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ABSTRACT 

Although cosmology and unification suggest that the mass of the gluino is larger 

than about 14 GeV, in many theories of broken supersymmetry the photino 5, gluino S 

and one of the spin-zero partners i of the t quark can be lighter than mt. We calculate 
Z-T- 

the decay rates for toponium + 5 S, r 5 and t t and show that in many models they 

can be as large as, or larger than, the rate for toponium ---, e+e- decay. If it is 

kinematically accessible, the decay t --* t+q dominates the decays of toponium as well 

as those of naked top states. 
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One obstacle to the experimental search [l] for supersymmetry (susy) is our the- 

oretical ignorance about the likely masses of supersymmetric particles. This means 

that we cannot be sure where susy will first appear, and must plan a broad-band 

search. The production and detection of supersymmetric particles in hadron-hadron 

collisions (21, lepton-hadron collisions [3,4] and e+e- annihilation [3,5,6] have been 

extensively discussed. In the case of e+e- annihilation, there have been discussions 

of the production of squarks and gluinos in the continuum and of gluinos in heavy 

quarkonium decays [3,5,6]. The first calculated rates [3] were for gluino pair produc- 

tion in association with pq pairs or gluons and did not depend on unknown squark 

masses which introduce additional uncertainties. Calculations have also been made [S] 

for e+e- + 3 3 through loop diagrams. Recently calculations have also been made [6] 

of quarkonium + g S 9 and g j q due to squark exchange. We know [I] that the light 

quarks can only have much heavier squark partners, but this need not be the case for 

the t quark. In some models [7] for the spontaneous breaking of susy and of the weak 

gauge symmetry the scale of susy breaking can be much less than rnw while the t 

quark mass may be O(mw) (81. In th is class of models 3S1 orthotoponium 8 can have 

exclusive decays into pairs of gluinos or i squarks whose branching ratios rival or even 

dominate the familiar 0 -+ e+e- decays. 

In this paper we first discuss the possible masses of gluinos and squarks. We point 

out that in models where SU(3) X SU(2) X U(1) is eventually embedded in a unifying 

group the cosmological limit (91 rn? 2 mr = 1.8 GeV suggests that the gluino mass 

rni > 14 GeV (1) 

Gluinos may still be light enough to be pair-produced in 0 decays, since experiment 

tells us that me 2 38 GeV. Then we discuss the i squark mass matrix and show that 

in some models rni = O(mt) and it could be that one of the two stop mass eigenstates 
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could even be lighter: 

mi < mt (2) 

Next we present general formulae for the ratios I’(63 + iij)/I’(0 --+ e+e-) and I’(0 + 
z- 
t t)/l?(0 -+ e+e-). The gluino pair branching ratio can be larger than the leptonic 

branching ratio in models where rni = O(mt). If it is kinematically accessible, the 

8 -+ f ? decay rate due to gluino exchange can even be 0( 100) X I’(e -+ e+e-) and 

is enhanced by a supersymmetric analogue of a Coulomb binding singularity if rns << 

rnt m rni. For this reason, the 0 + ii decay rate need not exhibit the p3 threshold 
=- 

P-wave phase space factor characteristic of t t production in the e+e- continuum. If it 

is kinematically accessible, the decay t + t + 3 will be even faster, and will dominate 

the decays of toponium as well as those of t-flavored hadrons. 

Let us first discuss the gluino mass. The negative results of searches for their decay 

products in beam dump experiments suggest [2] that the gluino mass is larger than 

about 2 GeV, though the limit depends on the lifetime and decay modes of the gluino. 

A much more stringent limit (1) comes from cosmological considerations. It has been 

shown [9] that either 

m;l 5 O(1) keV or rnq 2 1.8 GeV . (3) 

In leading order, the renormalization group equations for gaugino masses are identical 

with those for the gauge couplings ai : i = 3,2,1 for the low energy SU(3) x 

SU(2) x U( 1) gauge group. If there is an underlying (grand) unifying group the (~i(&) 

all become equal at some scale mx, as do the effective gaugino masses at that scale. 

Therefore at lower energies we have 

rn;. 
- = independent of i 
&i 

(4 
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since the photino is a mixture of SU(2) and U(1) gauginos, its mass [7] is related to 

that of gluino by a modicum of algebra: 

9-3 a3 -- 
m? 8 a2sin2 6~ (5) 

with crug presumably being evaluated at a momentum scale & = O(ma). Numerically, 

eq. (5) becomes 

- = 50 a3 (mj) . 
m;l 

(6) 

We now combine this with the cosmological limit (3), taking the representative values 

a3 = 1 for the lower mass range and (~3 = 0.15 for the upper mass range, and obtain 

rni 5 50 keV or > 14 GeV . (7) 

The lower branch of the range (7) is excluded by experiment, and we are left with the 

conclusion (1). 

Now we discuss the masses of the spin-zero t squarks. There are two states ~L,J 

associated in chiral supermultiplets &, T with the left-handed (t, b) quark doublet and 

the left-handed tC conjugate quark singlet respectively. Their interactions can be 

described by superpotential terms 

w3 ~QTH+&H (8) 

where H and fi are the two light Higgs supermultiplets, V, ZI E (OIH, ii IO) while c is 

an unknown mass parameter expected to be O(mW), and by susy breaking (mass):! 

terms given by 6a: 

(9) 

4 



where L2 # R2 in general [7] thereby violating parity, and A is an unknown parameter 

which is O(1). The interactions (8,9) give us a mass matrix 

L2ti2+mf Atimt 

Atimt R2rii2+mf 
(10) 

where we have written A E A + (6 ZI / ti u). The t mass eigenstates 11,~ are rotated 

relative to TV and iR by an angle 8: cos 8 E c, sin 0 G s and 

tan 20 = 
-2Amt 

(L2 - R2) ii, (11) 

and have squared masses 

2 =mf+ 
(L2 + R2) iii2 f (L2 - R2)2 ti4 + 4A2rn; r?i2 

mil,* 2 1 . (12) 
In the cases of lighter quarks q, rn$ 2 w (L2, R2) ti2 > mf. However, in some models 

1 
[7) ti2 << m& while [7,8] mt 2 O(mw), so that in these cases tiir 2 w mt and 0 can 

be large. In particular, it is clear from eq. (12) that the lighter t may actually weigh 

less than the t quark. For given values of L, R, and A the minimum mass occurs when 

iTs2 A2 
i$ = LR(L + R)a 

in which case 

A2 
mp: = 1 - (L+ R)a . 

(13) 

(14) 

The first line of the table displays the minimum values of mi/mt for the five models 

of ref. 7. 

We now turn to the 0 decay modes involving gluinos and t squarks. In the non- 

relativistic limit the relevant It --) GS interaction generated by the j exchanges of fig. 

1 is (where X is the gluino field) 

(15) 



where C is a coefficient related to the parameters of the model (8,9,10): 

c = ( c2 - 82) 
[ 

1 1 

(4 - rni) + m-2 mB 
h 

-(mf- m$) + m-2 
t2 
1 

(L2 - R2) ti2 rnf 
= L2R2 ti* + (L2 + R2) ti2 (2m: - rng) - A2iii2 rnz + (2mf - m$2 

This coefficient is maximized if 

in which case 

C= 
(L2 - R2) 

(L+R)2-A2e 

06) 

(17) 

(18) 

We see in the interaction (15) that the final state gluinos are in a P-wave, as required by 

their Majorana nature. This means that 3S1 orthotoponium can only decay into them 

if parity is violated, as is the case if L # R in eq. (9). This requirement is mirrored in 

the numerator of the expression (18) for the coefficient C. Using the operator (13) we 

find 

r(e + 3rs) 
rye -+ r* --) e+e-) 

+y1-!Jy2 (194 

x 400 c2 ( 19b) 

if we assume rnb << mt and take og w 0.15. The ratio (19) is therefore larger than 1 if 

C 2 0.05. The second line of the table displays the maximal values of C for the five 

models of ref. [7]. These give values of the ratio (19) of decay rates which can easily 

be >> 1. If me w O(mzo) the rate for 8 + e+e- receives an important contribution 

from 2’ exchange and there are other effects [lo] on 8 decays, but 0 + 33 may still 



be a dominant decay mode. 

gluino pairs? 

Perhaps orthotoponium will decay predominantly into 

Figure 1 can also be used 1 to calculate the 8 + q 7 decay rate. We find 

w-+5) =8 
rye + r* + e+e-) 

6 c2 (20) 

if my << mt. This could be substantial for some of the models [7] listed in the Table. 

We would expect the photinos to escape as invisible neutral energy. One way to trigger 

on such events is to look for e+e- --+ 8’, 0’ ---* ?TA + (0 -+ missing neutrals) as has 

previously been discussed [ll] as a way of counting neutrinos. Formula (20) and the 

table indicate that 8 + P u decays may be an insignificant background to 8 -+ ry 

decays. 

The corresponding effective interaction for non-relativistic 3S1 1 t annihilation into 

f, tl squark pairs due to the gluino exchange of fig. 2 is: 

2 2 
6 93 ( 1 

rni+rn: -m-2 
h 

1 
(tj T/J+) ($ aU, ilj) . 

From this interaction we calculate the ratio of decay rates 

rye -+ 9, iI) 4 a3 2 
rye -+ r* + e+e-) = jj ; O( ip T+w m-t&at > 

(21) 

(224 

x 5OOa 

where @  is a factor containing finite mass corrections: 

@w 

ip= 
( 

l+pr’cl-~~‘2. (23) 

This formula exhibits a supersymmetric analogue of the Coulomb binding singularity 

when ma/mt -+ 0: 

rnil 

( 1 

-l/2 
a 4 l---q ! c-4 



It is readily apparent from eq. (22) that if mZ1 < mt, as is seen from eq. (14) and 

from the Table to be a definite possibility, then 8 + ‘it may be the dominant decay 

mode unless ma >> mt. 

There is another interesting possibility for 8 decays which exists if the decay t -+ 

i + ;i is kinematically accessible. If so, we find 

qt --) i + 3) = +gcmt + ,+I2 - 2 
t 

m,jmt (1 + sin20) - rnfl 1 ( AlI2 2 2 m,2, f-y7 mil > 

(25) 
where X is the usual kinematical function. This is sufficient to dominate toponium 

decays: 

rye -+ tipj+ri,g 
rye + r* --) e+e-) 

~3OOmt (GeV) (26) 

if we take I(e -+ q* -+ e+e-) - 5 keV and neglect m+. The electromagnetic t ---) It++ 

decay also dominates free t decay: 

qt --) ‘il + 7) - s31oo (g (1-Z) r(t + bff) (27) 

for rn? % 0, mt << rnw, and the decay t -+ i + q is also competitive with t + b + W 

if mt > rnw. This would modify the conventionally expected signatures for naked t 

decay. 

Our analysis has shown that 3S1 orthotoponium 8 may have very unexpected 

dominant decay modes in some supersymmetric theories [7,8] Similar results would 

apply to other toponium states, such as the 3Pl state which could be produced in Z” 

annihilation in e+e- annihilation and also decay into e+e- via Z” exchange. These 

possible bizarre final states in 8 decay should perhaps be taken into account when 

interpreting experimental searches in e+e- annihilation and elsewhere. We would 

expect the decay modes 

ji+w+r 

8 

(28) 



to dominate S decays. The dominant decay modes of the i may be 

(29) 

In both of these cases the final state would have missing energy and an unusual struc- 

ture containing 4 hadronic jets (25a) or 6 assorted leptons and jets (25b). If toponium 

were found to decay in such a manner, it could be the first experimental evidence for 

susy. 
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TABLE I 

The minimal t squark masses and maximal a,? decay coefficients C in the 5 models shown 

in the 5 columns of table I of ref. 7. 

2 3 4 5 

0.62 0.76 0 0.44 

0.03 0.19 0.14 0.05 

0.10 0.51 0.19 0.31 
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FIGURE CAPTIONS 

1. Diagram for 1 exchange which contributes to em-, S a, ;i, ;i decays. 

2. Diagram for j exchange which contributes to 8 -+ f, “tl decays. 
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