is allowed to 

assume the uncertainty principle then one has already got quantum theory, and 

has no need of complementarity. Such a claim may be too strong (though Noyes 

has argued that one may build a quantum theory upon an operational basis of 

counts of particles in detectors with an assumption of an irreducible statistical 

fluctuation in the counts that has the uncertainty relation as a special case, [see 

- main text and references therein]). The correct relationship in Bohr’s eyes was 

probably more that the complementarity philosophy was needed to make the 

uncertainty principle a comprehensible assumption. The fact would remain, in 

. . _ that case, that the former had to stand in its own right. 
_ - 

_ Bohr’s position on the incompatibility of simultaneous. descriptions is rem- 

iniscent of an argument that I have already maintained to be the best way of 
- . 

summarizing the difference between the quantum and the classical views of mea- 

surement. A quantum measurement does not presuppose the potential existence 

of a background of related experimental results in the way that classical measure- 

ment does. Even for such a simple case as the measurement of two momenta of a 

particles at contiguous points in space at high energies, we require a quite differ- 

ent experimental arrangement from what is needed for the single measurement, 
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and one that is usually of a different order of complexity. There is a complexity 

in the experimental step-up that provides the information about the spatial rela- 

tionships of the separate components of the complex measurement, and to assert 

-: this seems to come near to saying, as Bohr does, that different ways of measuring 

imply that different things are measured. Indeed it would only be a small step 

to suggest that the whole quantum theoretical concept of meiurement could be _ 

built round an application of this idea to the central concepts of momentum and 

spatial position. Then one would have, in all essentials, the uncertainty principle. 

There seems nothing wrong with this way of looking at the complementarity 

principle; the error is to try to make it follow from the cfassical concept of 

observation. Bohr had stressed that his quantum postulate was something quite 

new on the horizon of physics, and it is ironical that it was also his embargo on 

attempts to transcend the classical description of of experiments that made him 

locate the characteristics of that postulate in a place which could not have the 

right kind of room for them. 

In the discussion of the Einstein-Podolsky-Rosen paradox in the previous - - 
chapter the center point of principle in the controversy was shown to be over 

the proper requirements that scientific enquiry in its most general aspect ought 
- (- 

to impose on measurement. The “reality principle” that was set up by the 

critics of mainstream quantum theory was an attempt to separate the result of a 

measurement from any essential dependence on the techniques that are involved 

in making it, and in that way to ensure that the results of measurements have an 

objectivity of the familiar sort. It was as though this kind of objectivity has been 

presqposed by everyone so implicitly that no one had noticed that the quantum 
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theory had done away with it; at any rate that is one way of putting the critics’ 

case. 

. . 
However it was not to be the critics who were generally held to have won 

the day, for Bohr’s arguments were generally assumed to have answered the 

opposition, however carefully or casually they were, considered. Summarizing 
c - e 

the outcome, Jammer (The Conceptual Development of Quantum Mechanica, 

McGraw-Hill, 1966, p. 382) has this to say: 

“The challenge was soon answered, at least from the viewpoint of the com- 

plementarity interpretation of the theory, by Bohr’s insistence on the essential 

influence of the procedure of measurement on the conditions underlying the very - 
definition of physical quantities, considering these conditions as an inherent el- 

ement-of any phenomenon to which physical reality can be attributed. Bohr 

pointed out that a mechanical system, even though having ceased to interact 

dynamically with any other system, does not contribute an independent set of 

‘real’ attributes. Bohr’s rejection of the possibility of associating quantities with 

physical systems in a possessive manner, which rejection invalidated the episte- 

mological premise of the paradox, was clearly but an expression of the fact that, 
- - 

. . _ 

within the framework of the Bohr-Heisenberg interpretation;quantum mechanics - - 
is ultimately a physics of processes and not of properties, a physics of interactions 

- and not of attributes; even out of primary quantities of matter. 

“From this point of view quantum mechanics may rightfully be regarded as 

falling in line with the general development of theoretical physics.” 

This passage puts the contrast between the opposing views in such a way 

as to make very clear the importance of the issue as a turning point in physics, 

but Eguments of this kind which point out the desirability of change cannot 
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be said to have justified the turn (if, indeed, the turn was to be as irrevocable 

as the victors at that time supposed). For what was at issue tias whether the 

“essential influence of the procedure of measurement” could really be shown to 

replace the reality condition of Einstein and to put something in its place which 

should be as satisfying as the old, though in the new framework. According 

to the discussion of this chapter Bohr has not supplied th& demonstration, and 

therefore the challenge of Einstein, Podolsky and Rosen had not been met. 

-. 
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Appendix IV. PROGRAM UNIVERSE 

A Constructive Bit-String Model of the Early Universe 

bY 
Michael J. Manthey 

const doomsday = false; 
type onebit = (0,l); 

..yptr: [l..Usize]; {index of a string in U.} 
ensemble = record 

last: [l..*]; {’ d In ex of current last element of E.} 
E : array[l..*] of Uptr; 

end; 
string 5: record- 

bits: array[l..*] of onebit; 
try : boolean 

end; 
semaphore = (avail,busy); {used to guarantee mutual exclusion 

on updates to U} 

var U: array[l..*] of string; 
Usize: integer; {initially zero = no strings in universe} 
Umutex: semaphore; {initially = avail} 

‘.. 
{level I H III Iv 

1 2 (3) 4..6 (7..10) 11..17 (18..137) 138..255 (256..2-127-1) 

basis- .2. 1 .3. ] .7. 1 .127. ] 
size I I I I 

I......... I........ strings in closures . . . . . . . . . . . . . I 

Levels: array[l..4] of {indices into U} 
record {basis slots} 

LB, {1,4,11,138} 
. . . _ Cur, 

UB {2,6,18,255} - 
:[l..*] 

- ; 

- Fnd; {nb:closure slots from [i][UBi- l]-[i+ l]iLB-i]} 
Labels: record 

last: Il..*]; {’ d m ex of current 1st element of L.} ._ 
L : array[l..*] of ^hnsemb!e 

end; 
empty: string; {an empty string, i.e. one whose length is zero.} 

slength: record {current lengt,h of strings in U> 
sem: semaphore; 
len: integer 

end; 

Bit: onebit; {one random bit...see function Random below} 

CurLvl: 1..4 {the level currently being “constructed”} 
BasesComplete, {all four basis vector sets formed yet?) - -.- 
HierarchyComplete {all four bases and closures formed yet?} 

: boolean; 
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{- - - - - - - - Synchroniwtlon - - - - - - - - - - - - - -} 

procedure wait(var s:semaphore); {PO!! s until it’s avail} 
var t: semaphore; 

begin {presumes mutual exclusion on procedure swap, which 
is formally undefined (universal primitive) and 
which interchanges the values of two variables.} 

t:=busy; 
repeat swap(s,t)- until t=avai!; 

end; {wait} 

procedure signa!(var s:semaphore); {signal that s is available again} 
begin 

swap(s,avai!) 
end; {signal} 

{- - - - - - - - Random l/O Generation - - - - - - - - - - -j 

procedure RandomBit; {Actual random bit generationI..a function of} 
var i,j: integer; {the strings in U. An independent process. } 

begin 
repeat {flip Bit forever} 

Bit := 1; {important when U is small} 

for i:=l to slength.!en do {set Bit as a fen of U} 
for j:=l to Usize do 

Bit := (Bit + !J[i]]j]) mod 2 

Bit := 0; {important when U is small} 

un ti! doomsday 
end; {RandomBit} 

..” (The randomness of the value returned by function Random below 
depends on the fact that procedure RandomBit runs as an independent 
asynchronous process to everything, constantly scanning U’s strings 
and updating the value of Bit appropriately. This occurs even as 
U is locked during discrimination and pre-scattering calculations.} 

function Random:onebit; {Called whenever a random bit is needed.} 
begin 

Random := Bit 
end; {Random} 
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{- - - - - - - - - -ManagIng the Universe- - - - - - -) 

function Generate:string; (generates the first two strings in U.} 
var g: string; 

begin 
ii UsizeiO t,!len Generate:=Random 
-else {Usize can only be 1) 
begin 

repeat g:=Random until g<>U[l]; 
Generate :=g 

end 
end; (Generate} 

procedure LockUniverse; 
begin 

wait(s!ength.sem); 
wait,(Umutex) 

end; 

procedure UnlockUniverse; 
begin 

signal(Umutex); 
signal(s!ength.sem) 

end; 

procedure Tick; {increments the universal string length by one bit. 
This is done under mutual exclusion, so U grows, but no one 
ever sees it, and a!! bit strings are (for all practical 
purposes) always of equal length.} _ 

var i:m teger; 
begin 

LockUniCerse; {stop the world while we cllange it} - ._ 

slength.!en := slength.!en + 1; 

if Usize=O then 
begin 

U[l] := Generate; 
Usize:=Usize+ 1 

end 
else {increase the !engt,h of every string in U by 1 bit.} 

for i:=l to Usize do U[i][s!ength.!en] := Random; 

if BasesComplete and not HierarchyComplete then 
begin 

- 

for i:=l to Usize do 
if U[i] not in Labels then {U[i] not yet in a closure} 
begin 

for j:=l to 4 do 
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if not C!osureFu!!(j) then 
begin 

if Leve!s[j].c!osure=ni! then 
Leve![j].c!osure := genc!osure(j); 

if U[i] in Leve!s[j].c!osure then PutC!osu:e(i,j) 
-end; (j-loop) 

end; .{i-loop} 
if A!!C!osuresFu!! then 
begin 

-fier_archyComp!ete := true; 
N := s!ength.!en 

end 
else EiscardIncompleteClosures 

end; 

UnlockUniverse; {let the world breathe again} 

end; {Tick} 
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{- - - - - - - - - - - Bit-Picking Routlner - - - - - - - - -} 

function ones(s:string):integer; {counts # of ones in 8) 
var i,c: integer; 

begin 
C&O; 
-for i:=l to s!ength.!en do 

if s.bits(i]=l then e := c + 1; 
ones := c 

end; {fen ones} _ 

function zeroes(s:string):integer; {counts # of zeroes in 6) 
begin 

zeroes := sIecgth.!en - ones(s) 
end; {fen zeroes} 

function comp!ement(s:string):string; { complement 8 } 
var i:integer; 

begin 
for i:=l to slength.!en do comp!ement.bits(i]:=(s.bits[i]+ 1) mod 2; 
comp!ement.!en := slength 

end; - 

function discrim(s,t:string):string; {exclusize-or of s and t} 
begin 

for i:= 1 to s!ength.!en do 
if s[i] = t[i] then discrim[i] := 0 

else discrim[i] := 1; 
end; {fen discrim} 

. . _ 
{ -_-__-_________----______________ -1 - - 

YunctionPick:string {picks a string at random from-U}. 
var i,index: integer; (index will be random in l..Usize} 

begin 
” .- index := 0; 

repeat 
for i:=O to cei!ing(!g(Usize)) do index := 2*index + Random 

until index in [l..Usize]; 

Pick := U[index] {assign random string to Pick} 

end; {function Pick} 
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{- - - - - - - - - - Hierarchy Construction- - - - - - - - - -} 

function InU(s:st.ring):boo!ean; {true if s in U else false} 
var i,j: integer; found: boolean; 

begin 

for i := 1 to Usize do {search a!! of U} 
begin 

found := true; 
for j G= 1 to SIength.!en do found := found and (s[j]=U[i][j]); 
if found then goto 1; 

end; 

1: InU := found 
end; {procedure InU} 

function LindepL(S:string; !v!:[1..4]):boo!ean; 
{true if S is linearly independent of the strings in level Iv! 
only.} 

begin 
-mucho recursive-- generates n(b)= B(!)!/{b![B(l)-b]!} 

discriminations with S. 
end; {fen LindepL} 

function Lindep(S:string; !v!:[1..4]):bco!ean; 
{true if S is linearly independent of a!! levels 1 to Iv!. 
N!3: Assumes (correctly) that it is not called if there is 
no room in basis[lv!]...because of the value of Curlv!.} 

begin 
I.. _ Lindep := false; {default value} 

if Iv!<1 then Lindep := true {base ease} 
. . else {check previous levels, then current ‘level.} _ 

if Lindep(S,!v!-1) then Lindep := LindepL(S,!vl) 
end; {fen Lindep} 

- “procedure PutBasis(Si: Uptr);-{ inserts UfSi] into basis of CurLv!} 
{if the current level is full, increments CurLv!.} 

begin 

-- 

index := Leve!s[CurLv!].Cur; {find out where we are} 
new(Labe!s[index]); {make an ensemble} 

Labe!s[index] A .E[ l] := Si; {point 1st ensemble element to its string} 
Labe!s[index] * .!ast := Labe!s[index]^.!ast+ 1 {point to next open 

slot in ensemble} 
Leve!s[CurLv!].Cur := Leve!s[CurLv!].Cur + 1; 
if Leve!$TurLv!].Cur > Leve!s[CurLv!].UP then CurLv!:=CurLv!+ 1; 

{Current basis is comp!ete..start basis of next level in hierarchy} - 
if CurLv!>4 then BasesComplete := true ~_ -. 

end; {procedure PutBasis} 
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procedure Put,C!osure(Si: Uptr; !v!:[1..4]); 
{inserts U[Si] into the closure of Iv!} 

begin 
---similar to the above-- 

en+; {PutClosure} 

procedure Labe!(Si: Uptr); {categorize U[Si] in terms of the hierarchy} 
begin 

if not BasesComplcte then {try to put S into Labels array} 
c - 

begin - - -- 
if Lindep(S, CurLv!) then PutBasis 

end 
else 
begin 

if Lsize<P^N then {there are fewer than 2-N labels currently.} 
begin 

For a!! S in U such that S not in any basis or closure YET 
do 

for a!! ivls in Levels do - -- 

if S in c!osurc(basis(!v!)) then put S into that closure 
if all-closures are full then define N else scrub a!! 
incomplete closures; let Tick go; put any remaining strings 
in U into ensembles. 

end; 

add S to ens(S) { ens=given S, returns ptr to S’s ensemble} 
end 

end; {procedure Label} 
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1 . 

{- - - - - - - - - - The Life of a Bit String- - - - - - - - -} 

procedure stringevo!ution(var !:string; me:Uptr); 
{every string (except empty) becomes a separate incarnation of this 
procedure, i.e. a separate, independent asynchronous process.} 

-var d,m:string; {local working variables} 
home: boolean; {true => I am a member of a basis, closure, or 

ensemble.} 

begin 
repeat 

if Usize=O then {we need two strings to get started} 
begin 

Tick; {go from no strings in U to one.} 
I := Pick; {we become this first string i.e. 

the original empty-process becomes 
the Ujl] process herewith.} 

m := Generate; {generate a second string} 
Usize i= Usize + 1; {Universe now has two strings} 
U]2] := m; 

spawn stringevo!ution(U[2]); {give U[2] life.} 
end 

- else {universe is already rolling, so just scatt,er w/someone} 
begin 

Labe!(me); 
if HierarchyComplete and not home then 

P ierre - is this the right place for this insertion?} 
begin (insert} 

i:= 1; 
while not home and i<=Labe!s.last do 
begin - 

j:=l; . -- while not home and j < =Labe!s[i] .L a .!a& do 
with Labe!s[i].L* do 
begin 

home := Si=E[j]; 
j:=j+ 1 

end; 
if not home 
and Labe!Part(Labe!s[i].L^.E[l]=Labe!Part(S) then 
begin {I belong in this ensemble} 

PutEnsemb!e(Si, Labe!s[i].L^); 
home := true 

end 
end; 

- if not home then 
begin 

Labe!s.last := Labe!s.last + 1; 
new(Labe!s.L[Labe!s.last]; 
with Labe1s.L [Labe!s.!ast] * do 
begin 

El11 := Si; 
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Iad := 2 
end 

end 
end {insert} 

IJnlockUniverse {spawn unlocks what spawner locked... 
extra Unlock okay...} 

LockUniverse; 
m := Pick; 
d:= discrim(!,m); 

_ if d< >zer.ostring then 
begin 

s := zerostring; {“!!ag” S for later} 
if not InU(d) then s:=d 
else 

if not InU(comp!ement(!)) then s:=comp!ement(!) 
else if not InU(comp!ement(m)) then s:=comp!ement(m) 

else if ones(d)< >zeroes(d) then Tick; 
{else we have an elementary scattering event.} 

if s<>zerostring then (put s into U {novelty)} 
begin 

_ Usize := Usize+ 1; 
U[Usize] := s; 
spawn stringevo!ut.ion(U[Usize],Usize); {give S Sfe} 
{hierarchy construction inserted here} 

end 
ebe UnlockUniverse 

end 
end 

until doomsday {strings never die} 
end; {string evolution.} 

begin {--- Udverse starts hem+--- 
‘{Initialization} 

BasesComplete := faise; 
CurLvl-:= 1; 

- .- HierarchyComplete := false; 

} -. 

Levels array... 
{end of initialization} 

spawn RandomBit; {start random number generator going} 

_ BigBang: stringevolution(emptyset); 

end. {Universe (we never get here) } 
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Construction of a Random Walk Ensemble &(v, b) 

{ U( N + B + b, SU) exists} 

{PICK (L,b) := F rom the ensemble in U labeled by L pick at random one string and 

delete all but the last b bits. For this string u = (N’ - @))/a} 
c - e 

-Begin - 

E(1) := PICK (L,b) 

input values u, 6 

Vav := V(1) 

w := V(1) 

SE 1 := 

k2 - := 

- While IV - uavl > 6 do 

- -. 

Begin 

if u < tlay then 

repeat E(k) := PICK (L,b) 

until u(k) < v 

else 

repeat E( IF) := PICK (L,b) 

-until v(lc) > u 

& := &E(k) . 

v!z := v]c + v(k) 

_SE:=SE+l 

Vav := vc/SE 

End 

End 

168 



FIGURE CAPTIONS 

. 

1. Definitions and flow chart for constructing a growing universe U(N, Su) 
containing SU distinct bit strings each containing N bits. 

2.. Basic flow chart for constructing the four levels of the combinatorial 

hierarchy, and using them to construct ensembles of labeled addresses. 

3. The random walk paradigm. 
c - w 

4. - The paradigm for constructing space time from three events. 

5. Paradigmatic configurations for the construction of 2+1 Minkowski 

space. 

6. The geometric paradigm for constructing 3+1 space. 

7. The double slit paradigm. 

8. The six basic processes in U for labels of bit length 2. 

9. - The basic elastic scattering paradigm. 

10. Driving terms for the integral equations of the MUST theory: 

(a) particle-particle scattering via single quantum exchange; and 

(b) quantum-particle scattering via single particle exchange.. 

11. Mapping matrices for the level 2 to level 3 connection. 

- - 
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