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ABSTRACT 

One of the most interesting features of the T(4s) (one of the resonances in the 

T family, which provided clear evidence of the existence of the “beauty” flavour) 

is the enhanced production of kaons from its decay. We calculate the number of 

kaons yielded by the T(4s) decay, making use of the analytic formulas prescribed 

by the fragmentation model of Field-Feynman. We use the calculation as a test 

which compares the “Standard Model” (with top quark) with a topless model, 

based on the unified group Ee. It turns out that the topless model yields the 

higher number of kaons and is in agreement with the experimental data. Thus, 

the main problem for topless models of the &-type is the strength of their flavour 

changing neutral currents. Interesting indications come also from the study of 

different mixings in the two models. For instance, the b --) u channels are not as 

disfavored as they look. 

1. INTRODUCTION 

The discovery, two years ago, of the resonance T”’ [T(4s) of the quarkonium 

model] in e+e- annihilation [1,2] has thrown new light on the world of elementary 

particle physics. Besides yielding clear evidence of the existence of a new flavour 

(the “beauty” of the bottom quark), it gave important indications on the weak 

interaction properties of the b-quark itself. 

If we knew how the b-quark decays, we could find out whether the existence 

of the top quark (for which there is yet no direct evidence) is needed, and thus 

rule out certain classes of unified models. Unfortunately, this is true only in 

principle. In the present situation, the interpretation itself of the experimental 

data is so strongly model dependent as to make it impossible either to validate, or 

to rule out, with one hundred percent confidence, models involving quark-lepton 

symmetry (except for the very “exotic“ ones). The search for indications and the 

attempts at interpreting them by use of theoretical models can test the validity 

only in terms of the likelihood of the models themselves. 
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The fact that the top quark has not been discovered, in a mass range up to 

about 20 GeV, keeps alive the interest in the otherwise unlikely topless models 

for Grand Unification (the main argument against these models being the limit, 

which is getting more and more narrow, on the flavour changing neutral currents, 

which a topless model is forced to have). 

The object of this paper is the critical examination of one of the important 

characteristics demonstrated by the T”’ resonance: the enhanced production of 

kaons. We interpret it in terms of two distinct models: a topless model (with Es 

as gauge group) and the standard SU(2) x U(1) model with the top quark, with 

the aim of testing these two models. 

The T”’ resonance is the broadest of a series of four resonances (Y, T’, T” are 

the others [3,4]) observed in e+e- annihilation at the Cornell Electron Storage 

Ring (CESR), in the energy range 9.4 to 10.6 GeV. The family of T resonances is 

interpreted as a b6 bound system (Is, 2s, 3s, 4s, respectively). The T”’ resonance, 

which is observed at 10.55 GeV, is supposed to decay rapidly into a BB meson 

pair, in analogy with the decay of $(3770) ’ t m o a 015 pair. The B meson, which 

is supposed to be a bound state of a b-quark and a light antiquark, then decays 

weakly. Evidence of semileptonic decays [5,6] confirms this picture: there is an 

enhanced production of electrons and muons from the T”‘. 

The most striking data on T”‘, obtained with the CLEO detector at CESR, is 

the enhanced production of kaons [7,8]. In the picture described above, this has 

direct implications for the weak interactions of the bottom quark. In particular, 

it seems to suggest that b decays more into c than into u, since c decays mainly 

into s. 

We examine this point critically in the present paper, which consists of a 

theoretical calculation of the kaon yield per B decay, assuming the weak decay 

properties of the b-quark as they stem from the standard model (with top quark) 

and from an Ee topless model. We assume the validity of the “spectator model” 

which is supported by recent experimental data [9]. The B decay properties are 
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then reduced to the &decay properties, whereas the other light antiquark in B is 

just a spectator bearing only the duty of recombining with the products of the b 

decay to form new hadrons. The most important ingredient in our calculation is 

the use of the Feynman-Field (FF) prescription [lo] to compute the number of 

hadrons produced by the fragmentation of a quark. We want to stress that the 

FF formulae apply with good agreement in the case of jets of mesons produced by 

fast outgoing quarks [ll]. That might seem, at first glance, not to be suitable to 

the case of a decay. On the other hand, the energy of the b-quark (about 5 GeV) 

justifies, in our opinion, our use of the FF formulae. In any case we demonstrate 

a nontrivial method to calculate the number of kaons in the B-decay; one might 

search in the future for fragmentation functions considered more suitable to the 

case for B decay, but the required changes would not be difficult. We believe, 

though, that such modifications would not seriously affect the main result of this 

paper, which is a direct comparison between a topless model and a model with 

top quark in effecting weak B-meson decays. 

Only part of the calculation can be done analytically. The final integrations 

are numerical integrations, performed on a computer with the aid of a Monte 

Carlo routine. 

Our paper is organized as follows. In section 2 we describe the method used 

for calculating the number of kaons produced by a decaying particle. The FF 

fragmentation model is outlined first (2.1); th en its application to the case of a 

decay is given (2.2) and the respective differential decay rate is calculated from 

a general effective Lagrangian for the weak interaction (2.3). The limits of the 

integration to be performed are then evaluated (2.4) and the way we average on 

the transverse momentum of the kaon (transverse with respect to the direction of 

the quark which fragments) is shown (2.5). Section 2 ends with a summary of the 

formulae to be used. In section 3 we apply the procedure just described to the & 

topless model and to the “standard model”, specifying our choice of the mixing 

angles, among those which phenomenology still all-ows. The results obtained by 

our calculation are presented, together with our analysis and comments on these 
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results. Section 4 contains some concluding remarks. 

2. THE PROCEDURE 

We indicate in this section the procedure that we have followed in order 

to calculate the number of kaons produced in the weak decay of the b-quark. 

Throughout this section we keep to a general point of view, independent of any 

specific model for grand unification. (Applications to the & topless model and 

the standard model with top quark will follow in the next section.) This general 

framework is based on the fragmentation picture to which the Feynman-Field 

formulae apply. We refer to the original paper [lo] and to the references therein 

for details, while we briefly outline in subsection 2.1 the main features of the FF 

fragmentation model. 

2.1 THE FRAGMENTATION MODEL 

The basic assumption is that a quark of flavour ua”, having a certain momen- 

tum T.u=, creates a colour field (by soft gluon effects) in which new quark-antiquark 

pairs are produced. The quark ua” combines with an antiquark “(1” of the cre- 

ated qif pair to form a meson “a$‘, while “q” combines with another antiquark 

‘9” of another created pair, . . . . The mesons thus created are called “primary 

meson$ (they may undergo a decay process later, but in the applications we 

shall make, we shall not consider this). A hierarchy of primary mesons is thus 

created, starting from the meson “a$‘, called the “rank-one primary meson”, go- 

ing on to the meson .qF’, called the “rank-two primary meson”, et cetera. This 

process is called “fragmentation” and it is said that the quark “an fragments into 

the “cascaden of hadrons uaQ, q?‘, et cetera. The hadrons in the cascade move 

roughly in the same direction as the fragmenting quark uan. 

The next assumption of the model is the validity of the following recursive 

principle (called the “chain decay” ansatz): if the rank-one primary meson carries 

away a momentum u11 from the quark ua” of momentum wa, then the remaining 
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cascade is distributed in the same way as the cascade created by a quark “q” of 

momentum wq = w, -WI. It is moreover assumed that all distributions, for large 

momenta, scale so that they depend only on the ratio of the hadron momenta to 

the quark momenta (the problem arising when dealing with small momenta will 

be solved shortly). 

With these hypotheses, the properties of the fragmentation can essentially be 

deduced from one function f(v), d e t ermining the probability that the rank-one 

primary meson leaves the fraction of momentum Q to the remaining cascade. 

Aside from this function there is a dependency only on three parameters: the 

flavour, the spin of the primary meson, and the transverse momentum (transverse 

with respect to the direction of the original fragmenting quark) of the primary 

meson. 

For what concerns the flavour it is assumed that the probability of creating 

an ss pair is half the probability of creating a uti or dd pair. Therefore, if we 

denote by 7 the probability of creating a uti or ddpair, the probability of creating 

an ES pair is 1 - 27. Hence 7 = 0.4. We assume moreover that all the primary 

mesons are pseudoscalar, thus eliminating the question of the spin of the primary 

mesons. The problem of the inclusion of the transverse momentum of the primary 

mesons can be solved only be comparison with the experimental data and will 

be discussed in subsection 2.5. 

It is possible to show [lo] that, given the function f(v) and fixing the pa- 

rameters relative to flavour and spin of the primary mesons, one can determine 

the distribution in the fraction of momentum z of the primary meson h from 

the fragmentation of the quark q. This distribution is denoted by D!(z). The 

function f(q) is then determined by choosing for it the simple form of a parabola, 

with parameters fixed by making them fit the experimental data. Before giving 

the explicit form of the distribution D:(z) [ w h ere k stands for kaon] we want to 

give the resolution of the only problem we left behind. The model works well 

for very high momenta, but for low momenta, or even for fairly large momenta 
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but small z, it presents ambiguities. These can -be solved [lo], by replacing the 

momentum variables with the light cone momentum variables [12,13], which is 

like saying that the whole procedure is valid when interpreted as viewed from 

the “infinite momentum frame”, a system of reference moving at the velocity of 

light with respect to the cascade in the direction of the fragmenting quark q. If 

we fix this direction to be the z-direction, then the light cone momentum of the 

particle r is E, + p:. The variable z of the distribution D!(z) is then: 

Ek + P& 
‘= E+p,z . (2.1) 

We give the explicit form of D:(z), for q = u, d, s, as they are deduced from 

the FF formulae in the case of production of pseudoscalar mesons only: 

D;(z) = D;(z) = 0.32 F(z) - 0.12 f(1 - z) 

D;(z) = D;(z) = D:(z) 

D:(z) = D;(z) = 0.32F(z) + 0.48 f(1 - z) 

where 

F(z) = y + 3.47 z - 5.77 .zoaz4 

(2.2) 

P-3) 
f(1 - z) = 0.12 + 2.64 (1 - z)~ . 

2.2 THE MAIN FORMULA 

Now that we have the possibility, using the formulae (2.2), of calculating the 

number of kaons produced by a light quark q fragmenting into hadrons, we can 

solve the original problem of determining the kaon yield per B decay, by letting 

b decay into q [ 141. W e recall, in fact, that, having assumed the validity of the 

spectator model, the antiquark combined with b to form the B-meson does not 

play any role in the calculation. 
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In the decay of b into light quarks, we must distinguish two cases: 

(1) b decays directly into the light quark q 

(2) b decays into a light quark q via a decay into a c-quark or r-lepton. 

In the first case we simply “multiply” the probability of getting q from the 

b decay times the appropriate distribution in (2.2). In the second case we make 

use of an obvious recursive formula. 

We use the following notation: 

T, denotes the lifetime of the particle r; 

b stands for the b-quark; 

MY) denotes the differential decay rate for having the particle s, 

in a particular decay channel of the particle r, 

with a light cone momentum fraction y with respect to t; 

CLecay denotes the sum on every possible decay channel of the particle r; 

c’, denotes the sum over the three particles produced by 

a particular decay of the particle r. 

The number of kaons per B decay, denoted by (?%k), is then given by: 

( 
nk 

= Tb f: &/ [/WY)@ (;) dy] $ 
decay a 

where 

Ea+Pi 

’ = Eb + Pi 

Ek+P: 
’ = Eb + P; 

(2.5) - 

(2.6) 

where Ek and pk denote the energy and momentum of the kaon and: 
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(a) for a = u, d, s, B, 2, 3, 

D$ is given by the formulae (2.2) P-7) 

(b) for a = c, 7, E, 5, 

0: (t) = Ta dgy $ / rS(Y’) DS (5) $’ C2s8) 

with q = u, d, s, a, J, S, and 

E~+P,Z 
” = Ea + p; 

(c) if a = any lepton, except 7, F, 

D;;=O . 
0 

(2.9) 

(2.10) 

For example, consider the decay channel b + cad. In this case Ci denotes 

in formula (2.4) the sum over the contributions by c,a,d in this decay. The 

multiplicity of kaons, produced by d (and analogously for ii) in the considered 

decay channel, with light cone momentum fraction z, with respect to the b- 

quark,* hence with a fraction z/y with respect to d, is: 

(2.11) 

where y must be greater than z(z/y 5 1) and 0: is given by formulae (2.2),(2.3). 

The total number of kaons, produced by d in the decay channel under consider- 

ation, is then obtained by integrating formula (2.11) over the range of z one is 

interested in. 

* We should say: the multiplicity of kaons with light cone momentum fraction in the interval 
dz around z. 
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For c the formula is more complicated. To apply the fragmentation picture, 

we let c decay into light quarks. We must then sum over every possible decay 

mode of the c-quark, according to the particular model under consideration. This 

is the sum denoted by xiecay in formula (2.8), with c = a in the present case. 

In any particular decay channel of c, we shall only have light quarks and light 

leptons. The former yield kaons [formula (2.8)], whereas light leptons, of course, 

do not produce any kaon [formula (2.10)]. 

This example explains the formula (2.4), in which the contributions of every 

decay mode of b are summed up ( Itecay). C 

2.3 THE DIFFERENTIAL DECAY RATE 

Consider the weak decay of a particle r, of four momentum p,, into the 

(spin l/2)-particles CX, p, [, of four momenta pl, p2 and ps, respectively, accord- 

ing to fig. 1. 

We write the effective Lagrangian for this decay in the general form: 

where GF is the Fermi constant; GL, gL and gR are coupling constants (including 

mixing angles) due to the left-handed (L) and right-handed (R) current contri- 

butions, and depend on the specific unified model. 

From the Lagrangian (2.12) one obtains the following differential decay rate, 

dL 

dr= 
G; G; 

4ErEl J%& > 

’ [gi (P2 ‘Pr) h ‘P3) + & (pr -Pl)(P2 'P3) + gLgRmlm2 (p, -p3)] 

x (2~)~ 6 (P, - PI - ~2 - ~3) d3pl d3p2 d3p3 (279-g 
(2.13) 

where Ei (E,), mi (m,) are the energy and the mass of the particle with momen- 

10 



turn pi (p,), i = 1, 2, 3. 

Since in formula (2.13) there is no symmetry in the indices 1, 2, 3, we must 

distinguish the three different cases in which we consider the probability distri- 

bution of b to decay into c or (Y or 6. 

Let us focus our attention first on the distribution of the particle e. We first 

integrate in d3pi d3p2. Using the notation: 

s’ = IPr - P312 (2.14) 

we get [15]; 

d31$ 7r -=- G; G; 
d3m 12 (245 E, E3 (9: + 9;) $ W (s’, 4, d) 

X 
{ 

i (rn: + rni - s’) [ W (s’, mf, rni) ] 2 + f [ (mf - mi)2 - s”] 

’ s’2+S’(m2+m~)-2(mf-m:)2]}+3gLgRmlm2 C 
x (rn: + rnz - 6’) W (s’, mf, rni) 1 

(2.15) 

where the function W is defined by: 

W(a, b, c) = (a2 + b2 + c2 - 2ab - 2bc - 2ac)1’2 

= {[a- (di+fi)2] [a- (x6-fi)ll)li? . 

(2.16) 

In order to find the differential decay rate expressed in terms of the light cone 

momentum fraction, we distinguish the two cases: 

(1) b decays directly into a light quark (l.q.), which fragments: b + l.q. 

(2) b decays into 1.q. via a decay into a = c, r : b + a + l.q. 
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Case (1): b + l.q. 

Since the energy at which T”’ is observed is very close to twice the expected 

mass of the b-quark, we shall assume, from now on, that the b-quark is at rest (a 

good approximation for our purposes) in the e+e- center of mass frame (hence 

in the laboratory frame). 

Suppose that the light quark under consideration is the particle e in fig. 1 

(in the present case the particle r in fig. 1 is the bottom quark). Then, assuming 

that the direction z is the direction of the momentum of I, we get: 

E3 + P; _ E3 + 114 

‘= Eb+p; - mb 
(2.17) 

where Ifi331 denotes the modulus of the three momentum of [ and the index b 

refers to the b-quark. 

Defining 

s’ 
s=--T= 

IP, - P312 
mb 4 

(2.18) 

and denoting xi = (mi/mb), i = 1,2,3, we get from formulae (2.17),(2.18): 

4 s=1++;-y (2.19) 

l&l2 = 
mi(y2 - xi)” 

4Y2 
. 

(2.20) 

(2.21) 

Since d31’$/d3p3 in formula (2.15) depends only on s, which in turn is just 

a function of y, by formula (2.19), we can trivially integrate in d2S2, getting a 

factor 47r. We can now write down the explicit form of the distribution I’:(y), in 
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the notation of the formula (2.4), in the case inwhich E is a light quark which 

fragments. Before doing that, we introduce [16,17] a multiplicative parameter 

in the function I’: which takes QCD into account. It is the first order QCD 

corrected colour factor N, whose values [ 181 are: N = 1 when the particles (Y and 

p, in fig. 1, are leptons; N = 3.9 when oz and /3 are quarks. 

Writing for convenience a = e, we get: 

G; NAa[s(y)] Y”(y) (2.22) 

where, for W as in formula (2.16), and s = s(y) as in formula (2.19): 

+ ; [(l - z;)” - S”] [S” + s (x:: + xi) - 2 (xf - x:,“]} 

+ 3gLgRxl x2 -s w (s,x;,x;) 1 (2.23) 

(Y2 - 4)” 
y’(Y) = 6~~3 ’ (2.24) 

Applying the same procedure described above, we obtain the form of I’:(y) 

in the cases in which a = p or a = Q, when p and cy (fig. 1) are light quarks. We 

get the same expression, (2.22), with 

Jw=; {391(“$“) w (s,x;,x~)(s-x~-x~) 
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( xi)” up(y) = y2;y3 . (2.26) 

P(s) = f [ 9: &+,x:,z:){(1+4-s) [w(s,4,4)]2 

+ i [(l - z:)” - s”] [ s2 + s (2; + 5;) - 2(x; - xi,“]} 

+3gg (1+$-s) w (s, x;, xi) (s - x; - xg 

+sgLgRXlX2 $w(S,X;,X:)(S+X:-X;)(l-3&S) 1 (z-27) 

(Y2 - x’4)” 
y*b) = ‘~~3 ’ (2.28) 

Case (2): b --) a -+ l.q. (where a = c, E, r,?) 

In this case the whole process becomes much more complicated. We make a 

choice, therefore, which enables us to simplify the calculations without sensibly 

affecting the result. We choose the z-direction of the light cone variable as the 

direction of the three-momentum sa of a. This allows, as we show next, to exploit 

the formulae already obtained in Case (l), using the property of the light cone 

variable of being invariant under finite boosts in the z-direction. 

In a decay in which b --) a, which in turn decays into a 1.q. q, the number of 

kaons produced by the fragmentation of q is, by formula (2.4): 

(nk) = Tb Ta 
J 

. (2.29) 

Having chosen the z-direction as the direction of p’a, we apply the same 
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arguments as in Case (1) to determine the same form of the distribution I’;. We 

have also in this case the expression (2.22) for I’% with A”, Y” defined by the 

formulae (2.23) to (2.28). 

Because of the invariance of the light cone variable with respect to finite 

boosts in the z-direction, we can evaluate also I’% in the rest frame of a. Let us 

define: 

v = Ipa-Pq12 
rni ’ 

In the rest frame of a we have: 

y’ = E9+P; _ Eq f 
d 

Ei - rni - pt2 
- 

ma ma 

(the + or - sign in formula (2.31) depends upon the sign of pi), 

2E9 v=l+x$- . 
ma 

(2.30) 

(2.31) 

(2.32) 

In formulae (2.30)-(2.32) we have denoted by pa,pq,ma,mq, Ea, Eq the four- 

momenta, the masses and the energies of a and q, respectively, by pt the modulus 

of the component of the three-momentum of q perpendicular to the z-direction 

and by x9 the ratio of the mass of q to the mass of a. 

From formulae (2.31), (2.32), we obtain 

2 12 
x9 p9 v=1++,--- 
Y m2yl y 

I 
- a 

Using the identity: 

dp; dy’ 
Eq - y’ 

we get: 

d3pq _ W dd - _ A d2 p’ = ; de d cpt2) y’ 
EP Eq 

(2.33) 

(2.34) 

(2.35) 

where d”pk is the differential in the two components perpendicular to pi and 8 

is the angle in the plane perpendicular to the s-direction. 
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From formulae (2.33), (2.35) we derive: 

d3pq _ 1 ----Zd6’ 
J% 

midvdy’ . (2.36) 

The minus sign in formula (2.36), d ue to the fact that v is a decreasing function 

of Pk2, g ets cancelled by ordering the limits of integration that we are going to 

determine in the next section. 

Since d31$/d3pq depends only on v, and the limits of integration in dv depend 

only on y’, as we shall see, we can trivially integrate in do, getting a factor 27r. 

This factor 27r and the factor rnz in formula (2.36) give the usual coefficient 

rnz/r3 in the weak decay rate, and enable us to write: 

WY’) = ($$) v/ Aq(v)dv , (2.37) 

where AQ is the function defined in the equations (2.23), (2.25)) (2.27), depending 

on whether q is the particle [, (Y, or 0 in fig. 1. 

We stress again that, having chosen v as the variable of integration, the 

dependency of I’: on y’ is in the domain of integration, which we are going to 

determine in the next subsection. 

2.4 THE DOMAIN OF INTEGRATION 

The calculation we have to carry out is indicated in the formula (2.4). We 

calculate first the number of kaons produced with a certain light cone momentum 

fraction in dz around z and then we integrate on the range of z that we shall 

specify later on. We must find therefore what is the range of y, for a given z. 

We recall that, in the rest frame of b, having chosen the z-axis along the 

three-momentum j’& of a, we have 

Y= 
E,+P: _ Ea+ip’,i - . 

mb mb 
(2.38) 

The limits on y are thus determined by the extreme values of E,. The lower 
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limit for E, is obviously the value of the mass m, of a. Corresponding 

value of E,, I&l = 0, hence the lower limit for y is: 

y1= m, =x, . 
mb 

The upper limit of E,, in the rest frame of b, is given by 

E =m:+;; - 42 
amar 

b 

to this 

(2.40) 

where ml2 denotes the sum of the masses of the other two particles occurring in 

the decay. 

The value I$almaz of Igal corresponding to Earno, is: 

l/2 
lp’,Jmaz = -$ 

b 
(mt + m2, - mT2)2 - m:] = & W (mi, rnz, mf2) (2.41) 

b 

for W as defined by the equation (2.16). 

From the equations (2.40) and (2.41), we get the maximum value y2 of y: 

where 212 = mr2/mb* 

Hence the range of y is: 

Yl I Y L Y2 - 

(2.42) 

(2.43) 

On this domain we have, though, the restriction: 

Y>Z (2.44) 

due to the fact that z/y, which represents the light cone momentum fraction of 

the kaon with respect to a, must obviously be less than or equal to one. 
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In the case in which a is a c-quark or a r lepton, it follows from equations 

(2.8) and (2.37) that we must integrate in the variables y’ and v, defined in the 

equations (2.31), (2.32). 

Let us first consider the limits on y’. The condition analogous to equation 

(2.44) is: 

y’q . (2.45) 

From equations (2.31), (2.40), and (2.41), we get: 

y, L (Eq + 46ii=?) < (Eq + j,@-=?j) < (E,,,, + dm) - - ma ma mq 

=- ; [l+x;-x:2,+W(l,x;,x:22)] =y; 
(2.46) 

where xq = mq/ma, xi2 = mi2/ma and rni2 is the sum of the masses of the other 

two particles, besides q, occurring in the decay of a. 

On the other hand we have: 

y, > (En - lbGF=i) > (4 - pF2) > (Eqmaz - j/m) - - ma ma ma 

1 =- 
2 [ 1+x~-x:“2-W(1,x,“,x:“2)] =y: . 

(2.47) 

In equation (2.47) we have used the fact that the function x - (x2 - a 2 112 ) is a 

decreasing function of x. 

From equations (2.45), (2.46), and (2.47), we conclude that the domain of 

integration in y’ is: 

Y: i Y’ 2 Yk (2.48) 

for y\ and yi as defined in equations (2.47), (2.46), with the overall condition 

(2.45). 
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Consider now a certain value of y’ in the range (2.48). We must find the 

possible values of v for y’ fixed. The definition (2.32) of v gives the general 

condition: 

xy2 Iv 2 (l-xq)2 . (2.49) 

From equation (2.33) we see that v, for a fixed y’, is a decreasing function of pt2. 

The extreme values of pf2 are: 

’ (2.50) 

For pf2 = 0 we get from equation (2.33): 

2 
xq v11+x+-y’=v2 . (2.51) 

The maximum value of 212 is reached for y’ = xq, for which v = (1 - xq)2. Hence 

the condition (2.51) respects the general condition (2.49), and we can take 2)~ as 

the upper limit for v at y’ fixed. 

For ~41~ = I& ILzz we get, again from equation (2.33): 

1 Jqma. @1+x;--- 
Y’ 4 

- y’ = q(y’) l (2.52) 

The function of vr (y’) gets its maximum value for y’ = Eq,,,/ma, for which its 

value is x1,2,: 

Vl (Y’) 5 xi22 * (2.53) 

From equations (2.52), (2.53) and (2.49) it follows that the lower limit vr for v 

is: 

2.q = 2;; (2.54) 

independently of y’. 

19 



REMARK 2.1 

It is intuitively clear that y’ = xq and y’ = Eqma,/ma are critical values in 

determining the extrema of v. In fact, it follows from the definition of y’ that for 

both y’ < xq and y’ > Eqmaz/ma, p: cannot be zero. In particular, for y’ < xq, 

pi must be negative and for y’ > Eq,,,oz/ma, pt must be positive. This restricts 

the range of pf2 on which v depends. 

REMARK 2.2 

We must check that 2)~ 2 01 for every y’, so as to cancel the minus sign 

in equation (2.36). S ince v2 is a decreasing function of y’ for y’ > xq, and is 

increasing for y’ < xq, we get the minimum values of vg for the extreme values of 

y’, that is, for: 

y’ = E Qmaz * IGl,a, . 
ma 

(2.55~) 

For these values of y’ we get: 

2 
xq v2,in = 1 + x; - - - y’ - xy2 + xF2 
Y’ 

E 2 E 
2 qmaz mq qmaz = -- 

ma ma (Eqma. l I$+ I,,,> - 
4x lGl,az + xf22 
ma 

= x:“2 . 

(2.55b) 

We have thus proven that v2 2 xy2 = vl. 

Now that we have fixed the domain of integration in the variables y, y’, v, we 

are left only with the determination of the range of z, the light quark momentum 

fraction of the kaon with respect to the b quark. To do this we start by choosing 

a range for the momentum of the kaon. This range could be, for instance, the 

one in which the momentum of the kaons is experimentally observed. Denoting 
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by lp’kl the modulus of the three-momentum of the kaon, we suppose: 

P1QxklLpz . (2.56) 

How do we relate equation (2.56) to the range of z? We can determine the range 

of z from that of l&l if we get rid somehow of the transverse momentum of the 

kaon. The only way we can do it is to average over pi2 with weights obtained 

from experimental data. 

2.5 THE TRANSVERSE MOMENTUM OF THE KAON 

The distribution of pi is assumed to be Gaussian: 

c e-B~:2 (2.57) 

where c is a normalization constant and B is obtained by the experimental data 

(we shall fix its value in Section 3.3). 

We want to average over p, l2 before integrating in dz, hence we must deter- 

mine the domain of integration in dpi2 at z fixed. 

Since we limit the momentum of the kaon in the range from pl to ~2, it follows 

that pi2 can vary within the range: 

0 F Pi2 L Pi (2.58) 

However, having fixed z, pi2 cannot reach, in general, every possible value in the 

range (2.58). F or instance, for z = mk/mb, it cannot be null, because otherwise 

also pi would be null, contrary to the condition (2.56) (if pl > 0). On the 

other hand, for z > &/??Q,, where E2 = (pi + mi)“2, pi2 must be-less than pi, 

because pi must be greater than zero. 
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To find out how to limit the range of pi2 according to the values of z, we 

argue in the following way. From the definition of Z, we derive: 

Pi2 =2mbEkZ-mjfz2-m~ . (2.59) 

Thus, for z fixed, pi2 can range within: 

(2.60) 

where 

Ei = (pi2 + mi)1’2 , a=1,2 . 

Since pi2, for a fixed z, must satisfy both equations (2.58) and (2.60), its 

range is the intersection of the sets defined in equations (2.58) and (2.60). Let 

us consider the lower bound. We have: 

2mbEl%-m~%2-m~=o for El f PI %=Zf= 
mb ’ 

(2.61) 

Hence 2WZbErZ - mzz2 - rni < 0 for z < z- and z > z+, in which cases we must 

take zero for the lower limit of pk2. For z- < z < z+, on the contrary, equation 

(2.60) holds as for the lower limit. 

Let us now examine the upper bound. We have: 

(2.62) 

which implies: 

2mbE2z-m~z2-E~<0 (2.63) 

which is equivalent to: 

-(mb%-E2)2 50 . (2.64) 

Since equation (2.64) is always satisfied, so is equation (2.62); hence equation 

(2.60) holds as for the upper limit of pi2. 
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REMARK 2.9 

Notice, indeed, that for pt2 = pi, it must be true that pi = 0, thus z = 

&&‘% ; hence for this and only this value of Z, pk2 can reach the value pl 

(as it is shown in equation (2.64)). 

To summarize, if we denote by pf2 and pi2 the lower and upper limit of pt2 

respectively, we have: 

zmbhl%-m;%--mi for El - PI < z < El + PI 

12 - 
Pl - 

0 for z ;;I - PI or zm; El + PI (2’65) 
mb mb 

pi2 = 2mbE2z-rn~Z2--rn~ for every z . (2.66) 

Consider now the normalization factor c in equation (2.57). It is defined by 

the condition: 

Pa 

/ 
ce --BP~’ dpL2 = 1 . 

0 

Thus: 

B 
c= 1 - e-BP2 * 

(2.67) 

(2.68) 

The meaning of equation (2.67) is obvious: the integral of the distribution of 

Pk2 over every possible value, for a given momentum of modulus p, represents 

the probability of getting any possible p’ for the given p, hence it must be equal 

to unity. 
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In the integration we are making, though, we are not fixing p but z. It follows 

from the definition of z that: 

lp’k12 = 

2 

-mi . (2.69) 

Therefore, for a given z, to any value of pi2 corresponds a value of lp’k12. 

Hence, the probability of having a kaon, for a given z, with momentum in the 

interval d (pt2) around pi2 is, from equations (2.57) and (2.68), 

B 
1 - e-BlFkk12 

,-BP? dp;2 (2.70) 

with lp’k I2 given by equation (2.69). The function (2.70) can now be integrated 

in the variable z. 

We finally calculate the range of z. Since the momentum of the kaon can 

range within the values pl and pa [see equation (2.56)], the extreme values for z 

are: 

E2 + ~2 
.Z= 

mb 

~‘32 - ~2 
#Z= . 

mb 

(2.71) 

(2.72) 

We shall however exclude negative values of the longitudinal component of the 

kaons, since they go roughly in the same direction of the fragmenting quark. 

Hence we shall assume: 

El 
,q=-<z< ET2 + p2 = z2 . 

mb - mb 
(2.73) 
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2.6 SUMMARY OF THE SECTION 

We summarize in a few formulae what we have discussed in section 2. The 

number of kaons produced in the decay of the B meson is given by the following 

formula: 

x G; NAa [S(Y)] Ya(y) 0: 

where: 

1) A” is given by the formulae (2.23), (2.25) and (2.27); 

2) Ya is given by the formulae (2.24), (2.26), and (2.28); 

3) i) for a = u, d, s, a, d, S: 

0: is given by the formulae (2.2) ; 

ii) for a = any lepton but 7, 5 : 

iii) for a = c, 7, E, 5 : 

xD,k (5) @(y’-;) 4 

where q = u, d, s, ii, d, g ; 
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4) O(x) = 1 f or x > 0, O(x) = 0 for x < 0, [O(y - z) and O(y’ - z/y) 

have been introduced because of the conditions (2.44), (2.45)]; 

5) T, denotes the lifetime of the particle r ; 

6, Zecay denotes the sum over the decay modes of the particle r ; 

7) CL denotes the sum over the three different particles in a decay channel 

of r ; 

8) B determines the Gaussian distribution of the transverse momentum of 

I the kaon, pt, and is taken from the experimental data (see subsection 3.3) ; 

9) ]&I2 is given by the formula (2.69) ; 

10) GF is the Fermi constant ; 

11) ?nb (ma) is the mass of the b-quark (of the particle a) ; 

12) GL and N are defined in subsection 2.3 ; 

13) i) zr and 22 are defined by formula (2.73) ; 

ii) pf2 and pi2 are defined by formulae (2.65) and (2.66), respectively ; 

iii) yr and y2 are defined by formula (2.43) ; 

iv) yi and yi are defined by formulae (2.47) and (2.46), respectively ; 

v) vr and v2 are defined by formulae (2.53) and (2.51), respectively . 

The procedure outlined here is applicable to any unified model. The speci- 

fication of the model, in fact, determines the decay modes of b, c and 7, fixing 

the parameters GL, gL, gR and N and the values of the masses. As stated in the 

introduction, we are interested in the comparison of two kinds of models: the 

topless models and the models with the top quark. For the first class we examine 

an E6 model and, for the second one, the “standard” SU(2) x U(1) model. 
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3. APPLICATION 

We now apply the procedure described in the previous section to the unified 

models we want to compare: the E6 topless model and the standard SU(2) x U(1) 

model (with top quark). 

3.1 THE E6 TOPLESS MODEL 

There is an extensive literature on the use of the exceptional Lie group E6 

as a gauge group for grand unified theories (see references [19]-[22], to cite a 

few). A characteristic feature of E6 is that the lowest dimensional irreducible 

representation of its flavour subgroup SU(3),5 x Sum [23] contains only an 

SU(2)h singlet bL. Hence, in a two family model based on EC [24], there is no 

room for the top quark. One is forced, though, to insert another new quark h, 

of charge -l/3, which is supposed to be heavier than b. The six quarks are then 

accommodated in two Sum triplets [one for each family]: (u’, d’, b’, )L and 

(c’, s’, h’, )L, where the primes denote suitable mixtures of the quarks to fit the 

experimental data. 

Since b [being an Sum singlet] can only decay via mixtures, flavour chang- 

ing neutral currents are introduced. Some of these currents are strictly forbidden; 

the others have strong constraints [7], but their existence is not (yet) ruled out. 

For the determination of the mixings which fit the phenomenological constraints, 

we shall follow the prescription of Achiman, whose paper [17] we refer to. 

Let us define: 

B1 = cosa b + sir-m h , B2 = -sina b + cosa h . (3.1) - 

Then the Sum doublets are: 

(u’ , d’)L = (co& u - sinb’ c , co@ d + sin@’ BI)~ (3.2) 
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(c’ , s’) L = (sine u + cod c , cosp s + sin/3 B2)L (3.3) 

and the Sum singlets are: 

b; = (-sin@ d + co@ BI)~ (3.4 

h; = (-sin@ s + co@ Bz)~ (3.5) 

where 6 is the Cabibbo angle, cx is an angle which is left arbitrary for the moment, 

p is constrained by the limit [25]: 

lb + uI = A 

= sin/9 (cosf3cosa - sini9sina) (3.6) 

= 0.06 f 0.06 

The part concerning the quarks of the usual current x current Lagrangian fol- 

lows from equations (3.1)-(3.5), and from it the constants GL, gL, gR in equation 

(2.12). 

The leptonic currents are taken from the standard model, because they fit 

the experimental data very well. The only difference from the standard model 

is the introduction of a new doublet [24] composed of a heavy lepton, r’, and 

the corresponding neutrino u+, which is supposed to be light. In the Lagrangian 

of the b decay, we suppose it to be below the h and 7’ threshold, but we must 

take into account the existence of the fourth neutrino v+, when considering the 

neutral leptonic currents. 

In the calculation we shall consider one value of ,8, corresponding to A = 0.06 

in equation (3.6), and five values of a: 0, 7r/6, 7r/4, 7r/3, w/2. 

The values of the masses will be given in section 3.3. 

28 



3.2 THE STANDARD MODEL WITH THE TOP QUARK 

In the standard SU(2) x U(1) model [26]-[28], with top quark [29], there are 

three left-handed doublets: 

(;), ’ (:;), ’ c’), P-7) 

where d’, s’, b’ are orthogonal mixtures of d, s, b, parametrized by the Kobayashi- 

Maskawa matrix [29]. The decay b occurs via charged currents only, through the 

mixtures d’ and s’. In particular, then, the constant fJR defined in the Lagrangian 

(2.12) is equal to zero, since the right-handed currents are always neutral. 

The mixtures d’ and s’ we are interested in are defined by: 

d’ = (cl) a! + (SI c3) s + (sl s3) b (34 

S’ = (-SI ~2) d + (cl c2 c3 + sf~ sg ei”) s + (cl c2 s3 - s2 c3 ei”) b (3.9) 

where ci and si are cosines and sines of angles [ci = (1 - sf)li2, i = 1, 2, 31. 

Only sr, the sine of the Cabibbo angle, is determined with good approximation: 

s1 = 0.23 f 0.01 . (3.10) 

On the others there are only constraints [30]. W e h ave chosen the following three 

sets of values [31] for ~2, ss, and S: 

1) s2 = 0.11 , s3 = 0.42 , 6 = 7r - 0.01 (3.11) 

2) s2 = 0.6 , s3 = 0.5 , 6 = 0.001 (3.12) 

3) s2 = 0.24 , s3 = 0.02 , 6 = 0.07 . (3.13) 

The first choice corresponds to near maximal lb -+ c] coupling strength, for 6 

in the second quadrant; the second and third correspond to near maximal and 

minimal ratios (respectively) lb + ul/lb + c] for 6 in the first quadrant. 
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3.3 RESULTS 

We fix the following values of the parameters: 

sin28, = 0.23, sid, = 0.23, mk = 0.494, mb = 5.1 

me~m~~mm,,-mm,,-mm,~-mm,,=O T 

m,=md=o.3, m, = 0.5, m, = 1.75, m7 = 1.8 

where 8, is the Weinberg angle, 0, is the Cabibbo angle and m, denotes the 

mass in GeV of the particle n. 

The parameter B, which determines the distribution (2.57) of transverse 

momentum of the kaon, is taken from experimental data [32] (we took the value 

corresponding to the lowest energy region in reference [32]). We have: 

B = 8.35 (GeV)-2 . (3.14) 

The results are given in tables 1 - 9. On top of each table we specify the model 

which the results refer to and the different choices of mixing in that model. For 

the E6 model we consider different values of the angle CI! defined in equation 

(3.1), and for the standard model we examine the cases 1, 2, 3 of section 3.2 [see 

equations (3.11) - (3.13)]. 

In tables 1 and 5 the percentage rate for each decay channel of b is given for 

the E6 and standard model, respectively. Beside each rate we give the number of 

kaons (NK) h h w ic one would obtain by counting one for each c- or s-quark in a 

decay channel times the probability for b to decay in that channel. This is a very 

naive computation, sometimes used in order to get a rough approximation of NK, 

with which our results strongly disagree. The total number of kaons, computed 

in this way, is given at the bottom of tables 1 and 5, together with the lifetimes 

76 of b (in units of lo-l3 set) . 
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In tables 2,3 and 4 (for the & model) and tables 6,7 and 8 (for the standard 

model) we report the number of kaons, for each decay channel and in total, that 

we have obtained with our calculation, in different ranges of the momentum p 

(in GeV) of the kaon. 

In table 9 we give the number of charged kaons (NCK) in the range .5 < p < 1 

GeV and the number of neutral kaons (NNK) in the range .3 < p < 3 GeV. 

The results reported in table 9 concern only the choices (L: = 0, 7r/2 of the &j 

model and cases 2) and 3) ( see section 3.2) of the standard model. 

We proceed now to the analysis of the results reported in the tables and to 

their comparison with the experimental data. 

LIFE TIME 

The calculated lifetime of the b-quark (tables 1 and 5) both in the E6 model 

and in the standard model, for any mixing we consider, agrees with the experi- 

mental indication 7~ < 10-l’ set [33],[8]. We also had to calculate the lifetimes 

of the c-quark and r-lepton. We got r7 = 3.5 to 3.6 ~10~‘~ set and rc = 8.2 to 

10.8 x lo-l3 sec. These results also agree with the experimental data [34],[9]. 

DECAY RATES 

As one can see by examining table 1, in the Es model, the rates for b + u 

and for b --) c are very sensitive to the choice of the angle o. The branching 

ratio [Br(b + u)/Br(b --) c)] decreases for increasing c~ (0 5 c1! 5 7r/2). 

The extreme case CI! = 0 (respectively Q! = 7r/2) corresponds to b being only in 

the Sum doublet (3.2) [respectively (3.3)], h ence it corresponds to minimal 

(respectively maximal) branching fractions Br(b + c) and Br(b --) s). 

In the standard model, cases 1) and 3) of subsection 3.2 correspond to nearly 

maximal lb + c( coupling strength while case 2) corresponds to nearly maximal 

lb + ~1 coupling strength. 

Therefore, guessing that c and s should yield most of the kaons, one would 

expect to have case c)! = 7r/2, for the E6 model, and cases 1) and 3), for the 
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standard model, clearly put in evidence by an enhanced yield of kaons. As we 

shall see next, this is not quite so. 

NEUTRAL + CHARGED KAONS 

We have considered three intervals for the momentum p of the outcoming 

kaon: 

i) 0.3 < p < 3 GeV ; 

ii) 0.5 < p < 1 GeV ; (3.15) 

iii) 0.3 < p < 1 GeV . 

The first range is close to the widest possible range for p. The momentum of the 

kaon can never reach 3 GeV, indeed. Since our procedure has ambiguities for p 

close to zero, we also had to cut p from below. The first interval is also the range 

in which neutral kaons are detected, while the second one is the range in which 

charged kaons are detected. The reason for also examining the third interval for 

p is that it gives us an estimate of the behaviour of (nk) at low momenta. 

Let us consider first the E6 case (tables 2,3, and 4). The first, rather striking, 

consideration is that there is not, as anticipated, a strong dependency of the 

results on the value of (Y. For instance, we get l.ll* (for c11 = 0) versus 1.17 

(for CI! = z/2) kaons in the interval 0.3 < p < 1 GeV. This means 2.22 versus 

2.34 kaons per T(4s) decay. We also see that for small a(cr < z/4) sizeable 

contributions come from decay channels like uad, ddd where no c or s appears. 

Actually, by looking closely at the fragmentation model, we should not be 

much surprised by these results. The fact that the fragmenting quark is an s 

versus a u or a d, only increases the probability that the first rank primary 

meson is a kaon; but the flavor of the fragmenting quark, by itself, does not 

influence the probability of getting kaons of rank higher than one. 

* The results we give are affected by an estimated error of twenty percent due to the Monte 
Carlo calculation. 
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On the other hand, the mass and the momentum of the fragmenting quark 

are important in determining the phase space available to the remaining cascade, 

and hence, how many mesons with certain momenta can be produced. 

Our calculation shows that these two aspects contribute so as to almost bal- 

ance each other. In the standard model (tables 6, 7 and 8) we even see that 

the highest number of kaons is obtained just in the case in which the lb -+ UI 

coupling is stronger than the lb + c] coupling [case 2), in equation (3.12)]. This 

otherwise surprising result becomes understandable in the light of the previous 

consideration. 

Hence the first result of our work: contrary to what is usually argued, the 

enhanced production of kaons in the T(4s) decay does not, a priori, imply that 

b decays mainly into c. We believe our calculation stands as a reasonable coun- 

terexample. 

The second result is that the topless models are not at all ruled out by our 

test on the kaon yield: we get more kaons in the Es topless model than in 

the standard model with top quark. The flavour changing neutral currents are 

definitely responsible for this fact. (We shall comment further about this below). 

Let us now compare our results with the experimental data. 

In the CLEO experiments [7],[8], charged kaons are identified by time of 

flight, in the momentum range 0.5 < p < 1.0 GeV; whereas neutral kaons are 

identified through their decay in 7r;ITs7r- with p > 0.3 GeV. The results are [7],[8]: 

0.82 f 0.10 charged kaons per T(4s) decay with 0.5 < p < 1.0 GeV , (3.16a) 

1.13 f 0.20 neutral kaons per T(4s) decay with 0.3 < p < 3.0 GeV . (3.16b) 

An estimate of the total number of kaons, for all p, is obtained [7],[8] by 

Monte Carlo simulation, and yields: 
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3.45 f 0.49 kaons per T(4s) decay (all p) . (3.17) 

In order to compare the data (3.17) to our results, let us consider tables 2 

and 6. Notice, once again, that the figures in the tables concern the B decay; 

hence, we must multiply by two to get them relative to the T(4s) decay (since 

there is an equal contribution by B. Considering that we have a lower cut at 0.3 

GeV and an error of twenty percent, we conclude that our results fit the data 

quite well (especially in the E6 case). 

CHARGED KAONS 

In table 9 we report the results of the calculation of the number of charged 

kaons in the momentum interval 0.5 < p < 1.0 GeV. The figures do not agree 

well with the experimental data (3.16a) in this case. We wish to stress that the 

extrapolation of the experimental data to the same momentum interval, for both 

charged and neutral kaons, shows an enhanced production of charged kaons with 

respect to neutral ones (2.02 f 0.24 versus 1.43 f 0.25, for all p) [7],[8]. This is 

an interesting feature our calculation does not yield. 

NEUTRAL KAONS 

The calculation of the number of neutral kaons in the momentum range 

0.3 < p < 3.0 GeV (table 9) is in very good agreement with the corresponding 

experimental data (3.16b). 

SEMILEPTONIC DECAY 

Kaon-lepton events have also been detected experimentally. These events 

correspond to the case in which either one or both of B and B decay semilepton- 

ically. The experimental data is [7]: 2.5 f 0.5 f 0.5 kaons per event. Also in this 

case our calculation fits the data, as it can be derived from tables 2 and 6. In the 

E6 case we get between 1.3 and 1.4 kaons in the momentum range 0.3 < p < 3.0 

in the kaon-lepton events. Extrapolating to all p we can get reasonably close to 

the experimental data. 

34 



We end this section with two remarks: 

REMARK 3.1 

To our knowledge, there is just one other experimental result-besides the 

enhanced production of kaons-found in the T(4s) decay, which argues for a strong 

lb -+ c] coupling: the observed endpoint energy spectrum of the electrons, which 

indicates the production of a recoil mass - 1.8 GeV, in reasonable agreement 

with the D and D* masses [6]. Th is stands, in our opinion, as the strongest 

support for saying that b decays mainly in c. 

REMARK 3.2 

Our analysis shows that the topless model can fit very well the experimental 

data on kaon yield per B decay, even better than the standard model with top 

quark. Nevertheless, we must recall that topless models are in serious trouble for 

another reason: the existence of strong flavour changing weak neutral currents. 

Experimentalists set the following limits with ninety percent confidence [7]: 

Br(B + xl+te-) 
?.= Br(B+Xlv) 

510% 

l=p,e 

s=Br(B+xL+t-) 50.74% 

By looking at table 1, we get the following values of r and s: 

a=0 r=13 % 

a=7r/6 r=17% 

a=7rr/4 r=21% 

(u=n/3 r=24 % 

cY=?r/2 r=24 % 

s = 2.42 % 

s = 2.98 % 

s = 3.44 % 

s = 3.94 % 

s = 4.04 % 

(3.18) 

The case CY = 0 is, therefore, favoured under this aspect. 
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Clearly the indication provided by the limits (3.18) is very strong, so that 

the primary result of our work from the standpoint of model building is to leave 

equations (3.18) as the main argument against topless models. 

4. CONCLUSIONS 

There is a substantial agreement between our results and the experimental 

data. The fit to the kaon yield data is better in the Es topless model than in 

the standard model with top quark. The enhanced production of kaons does not 

indicate, as supposed, that b decays mainly into c. In fact in the standard model, 

the case in which more kaons occur is the one in which there is a strong coupling 

between b and U. 

Less agreement with the experiments is found when considering the number 

of charged kaons produced in the momentum range 0.5 < p < 1.0 GeV. We have 

observed that the experiments show an enhanced production of charged versus 

neutral kaons; the model we have used does not show this effect. 

Turning to the question about the need for the top quark, we have recalled 

that the existence of strong flavour changing weak neutral currents is the most 

serious indication against topless models. In the E6 case, this indication favours 

the case cy = 0, in which the coupling of b to u is stronger (see REMARK 9.2). 

This case is compatible with an enhanced production of kaons, as we have shown, 

but it is in strong disagreement with the indication coming from the observed 

electron energy spectrum in the T(4s) decay (see REMARK 3.1). On the other 

hand, the case which fits both the data on the enhanced production of kaons and 

the electron energy spectrum (the case cx = 7r/2) has flavour changing neutral 

currents which are quite beyond the experimentally indicated limit. 

- 

These facts confirm that the topless models have a rather limited possibility 

of survival. However, our work leaves flavour changing neutral currents as the 

primary argument against such models. 
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Finally, we emphasize that what we have presented here are illustrations of 

a prescription for calculating the kaon yield in b-decay in a given model. Such 

illustrations have not appeared elsewhere. 

Note Added: 

One may wonder whether the kaon momentum distributions which would 

follow from our B-meson decay scenarios are consistent with the available data 

on such distributions. We have addressed this issue by comparing this data to our 

predicted kaon distributions for the following cases: (a) the standard model with 

parameters s2 = .6, sg = .5, 6 = .OOl; (b) the standard model with parameters 

s2 = .06, sa = .005, 6 = .07; and (c) the E6 model with the parameter CI! = z/2 

(which we find to be very close to the case QI = 0 insofar as these particular 

distributions in momentum are concerned). These comparisons are shown in 

figs. 2-4. What we conclude from this is that, in view of the errors on the data, 

neither of our theoretical models is obviously inconsistent with observation. This 

gives us additional confidence in the conclusions which we have drawn in our 

analysis. As a further check on the general applicability of our method of analysis 

of B-decay, we have also computed the total charged multiplicity in B-decay in 

the three cases (a)-(c). We find n,h = 7.3, 7.5 and 6.3 for cases (a), (b) and (c) 

respectively. Experimentally, the CLEO group [A. Silverman, Proc. 1981 Lepton- 

Photon Conference, ed. W. Pfeil (Universitlt Bonn, Bonn, 1981)] has reported 

- 5.4 charged hadrons per B-decay. Again, our model predictions and the data 

agree within the various theoretical and experimental uncertainties. Hence, we 

conclude that there are no obvious flaws in the methods which we have used to 

compute the kaon yield per decay in the present communication. 
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Table 1 
E6 Topless Model: Naive Estimate I 

Decay o!= 0 a=~/6 a= s/4 cY=lrr/3 a=Tr/2 
Mode RATE NK RATE NK RATE NK RATE NK RATE NK 
uti,e 9.10 0 6.31 0 3.88 0 1.39 0 0.95 0 
UP/.& 9.10 0 6.31 0 3.88 0 1.39 0 0.95 0 
UDi,7- 3.64 0 2.52 0 1.55 0 0.55 0 0.38 0 
cDee 0.22 .002 2.46 .025 4.47 .045 6.79 .068 7.44 .074 
CQ-J 0.22 .002 2.46 .025 4.47 .045 6.79 .068 7.44 .074 
CDT7 0.05 .OOl 0.53 .005 0.95 .OlO 1.45 .015 1.59 .016 
dm 9.64 0 8.94 0 6.99 0 4.06 0 0 0 
di?e 1.21 0 1.13 0 0.88 0 0.51 0 0 0 
4-w 1.21 0 1.13 0 0.88 0 0.51 0 0 0 
dw 0.12 0 0.11 0 0.09 0 0.05 0 0 0 
SDU 0 0 2.84 .028 6.66 0.67 11.60 .116 16.02 .160 
sEe 0 0 0.36 .004 0.84 .008 1.46 .015 2.02 .020 
SPP 0 0 0.36 .004 0.84 .008 1.46 .015 2.02 .020 
ST7 0 0 0.03 0 0.07 .OOl 0.12 .OOl 0.17 .002 
uad 31.46 0 21.75 0 13.27 0 4.60 0 3.08 0 
ufis 1.69 .002 1.16 .012 0.71 .007 0.25 .003 0.17 .002 
uzd 0.75 .008 0.52 .005 0.32 .003 0.11 .OOl 0.07 .OOl 
UES 12.35 .247 8.54 .171 5.21 .104 1.81 .036 1.21 .024 
cad 0.75 .008 8.22 .082 14.81 .148 21.79 .218 23.27 .233 
ciis 0.04 .OOl 0.43 .009 0.77 .015 1.13 .023 1.21 .024 
ccd 0.01 0 0.11 .002 0.19 .004 0.28 .006 0.30 .006 
CES 0.14 .004 1.57 0.47 2.83 .085 4.16 .125 4.44 .133 
dau 5.16 0 4.78 0 3.74 0 2.17 0 0 0 
did 6.55 0 6.04 0 4.65 0 2.51 0 0 0 
dss 5.98 .120 5.51 .llO 4.24 .085 2.29 .046 0 0 
da 0.61 .012 0.57 .Oll 0.44 .009 0.26 .005 0 0 
sfiu 0 0 1.52 .015 3.56 .036 6.20 .062 8.56 .086 
szd 0 0 1.92 .019 4.43 .044 7.17 0.72 9.33 .093 
sss 0 0 1.74 .052 4.03 .121 6.53 .196 8.50 .255 
SFC 0 0 0.16 .005 0.37 .Oll 0.64 .019 0.89 .027 
rb * 2.2 1.5 .95 .34 .23 

Total NK .407 .626 .856 1.11 1.25 

*lOE-13 SEC 
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Table 2 

uDTr 
cDee 
CDpcL 
CDT7 
dm 
dce 

d/w 
d7r 
SD’Y 
Me 

SLiP 
s?r 
ued 
ufis 
uizd 
ucs 
cad 
ciis 
czd 
CES 
dau 
ddd 
dss 
da 
siiu 
szd 
sss 
St% 

Total NK 

EG ToDless Model .3 < v < 3 GeV * 

a!= 0 
NK 

>’ 

.008 I .003 .002 
.OlO .017 .026 .028 
.OlO .017 .026 .028 
.002 .003 .006 .006 
.043 .033 .021 0 
-006 I .005 .003 0 
.006 I .005 .003 0 

0 I 0 0 0 
.026 .055 .104 .137 
.003 .008 .013 .019 
.003 .008 I .013 .019 

0 0 0 0 
.304 .181 .061 .044 
.021 .013 I .005 .003 
.006 .004 .OOl .OOl 
.120 .069 .028 .017 
.096 .163 .227 .258 
.006 .Oll .016 .018 
.OOl .OOl .002 .002 
.015 .025 .038 .044 
.066 .050 .031 0 
.082 .063 .035 0 
.120 .083 .045 0 
.003 .002 .OOl 0 
.027 .060 .106 .150 
.035 .078 .121 .161 

.094 .150 .215 

.002 .004 .005 
1.10 1.11 1.17 

.039 

.039 

.021 

.OOl 

.OOl 
0 

.040 

.004 

.004 
0 
0 
0 
0 
0 

.420 

.031 

.008 

.198 

.008 

.OOl 
0 

.OOl 

.074 

.102 

.120 

.003 
0 
0 
0 
0 

1.11 

.039 

.OOl 
1.12 

*Error Estimate: 20% 
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Table 3 
EC; ToDless Model .3 < v < 1 GeV * 

uD’,r 
cDee 
CDpP 
c&r 
diw 
dze 

4-w 
d7r 
SW 
sEe 

@CL 
s5r 
uiid 
ufis 
ted 
u&3 
cad 
cfis 
ct?d 
ccs 
diiu 
dd’d 
dss 
da 
sfiu 
sdd 
sss 
SEC 

Total NK 

a= 0 
NK 
.041 
.041 
.019 
.OOl 
.OOl 

0 
.045 
.007 
.007 

0 
0 
0 
0 
0 

.429 

.025 

.008 
.161 
.008 
.OOl 

0 
.OOl 
.065 
.086 
.lOl 
.003 

0 
0 
0 
0 

1.05 

cr=rr/6 
NK l-i .033 
.033 
.012 
.OlO 
.OlO 
.002 
.054 
.005 
.005 

0 
.018 
.002 
.002 

0 
.292 
.018 
.006 
.109 
.086 
.006 
.OOl 
.015 
.054 
.079 
.096 
.003 
.023 
.029 
.037 
.OOl 
1.04 

a= 7r/4 
NK 
.018 
.018 
.009 
.018 
.018 
.004 
.032 
.004 
.004 

0 
.049 
.006 
.006 

0 
.179 
.012 
.003 
.064 
.159 
.OlO 
.OOl 
.026 
.046 
.056 
.078 
.002 
.054 
.066 
.088 
.002 
1.04 

cY=?r/3 
NK 
.006 
.006 
.003 
.027 
.027 
.006 
.019 
.002 
.002 

0 
.075 
.Oll 
.Oll 

0 I 
.061 
.004 
.OOl 
.024 
.255 
.015 
.002 
.038 
.028 
.033 
.044 
.OOl 
.096 
.llO 
.137 
.004 
1.05 

cr=7r/2 
NK 
.004 
.004 
.002 
.031 
.031 
.006 

0 
0 
0 
0 

.119 

.018 

.018 
0 

.040 

.003 

.OOl 

.016 

.257 

.016 

.002 

.040 
0 
0 
0 
0 

.134 

.150 

.181 

.005 
1.08 

*Error Estimate: 20% 
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Table 4 
E6 Topless Model .5 < p < 1 GeV * 1 

Decay 
Mode 
uDee 
UDpP 
uDTr 
cii,e 
CDpP 
CD’,7 
dm 
dEe 

diw 
dFr 
SDU 
sEe 

SW 
sTr 
utid 
uas 
ucd 
UES 
cad 
cfis 
ct?d 
ccs 
diiu 
ddd 
dss 
da 
siiu 
szd 
sss 
SEC 

Total NK 

a= 0 a = r/6 o! = 7rr/4 a = lrr/3 CY = 7r/2 
NK NK NK NK NK 
.018 .012 .006 .003 .002 
.018 .012 .006 .003 .002 
.007 .005 .003 .OOl .OOl 

0 .004 .006 .OlO .OlO 
0 -004 .006 .OlO .OlO 
0 .OOl .OOl .002 .002 

.024 .018 .014 .008 0 

.002 .002 .002 .OOl 0 

.002 .002 .002 .OOl 0 
0 0 0 0 0 
0 .OlO .020 .042 .058 
0 .OOl ,003 .005 .007 
0 .OOl .003 .005 .007 
0 0 0 0 0 

.174 .121 .077 .025 .018 

.012 .008 .005 .002 .OOl 

.003 .002 .OOl 0 0 

.068 .043 .029 .009 .006 

.003 .032 .056 .085 .096 
0 .002 .004 .006 .006 
0 0 0 .OOl .OOl 
0 .004 .008 .012 .013 

.028 .028 .020 .012 0 

.035 .033 .023 .014 0 

.047 .045 .035 .017 0 

.OOl .OOl .OOl 0 0 
0 .Oll .024 .045 .060 
0 .014 .031 .051 .065 
0 .017 .038 .062 .087 
0 0 .OOl .OOl .002 

.444 .434 .423 .430 .452 

*Error Estimate: 20% 
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Table 5 

Standard Model: Naive Estimate 

1 

DECAY 1 2 3 
MODE RATE NK RATE NK RATE NK 

uPee -I- t~D~j.4 2.39 

ui;i,r 0.48 

uad 4.18 

ucis 0.18 

ucd 0.10 

UES 1.20 

cDee -I- cDpp 29.27 

c&r 3.12 

cad 49.52 

ciis 2.07 

ci?d 0.62 

CES 6.90 

rb * 0.1 

TOTAL NK 

*lOE-13 SEC 

0 17.99 0 0.03 0 

0 3.59 0 0.01 0 

0 31.45 0 0.05 0 

.002 1.23 .012 0 0 

.OOl 0.47 .005 0 0 

.024 12.37 ,247 0.02 0 

-293 10.28 .103 31.11 .311 

.031 1.10 .Oll 3.32 .033 

.495 17.39 .174 52.62 .526 

.041 0.66 .013 2.67 .053 

.012 0.14 .003 0.63 .013 

.207 3.32 .lOO 9.55 .286 

0.6 0.6 

1.11 .668 1.22 
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Table 6 

Standard Model .3 < p < 3 GeV * 

Decay 
Mode 

1 2 3 
NK NK NK 

uD,e + uDpp .013 .099 0 
u&r .003 .020 0 
uiid .056 .419 .OOl 
uas .003 .022 0 
uzd .OOl .005 0 
ui% .018 .184 0 

cDee + cDpp .118 .043 .134 
CD77 .014 .005 .012 
cad .524 .196 .639 
cm .026 .009 .037 
cizd .004 .OOl .005 
CES .074 .033 .086 

Total NK .852 1.04 .913 

*Error Estimate: 20% 
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Table 7 

Standard Model .3<p<lGeV * 

Decay 

Mode 

uDee -I- uDpp .OlO .081 0 

Ui7TT .002 .018 0 
ued .049 .426 .OOl 
UiiS .003 .019 0 
uzd .OOl .005 0 
UES .015 .181 0 

ciPee -I- cDpp .118 .043 .127 

C&T .012 .004 .013 
cud .533 .180 .561 
CiLl3 .028 .009 .036 
cEd .005 .OOl .005 
CES .064 .027 .085 

Total NK .839 .995 .828 

1 
NK 

2 
NK 

3 
NK 

*Error Estimate: 20% 
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Table 8 

Standard Model .5 < p < 1 GeV * 

Decay 

Mode 

uDee + u17~p .006 .033 0 
Uii,T .OOl .007 0 
uad .023 .178 0 
UiiS .OOl .009 0 
uzd 0 .002 0 
U&S .006 .065 0 

cDee + cDpp .041 .015 .043 
c&r .003 .OOl .004 
cad .199 .072 .215 
CiiS .Oll .004 .014 
ctzd .OOl 0 .OOl 
CFS .020 .OlO .028 

Total NK .313 .395 .307 

1 

NK 

2 
NK 

3 
NK 

*Error Estimate: 20% 
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Table 9 

& Model Standard Model 

a=0 a= 7q2 2 3 

K* per T(4s) decay 0.5 < p < 1.0 GeV 0.448 0.452 0.410 0.304 

K” per T(4s) decay 0.3 < p < 3.0 GeV 1.08 1.18 0.96 0.99 

48 



FIGURE CAPTIONS 

Fig. 1. Weak decay of a fermion r into [ + (Y + 0. 

Fig. 2. Charged and neutral kaon momentum distributions for T(4S) events - 

our results in the case of the standard model with parameters: s2 = 0.6, ss = 0.5, 

6 = 0.001. The triangular points refer to the data of Brody et al. [Phys. Rev. 

Lett. 48 (1982) 10701. 

Fig. 3. Charged and neutral kaon momentum distributions for T(4S) events 
- our results in the case of the standard model with parameters: s2 = 0.06, 

sg = 0.005, 6 = 0.07. The triangular points refer to the data of Brody et al. 

[Phys. Rev. Lett. 48 (1982) 10701. 

Fig. 4. Charged and neutral kaon momentum distributions for T(4S) events - 

our results in the case of the Es model with the parameter a! = 7r/2. The same 

distribution is followed in the case cr = 0. The triangular points refer to the data 

of Brody et al. [Phys. Rev. Lett. 48 (1982) 10701. 
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