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ABSTRACT 

We show that a bit string notation containing quantum number labels, and ad- 

dresses which define velocities, is adequate for describing finite particle number scat- 

_ tering. We derive the strings themselves from a simple computer algorithm starting 

from the empty string and obtain: relativistic quantum wave mechanics as a con- 

tinuum approzimation, the quantum numbers for leptons and hadrons and the scale 

constants of physics from the combiniatorial hierarchy, and mp/me from the Parker- 

Rhodes calculation. 
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We take as our underlying model for microphysics an evolving universe Zf(N, SIJ) 

Of bit string8 Si = (..., Xi, . ..)N. Xi E 0,l containing SU + 1 strings of N bits which 
grows by discrete steps, or TICKS, obtained by adding a random bit R E 0,l with equal 

probability separately to each string at the growing end; TICK is defined by Zf(N + 

1,577) := U(N,SU) 11 R. Novel strings are generated by dberimination DNSiSj = 

( *--, xi +2 xjp -**)N w h ere Si and Si are picked at random from U and by complementa- 

tion ‘Si = DNSilN = (..., Zi +2 1, . ..)N. where IN is the anti-null string containing 

N l’s; these two operations occur between TICKs. We organize the information con- 

tent of our universe into ensembles labeled by the combinatorial hierarchy1-2 using 

the first 256 bits of the string as the label; the (many in an evolved universe) strings 

of length B = N - 256 in each labeled ensemble are called the addresaea. For each 

address string with N1 l’s and No O’s (hence B = N’ + No) we define a velocity 

u = ( N1 - No)/& the average over an ensemble also defines a velocity w = < N’ - 

No > /B. Whenever, between TICKS, all five strings Sl, S2, S3, +31,-&2 connected 

aby DNS& = s3 = D&$1-&2 are already contained in U, and ~3 = 0, we say that 

an event has occured. From this digital basis we will construct below both macroscopic 

special relativistic particle kinematics and relativistic quantum wave scattering theory 

as continuum approzimationa. Because our events occur betzueen TICKS the “position” 

‘where they occur can never be shrunk to a point; this allows us to identify our events 

with the unique and indivisible events of quantum theory. Yet, as we will see, they 

also meet the requirements of special relativity when this theory is interpreted as a 

macroscopic theory in which events occur in finite space time volumes. We therefore 

claim that our concept of event unijiea special relativity and quantum mechanics by 

means of an underlying digital model. 

Before articulating the complete scheme, we illustrate the connection between our 

notation and Feynman diagrams. Using only the first two bits as a label and an address 

string as either 1~ with v = +l or the null string 0~ = 11~ with v = -1 (which we 

will obviously later have to justify calling the limiting velocity in dimensional units kc), 

we have two basis states (lO)Ig, (Ol)&, and by discrimination (1l)O~. We interpret 

the two basis labels as a representation of a dichotomous quantum number, a single 

entry designating a specific quantum number for a particle and its complement for 

the antiparticle; since ~(10) = (01) in this simple environment 1 applied to a label is 
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“charge conjugation” C. Applied to the addreaa this operation reverses the velocity. 

Since “time” has to be constructed from an ordered aequente of TIC&, this operation 

has to be interpreted as P rather than as T. Since the quantum number does not 

reverse, this quantum number can represent a pseudovector which we identify with 

helicity l/2. Then the two particles have opposite helicity and the label (11) is a boson 

with zero helicity component in the single direction we are now considering; it has no 

“antiparticle”. Thus our first level is the starting point for a two component neutrino 

theory with UL = (lo), DR = (01) and 2: = (11). The three types of vertices are 

illustrated in Figure la, and the three types of events in Figure lb. If all legs are 

interpreted as incoming or all outgoing, a little thought should convince the reader 

that these are elementary Feynman diagrams to which the usual rules apply. 

Once we have supplied the space, time and momentum space background, these 

diagrams provide the input needed for a minimal unitary relativistic scattering theory 
3 developed elsewhere . The additional postulates needed to make this into a dynamics 

-“for the system at hand are that particle and quantum can “bind” kinematically to 

form a system with the same mass and ezternal quantum numbers as the particle,4 

that the particle and antiparticle “bind” to form the quantum, and that a second 

.- quantum can “bind” to the particle-quantum system again without changing the mass 

or quantum numbers. This leads to the four driving terms given in Figure lc and Figure 

Id. Supplied with the correct coefficients to guarantee two particle unitarity, these 

then can be used in relativistic Faddeev equations which in the two body sector have, 

kinematically, the usual Feynman amplitudes as driving terms, but lead to unitary 

“three particle” amplitudes when the equations are solved. 

Since we now know in outline how we intend to construct a dynamical theory, our 

next step is to see how we enrich the available quantum number spectrum while preserv- 

ing the information content of the first level; we turn to the combinatorial hierarchy1y2. 

We define a discriminately closed aubaet, or DCsS, as (a) a single non-null string or 

(b) any set of strings which when combined by discrimination yield another member 

of the set. Thus for level 1 we have the three DCsS’s {(lO)},{(Ol)},{(lO),(Ol),(ll)}. 

To preserve this information we introduce binary multiplication and look for map- 

ping matricea such that (a) they are non-singular so as not to map onto zero, (b) 

have a DCsS as their unique eigenvectors and (c) are linearly independent. For level 
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1 these are easily found. Writing the 2X2 matrices as strings according to the rule 

(ACBD)(zy) = (AZ + By, Cz + Dy) they are a = (lllo), b = (1101) and c = (1100) 

respectively. From these we can form the 23 - 1 = 7 DCsS’s {a}, {b}, {c}, {a, b, a + 

61, (4 c, 6 + 4 -t c, Q, c + a}, {a, b, c, a + b, 6 + c, c + a, a + b + c}. Recalling that (with 

+ for discrimination) u + u = 0, we see that all seven sets are closed under discrim- 

ination, and that given n linearly independent ordered strings we can always form 

2n - 1 discriminately closed subsets, - the number of ways n distinct things can be 

chosen 1,2,..,n at a time. Thus at level 2 there are seven strings which are “inside” 

the hierarchy which we symbolize by ik, k E 1, ..7 and the remaining 8 non-null strings 

(out of the 15 possible) “outside” the hierarchy symbolized by ok, k E 8, ..15. The 

theory contains only three types of vertices (for the quantum numbers) ik + il = i,,,, 

ik + 01 = Om and Ok •l- 01 = im. 

We now interpret the four slots as refering to the helicity states of electrons and 

positrons according to the scheme given in Table I. We see that we now have the 

“correct quantum number content and connections for lowest order QED, and can go 

on to a full lowest order dynamics once we supply the appropriate momentum factors 

and interpretation. We believe it possible to develop from this starting point and the 

I minimal unitary scattering theory3B4 (extended to Faddeev-Yakubovsky equations)5 a 

finite particle number version of QED; results will be presented elsewhere6 . Further, 

by combining levels 1 and 2 we have the basic six fermions (VL, DR, e;, et, e& ef;) 

for Weinberg’s7 weak-electromagnetic unification, as well as the basic lowest order 

diagrams once we invoke the minimal unitary scattering theory; our explanation of 

mass differs from his. We hope that we have now provided sufficient motivation for 

the reader to follow our construction of the whole scheme from basic principles. 

Our algorithm for creating a universe8 of bit strings starting from the empty 

string4 is displayed in Figure 2. The operator called R picks randomly between 

the two bit symbols 0 and 1 with equal probability. From it we can also construct 
the operator PICK which picks any one of the SU + 1 bit strings of length N from 

the current universe U(N, SU) at random. The operator TICK simply increases the 

growing end of each string in U by one random bit and changes N to N + 1 any time 

one of the two operations discussed below fails to produce novelty. 
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Since our aim is to construct an ever growing universe of distinct symbols, we 

need to have a way of checking whether or not any symbol we turn up already is 

in this universe or not. Symbolizing a string Si by Si = (..., Xi, . ..)N. Xi E 0, 1, the 

discrimination operation defined by DNSiSj = (..., zi+2Zj, . ..)N yields the null string 

ON = (00...0)~ when Si = Si, or when they are different (and N 2 2) generates a 

new string that differs from either of them. If this fails to produce novelty, we invoke 
the complementation operation defined by 1Si = (..., Zi +2 1, . ..)N applied to either 

of the initial strings. Whenever either of these operations generates a new string we 

adjoin it to U and continue. Otherwise, if we have still failed to generate novelty, the 

careful reader will realize that we have achieved a situation in which 

DNS& = 273 = +,+2 (1) 

Our final test is whether the number of O’s in S3 is equal to the number of 1’s. If we 

fail all these tests, we TICK and all strings are augmented by one random bit. This a- 
all there is to our growing universe! The rest is interpretation. 

The basic paradigm we use for connecting our model to laboratory experience is 

drawn from high energy physics. We consider two counters separated by a macro- 

scopic distance S which fire sequentially, the two firings being separated by a macro- 

scopic time interval 2’. Each firing then occurs in a macroscopic space-time volume 

AzAyAzAt which we will never allow to shrink to zero. We have no “points”; our 

concept of a macroscopic event is similar to that of Whitehead but with no impli- 

cation of a continuum limit. Nevertheless we can still define velocity by v = S/T 

to arbitrarily high precision simply by separating the two counters far enough. To 

connect this concept to our bit string model we extend our definition of the velocity of 

a labeled address string to a subsegment with 6 < B bits; as before b = N’ + No bits, 

where N’ is the number of l’s and No the number of O’s,and v = (Nr - NO)/f+ or for 

an ensemble of address strings with the same label by the average over the ensemble 

w =< N1-fl > lb. 0 ur next point of contact with the bit string universe is to 

assume that the two events are connected by a random walk of 6 steps where p = 

< N1 > /b is th e probability of taking a step in one direction and q =< No > /b is 

the probability of taking a step in the other direction (direction being defined macro- 

scopically by the time sequence of the firing of the counters). With this definition we 
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that velocities must lie between -1 and +I, consistent with the experimental fact that 

no particle velocities can exceed the limiting velocity c; clearly we have established c 

as our dimensional unit for velocity. 

The fact that there is as yet no way to define spatial direction in our bit string 

universe (all address strings will occur with equal probability), then allows us to con- 

struct the Poincare transformations between coordinate systems defined by the firing 

of counters in the usual way. We will see below that the combinatorial hierarchy allows 

us to define only four classes of events, so our basic space of description must be 3+1 

Minkowski space, again in agreement with experience. Of course, once we have a richer 

variety of quantum numbers, we can construct multi-dimensional phase spaces, but the 

basic laboratory space remains 3+1. To introduce maas into our model we assume that 

to each label there corresponds a mass connected to the step length in the random walk 

1, which in a coordinate system where the random walk has zero velocity is lo = h/me 

-*sumed to be a Lorentz invariant. We will prove below that h, which is so far only 

a constant with the dimensions of action, is indeed Planck’s constant. In a moving 

coordinate system the step length will be Lorentz contracted: I= lo[l- v~/c~]~/~. We 

now introduce two new coordinate system dependent quantities E and p connected to 

‘the invariant m by E2 - p2c2 = m2c4. This allows us to define E in terms of our step 

length by 1 = he/E, and implies a second length X = h/p. Thus the quantization 

of our step lengths will become our explanation for the quantization of energy, and 

the sequential character of the steps will allow us to derive the deBroglie wave length. 

Having introduced these quantities connected to our basic counter paradigm we can 

obviously go on to define energy-momentum conserving collisions and measure mass 

ratios in the usual way. For this we need the additional interpretive postulate that only 

vertices and scatterings in the bit string universe which conserve vector momentum 

? = m?t/[l-u2/c2]1/2 will lead to the firing of counters. This completes the rules we 

need to establish conventional relativistic particle kinematics. 

The original treatment by Stein lo followed another route. He notes that the 

standard deviation from the peak in a biased random walk is given by U(V, b) = 

( 6pq)‘/2 = ( b/4)‘/2[ l- ~~1~1~. He goes on to show that this contraction factor and the 

principle of relativity then lead to the Lorentz transformations for his random walk 
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model. This alternative is, we believe, consistent11-12 with our current treatment, but 

feel that the arguments given above will be easier for most physicists to follow. 

Our next step is to note that, since our basic connection to laboratory experience 

is through counters that always will enclose many steps in a random walk, we must 

consider not a singe labeled ensemble, but all ensembles consistent with the same step 

length. We construct these as coherent ensembles by assuming that in one time interval 

6t = l/c an element of the random walk moves one step, and that in k steps the peak of 

the distribution moves with velocity c/k to the previous position of the next ensemble 
in the coherent ensemble of ensembles. We then have a second velocity ZQ, = kc 

corresponding to all steps taken in the dame direction. If we now consider such a 

coherent ensemble of ensembles incident on a screen with two slits a distance d apart, 

the most probable positions for the peaks to line up on a detector array a distance 

D from the slits are at 2n given by zn = nXD/d. Thus we have the equivalent of 

deBroglie wave interference established on a digital basis and can confidently associate 

-“ijur quantized step length with the Einstein-deBroglie quantization condition Xph = 

he/E and our coherence length with the relativistic deBroglie wavelength X = h/p. 

Our next step is to connect the random walks to a wave theory. Consider a counter 

.-centered- at z = 0 and extending a distance AZ on either side. So far all we know 

is that for one velocity we have a sequence of steps which can be represented by 

6[(nz/x) -(ct&,h)l = G[(npz- Et)/h]. But if the counter fires at t = 0 these must be 

absent outside the spatial limits defined above. Hence we must introduce an amplitude 

f(p) and sum over different values of p to meet this boundary condition. This is a 

critical step, as then f(p) must have negative as well as positive values, and cannot be 

interpreted as a classical probability. Clearly we must require that 

+r dpf(p) J?,NS( npz) = [e(z + AZ) - e(z - Az)]/2Az (2) -m 

In contrast, for a conventional wave theory (with h/2x = I= c) we would have that 

I[ dPf(PkiP” = [e(z + AZ) - e(z - Az)]/2Az (3) 

Therefore, by Fourier inversion 

(1/27r) ‘,” dzeiPIZ I[ dpf(p)eip” = $ dpS(p - p’)f(p’) (4 
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and hence 

f(p’) = ( 1/4rp’Az)[eiflA” - emiti”‘] = (i/27rp’Az)sin(p’Az) 

But the mathematical operation of Fourier inversion can just as well be applied to Eq. 

(2). Doing so, we recover Eq.(4) plus correction terms of order (l/N), which proves 

the equivalence of our bit string model to a wave theory to this order. Further, we can 

now derive the Heisenberg uncertainty relations for continuum variables in the usual 

way. Finally, since we have been forced to introduce probability amplitudes rather than 

pro6abilitiea by our counter boundary condition, our connection to experiment must 

include the usual Born interpretation of the square of the amplitude as a probability 

density. Well known interference effects in scattering then require the amplitudes to 

be complex and the rule to apply to the absolute square of the amplitude. Thus we 

claim to have proved that we have constructed free particle quantum wave mechanics 

on a digital basis as an approzimate theory. 

.?- Since we now have free particle wave functions, we can invoke a previous con- 

struction of N-particle relativistic scattering theory13 which allows the conventional 

scattering amplitude to be interpreted as a purely kinematic (i.e. descriptive) quantity. 

The dynamics of the theory are then provided by relativistic Faddeev-Yakubovsky in- 

’ tegral equations, which guarantee the unitarity of the amplitudes. We derive the 

driving terms for these equations from our bit string model, and make contact with 

a minimal relativistic scattering theory previously developed3r4. The minimal unitary 

two particle scattering amplitude in this theory for an intermediate a-channel state of 

mass p with (for equal masses) 8 = 4(q2 + m2) is g2/[(m2 - p2/4)‘j2 - (m2 - .9/4)lj2]. 

By allowing particle and quantum to bind (kinematically) to make a state with the 

same mass and quantum numbers as the particle, a model which comes directly from 

our bit string universe, we derive two particle relativistic scattering equations that 

have the Lippmann-Schwinger equation for a Yukawa “potential” as the well defined 

non-relativistic limit. Hence we recover a first approximation to nuclear physics, and 

in the zero quantum mass limit Rutherford scattering and the Bohr atom. Then by 

interpreting one of our dichotomous quantum numbers in the bit string address as 

spin, we get atomic physics. 

We now return to the box in our basic program (Fig. 2) called CONSTRUCT 

LABELS... which does not affect the running of the universe, but now becomes part of 
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the interpretive schema. As we have seen above, the lowest level of the hierarchy has 

two linearly independent basis vectors and hence 22 - 1 = 3 DCsS’s. We map these 

by 2 x 2 matrices providing three basis strings for the second level; the second level 

gives 23 - 1 = 7 basis strings for the third level, and the third level with 27 - 1 = 127 

elements gives 2127 N 1.7 X 1O38 elements in the fourth level. Since (256)2 << 1.7 X 1O38 

there are no where near enough mapping matrices to map level four, and the sequence 

terminatea. 

This construction was created by Parker-Rhodes in response to a query by Bastin 

as to how to generate a sequence with cardinals of a few, a few hundred, some large 

number, and atop, and interpreted by Bastinl as giving the scale constants of physics 

(3 : superstrong, quarks, the three dimensions of space ???; strong : 3 + 7 = 10 N 

hc/2xf 2 = l/O.08 ?I4 ; electromagnetic : 10 + 127 = 137 N hc/2ne2; gravitational : 

137+2127 -1~ 1.7 X 10% z hc/2nGm%). 

a- The full quantum number scheme which relates this construction to the labels in 

the bit string universe is still under investigation 6. Our tentative scheme for the first 
three levels, making use of the mapping matrices2 is given in Table II. We see that 

at level 1 we have two component neutrino theory in which, when we add the address 
_ . 

label corresponding to zero mass, has UL = (IO...O)l6(11I..I) establishing our helicity 

convention. At the combined levels 1 and 2 we have the two helicity states of the 

photon, coupling to electrons and positrons by the extension of Figure 2, W+, W-, 2’ 

as vector bosons, and the longitudinal or coulomb photon. At this point the particles 

and quanta are still massless; reversal of velocity [i.e (lll...l) -+ (OOO...O)] does not 

change the direction of spin, proving that it is indeed a pseudovector. At level 3 we 

find the baryons of strangeness 0 and fl as the obvious interpretation, and the proper 

number of and quantum numbers for the usual pseudoscalar (because they are bound 

states of fermion-antifermion pairs) and vector quanta. We might seem to have a 

problem with the appearance of two longitudinal or coulomb photons. However if one 

takes the Wheeler-Feynman point of view that all quanta are ultimately absorbed, the 

unitarity condition in the minimal unitary scattering theory fixes the mass in terms of 

the coupling constant, or visa versa. J.V. Lindesay, A. Markevich and G. Pastrana” 

find that in the weak coupling limit for e2 N l/137 the mass of the photon my N 
-- We -137 which is not in conflict with any known experimentsm . Then the two S, = 0 
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photons are simply the vector and scalar photons in a four-component theory, and the 

problem is solved. With some care, and free use of the minimal unitary scattering 

theory4j6, it is possible to show that all the usual Feynman diagram rules apply, and 

hence that our theory is CPT invariant at level 3. At level 4 we will have 16 X 16 

quantum numbers. The problem of getting quark quantum numbers, heavy leptons, 

or, as looks promising from the numerics, riahona will be studied after level 3 is under 

control. 

Independent of the details of this scheme, we see from the basic randomness of 

our construction that at level 3 the exchange of a “coulomb photon” will occur with 

probability l/137 compared to all other alternatives. This allows us to calculate the 

electron mass as the expectation value of its coulomb energy in a coordinate system 

at rest by a statistical average m,c2 =< e2/r > using e2 = hc/2r X 137. The 

calculation itself was originally made by Parker-Rhodes17 starting from a very different 

construction of space time and the combinatorial result; we provide here a modification 

of ouTprevious discussion of this calculation 2. Taking as our basic mass the baryon 

mass mg (because of the connection to the gravitational constant G) and noting that 

the heaviest system to which the coulomb photon system couples directly is a baryon- 

antibaryon pair, the minimal distance we can consider in a system starting from rest 

is-half a baryon compton wavelength. We therefore scale r by r = (h/2mgC)tj, 1 5 

y < 00. The charge in the lepton must separate by more than r into two lumps which 

by charge conservation we can write in terms of a dimensionless parameter x as ex and 

e(l- x), where x is a statistical variable reflecting the fact that we have both charged 

and neutral leptons and baryons. Hence 

< e2/r >= (hc/2n X 137) < x(1 - x) > (fmg/h) < l/y >= mlc2 (6) 

and 

mBlml= 13774 < x( 1 - 2) > < l/y > (7) 

Since we have now established our space as necessarily three-dimensional, the discrete 

steps in y must each be weighted by (l/y) with three degrees of freedom; hence 

(8) 

.’ 
.: 

. ,‘. 
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Since the charge must both separate and come together with a probability proportional 

to x( I - x) at each vertex, the weighting factor is x2(1 -x)~. For one degree of freedom 

this would give 

l 3 
< x(1 - 2) >= [ix 

l 2 (1 - x)~~x]/[~x (1 - x)2dx] = 3/14 (9) 

Once the charge has separated into two lumps each with charge squared proportional 

to x2 or (1 - x)~ respectively, we can then write a recursion relation2117 

Kn = $x3(1 - x)~ + K,-rx2(1 - x)4]dx]/[;x2(I - x)2dx] 
0 

(10) 

and hence 

Kn = 3/14 + (L?/T)Kn-l = (3/14)C~~~(2/7)’ (11) 

Therefore, invoking again the three degrees of freedom, we must take < x( 1 - x) >= 

*K3 and we obtain the Parker-Rhodes result 

mB/ml = 137n/[(3/14)[1+ (2/7) + (2/7)2](4/5)] = 1836.151497... (12) 

‘Since the electron and proton are stable for at least 1031 years we identify this ra- 

tio with mp/me in agreement with experiment, thus setting the basic mass ratio 

scale for the theory. Whether this mass ratio remains unchanged and we can cal- 

culate the masses of unstable baryons and bosons from our dynamical theory is under 

investigations. 

As already noted, the absolute unit of mass in the theory must be approximately 

the proton mass because of our identification of 2 ‘27+136 with the inverse gravitational 

coupling constant. Since the calculation given above is a mass ratio, its success is 

independent of the absolute value of this unit. The corrections which take us from 

our single dimensional mass parameter mg to the empirical value for the proton mass 

and to the empirical value of the fine structure constant will have to come from level 

four of the theory, where we must also find a place for the equivalent of quarks and 

heavy leptons. Since we will then have 256 quantum numbers to play with, this will 

be challenging but not obviously impossible. Other problems, such as building up the 

electromagnetic field from our photons and the gravitational field from gravitons (we 
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can obviously make the latter - so far as quantum numbers go - from leptons as spin 

2 helicity states) is similar to that of any theory which starts from the weak coupling 

limit. 

The reader immersed in special relativity may be troubled by the ticking universe, 

which provides a universal time, and the fact that our zero velocity criterion which 

defines the basic momentum-conserving events (~3 = N’ - No = 0) would seem 

to single out a particular coordinate system. We have been led to the construction 

which places scatterings between TICKS because we cannot allow our events to have 

a continuum limit in points; else we would get back to the agony of infinite energy at 

each point, which it has taken so much hard technical work for quantum field theory 

to deal with. Our “virtual” processes occur in the “void” as finite fluctuations which 

cannot be directly accessed by experiment. We claim this is a strength rather than a 

weakness. As to the special coordinate system, we claim to have shown that we can 

.&ill define macroscopic velocities II to arbitrary precision, and derive (or, according to 

some like Michael Peskin, define) the Lorentz transformation, thus recovering special 

relativity as a macroscopic approximation. As to the special coordinate system we 

claim that empirically there ia such a coordinate system which defines t, = 0 by .- 
-the 2.7’K background radiation. This is no more an embarrassment for us than for 

special relativity; the fact that it occurs so naturally in our theory we again count 

as a strength rather than a weakness. Clearly we still have to show that we can get 

the particle physics right, and then go on to show that the big bang emerges from our 

initial generation operations. This is a problem for future research. We are encouraged 

by the fact that we have only one type of mass in the theory, and in that sense have 

no place for a difference between gravitational and inertial mass. Further, if we do 

indeed succeed in getting spin 2 gravitons in the weak coupling limit, we can hope to 

recover gravitational theory from that starting point, a problem already discussed by 

Weinberg18 . 

Our final point is that by focusing on velocity rather than space and time as basic 

we believe we have the correct fundamental starting point for unifying macroscopic 

quasi-continuous measurement with a digital model, a point of view already stressed 

by S-matrix theorists. Further, our ticking universe allows us to fuse the special 
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relativistic concept of event with the unique and indivisible events of quantum me- 

chanics. Whatever else survives from this attempt to construct a digital model for 

the universe, we are convinced that this is the correct place to connect relativity with 

quantum mechanics in a fundamental way. We close by remarking that the cosmolog- 

ical implications of the model are not in conflict with experience. 
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Table I 
Interpretation of the second level of the combinatorial hierarchy 

in terms of electrons, positrons and gamma rays 

eL et e; ei Q H 

inside the hierarchy 
basis 7L + ejj 1 1 1 0 -1 -l/2 

7L 1 1 0 0 0 -1 

7L + ej$ 1 1 0 1 +l -l/2 

discriminate 
closure G 0 0 1 0 -1 +1/2 

4 0 0 0 1 +1 +1/2 

7R 0 0 1 1 0 +1 

70 11110 0 *- 

outside ec ez ei ei Q H 

1 0 1 0 -2 0 

et + 7~ 1 0 1 1 -1 +1/2 

% 1 0 0 0 -1 -l/2 

ei+ej$ 1 0 0 1 0 0 

01100 0 

“L+ 0 1 0 0 +1 -l/2 

el+qR 0 1 1 1 i-1 +1/2 

e,++ei 0 1 0 1 +2 0 

quanta 7~,7~,70 

15 



Table II 
Interpretation of the first three levels of the combinatorial hierarchy 

in terms of particles (fermions) and quanta (bosons) 

Level 1: 

particles 

quantum 

Level 2: 

particles 

rquanta: 

basis 

VL 10 0 0 0 000 0 

trR 0 1 0 0 0 0 0 0 0 

20 110000000 

ei 001000000 

et 000100000 

eii 000010000 

ef; 000001000 

7L 001100000 

w; 1 0 1 1 1 0 0 0 0 

w,+ 0 1 1 1 0 10 0 0 

- ‘* discrimihate 

closure wR+ 0 1 0 0 0 10 0 0 

K- 1000 1000 0 

7R 11001100 0 

70 11111100 0 

Level 3: 

particles pi 000000101 

PL 000000011 

nL 000000100 

AL 000000010 

c; 0 0 0 0 0 0 10 0 

=i 000000100 

CO 000000100 

co 0 0 0 0 0 0 0 1 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 0 1 0 

0 0 1 0 1 

11100 

1 0 0 1 1 

-- quanta A, P, 0, K, c 4 ( 1,2,3 1 eve1 Coulomb (1111111111111111) ) 
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FIGURE CAPTIONS 

1. (a)The three vertices for a single dichotomous quantum number (level 1). (b) 

The three events connecting the first three vertices. (c) The driving term 

for particleparticle scattering and the term unique to particle-antiparticle 

scattering in the two body sector of the minimal unitary relativistic three 

particle scattering theory and the driving term in the same theory which 

occurs only in the particle-antiparticle channel. (d) The two driving terms 

in the quantum-particle sector. 
2. Definitions and flow chart for constructing a growing universe U(N, SU) con- 

taining SU distinct bit strings each containing N bits. 
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(IO) 

(a) Vertices generated by discrimination or 
complementation. 

(b) Basic scattering events generated by the 
main program. 

m’\/m’ m 

ii, 

/ mo mQ / 
* 

mQ mQ 
mQ. 2/LI --- 

n m/’ m 

m2 m2 

(c > Particle-particle and particle-antiparticle 
scattering in the MUST theory. 

mQ m 

Id) Quantum particle scattering in the MUST 
theory. 5-83 4551A2 

Fig. 1 



FLOW CHART FOR PROGRAM UNIVERSE 

ENTER 

N:=O; SU:=O; W (N, SU 1: Empty String 

1 
U [O]:=R; N:=l; SU: =I (R a random choice of 0, I ) 

IU[Il:.R 1 (D,S, S2:=(-, x,+~Q, .+) 

‘Since we have fail1 ’ 
-0 new srrlng or an event we 

r auament all strinos in 92 bva 
\iinhom bit for eiih strini IL 

--. ‘J 

QCI 
- 

L I # 
L ‘/3 : 0 

N:= no. of l’s in S3 

Nz=no. of OS in S3 

I S, := Pick 

>I 

I S,: = Pick 

-1 1 1 and find a I 
1 

/ 
v3:=N;-N; 

[adjoin S to%} 

Pick is a random 
string from 92 I 

1 S isa 
not in 

/ 
string 
a 1 

1 S is a new string 
generated by 
discrimination 1 , 

No 
s:=s, 

I 
Yes& 

sq:=1s, lS,:=(...,X,+21,...)N I\ 

\1 No 

Yes 

1 
S is a new string I\ 
generated by 
complementation I 

Fig. 2 


