SEARCH FOR SUPERSYMMETRY IN TOPONIUM DECAYS*

JOHN ELLIS

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

and

SERGE RUDAZ

School of Physics and Astronomy
University of Minnesota, Minneapolis, Minnesota 55455

ABSTRACT

Although cosmology and unification suggest that the mass of the gluino is larger than about 14 GeV, in many theories of broken supersymmetry the photino $\tilde{\gamma}$, gluino \tilde{g} and one of the spin-zero partners \tilde{t} of the t quark can be lighter than m_t . We calculate the decay rates for toponium $\to \tilde{g}\,\tilde{g}$, $\tilde{\gamma}\,\tilde{\gamma}$ and $\tilde{t}\,\tilde{t}$ and show that in many models they can be as large as, or larger than, the rate for toponium $\to e^+e^-$ decay. If it is kinematically accessible, the decay $t \to \tilde{t} + \tilde{\gamma}$ dominates the decays of toponium as well as those of naked top states.

Submitted to Physics Letters B

^{*} Work supported by the Department of Energy, contracts DE-AC03-76SF00515 and DE-AC02-83ER40051.

One obstacle to the experimental search [1] for supersymmetry (susy) is our theoretical ignorance about the likely masses of supersymmetric particles. This means that we cannot be sure where susy will first appear, and must plan a broad-band search. The production and detection of supersymmetric particles in hadron-hadron collisions [2], lepton-hadron collisions [3,4] and e^+e^- annihilation [3,5,6] have been extensively discussed. In the case of e^+e^- annihilation, there have been discussions of the production of squarks and gluinos in the continuum and of gluinos in heavy quarkonium decays [3,5,6]. The first calculated rates [3] were for gluino pair production in association with $\bar{q}q$ pairs or gluons and did not depend on unknown squark masses which introduce additional uncertainties. Calculations have also been made [5] for $e^+e^- \to \tilde{g}\,\tilde{g}$ through loop diagrams. Recently calculations have also been made [6] of quarkonium $\to g\,\tilde{g}\,\tilde{g}$ and $g\,\tilde{g}\,\tilde{\gamma}$ due to squark exchange. We know [1] that the light quarks can only have much heavier squark partners, but this need not be the case for the t quark. In some models [7] for the spontaneous breaking of susy and of the weak gauge symmetry the scale of susy breaking can be much less than m_W while the t quark mass may be $O(m_W)$ [8]. In this class of models 3S_1 orthotoponium Θ can have exclusive decays into pairs of gluinos or t squarks whose branching ratios rival or even dominate the familiar $\Theta \to e^+e^-$ decays.

In this paper we first discuss the possible masses of gluinos and squarks. We point out that in models where $SU(3) \times SU(2) \times U(1)$ is eventually embedded in a unifying group the cosmological limit [9] $m_{\tilde{\gamma}} \geq m_{\tau} = 1.8$ GeV suggests that the gluino mass

$$m_{\tilde{q}} \geq 14 \; GeV$$
 (1)

Gluinos may still be light enough to be pair-produced in Θ decays, since experiment tells us that $m_{\Theta} \geq 38 \; GeV$. Then we discuss the \tilde{t} squark mass matrix and show that in some models $m_{\tilde{t}} = O(m_t)$ and it could be that one of the two stop mass eigenstates

could even be lighter:

$$m_{\tilde{t}} < m_t \tag{2}$$

Next we present general formulae for the ratios $\Gamma(\Theta \to \tilde{g}\,\tilde{g})/\Gamma(\Theta \to e^+e^-)$ and $\Gamma(\Theta \to \tilde{t}\,\tilde{t})/\Gamma(\Theta \to e^+e^-)$. The gluino pair branching ratio can be larger than the leptonic branching ratio in models where $m_{\tilde{t}} = O(m_t)$. If it is kinematically accessible, the $\Theta \to \tilde{t}\,\tilde{t}$ decay rate due to gluino exchange can even be $O(100) \times \Gamma(\Theta \to e^+e^-)$ and is enhanced by a supersymmetric analogue of a Coulomb binding singularity if $m_{\tilde{g}} \ll m_t \approx m_{\tilde{t}}$. For this reason, the $\Theta \to \tilde{t}\,\tilde{t}$ decay rate need not exhibit the β^3 threshold P-wave phase space factor characteristic of $\tilde{t}\,\tilde{t}$ production in the e^+e^- continuum. If it is kinematically accessible, the decay $t \to \tilde{t} + \tilde{\gamma}$ will be even faster, and will dominate the decays of toponium as well as those of t-flavored hadrons.

Let us first discuss the gluino mass. The negative results of searches for their decay products in beam dump experiments suggest [2] that the gluino mass is larger than about 2 GeV, though the limit depends on the lifetime and decay modes of the gluino. A much more stringent limit (1) comes from cosmological considerations. It has been shown [9] that either

$$m_{\tilde{\gamma}} \leq O(1) \ keV \quad \text{or} \quad m_{\tilde{\gamma}} \geq 1.8 \ GeV \ .$$
 (3)

In leading order, the renormalization group equations for gaugino masses are identical with those for the gauge couplings $\alpha_i(Q)$: i=3,2,1 for the low energy $SU(3) \times SU(2) \times U(1)$ gauge group. If there is an underlying (grand) unifying group the $\alpha_i(Q)$ all become equal at some scale m_X , as do the effective gaugino masses at that scale. Therefore at lower energies we have

$$\frac{m_{\tilde{i}}}{\alpha_{i}} = \text{independent of } i \tag{4}$$

since the photino is a mixture of SU(2) and U(1) gauginos, its mass [7] is related to that of gluino by a modicum of algebra:

$$\frac{m_{\tilde{g}}}{m_{\tilde{\gamma}}} = \frac{3}{8} \frac{\alpha_3}{\alpha_2 \sin^2 \theta_W} \tag{5}$$

with α_3 presumably being evaluated at a momentum scale $Q = O(m_{\tilde{g}})$. Numerically, eq. (5) becomes

$$\frac{m_{\tilde{g}}}{m_{\tilde{\gamma}}} = 50 \ \alpha_3 \ (m_{\tilde{g}}) \ . \tag{6}$$

We now combine this with the cosmological limit (3), taking the representative values $\alpha_3 = 1$ for the lower mass range and $\alpha_3 = 0.15$ for the upper mass range, and obtain

$$m_{\tilde{g}} \leq 50 \ keV \quad \text{or} \quad \geq 14 \ GeV \ .$$
 (7)

The lower branch of the range (7) is excluded by experiment, and we are left with the conclusion (1).

Now we discuss the masses of the spin-zero \tilde{t} squarks. There are two states $\tilde{t}_{L,R}$ associated in chiral supermultiplets Q, \tilde{T} with the left-handed (t, b) quark doublet and the left-handed t^c conjugate quark singlet respectively. Their interactions can be described by superpotential terms

$$W \ni \frac{m_t}{n} Q \,\bar{T} \, H + \epsilon \,\bar{H} \, H \tag{8}$$

where H and \tilde{H} are the two light Higgs supermultiplets, $v, \bar{v} \equiv \langle 0|H, \tilde{H}|0\rangle$ while ϵ is an unknown mass parameter expected to be $O(m_W)$, and by susy breaking (mass)² terms given by \tilde{m} :

$$\mathcal{L}_{susyX} \exists -L^2 \tilde{m}^2 |\tilde{t}_L|^2 - R^2 \tilde{m}^2 |\tilde{t}_R|^2 - \hat{A} m_t \tilde{m} \tilde{t}_L \bar{\tilde{t}}_R$$
 (9)

where $L^2 \neq R^2$ in general [7] thereby violating parity, and A is an unknown parameter which is O(1). The interactions (8,9) give us a mass matrix

$$\left(\tilde{\bar{t}}_L, \tilde{\bar{t}}_R\right) \left(\begin{array}{ccc} L^2 \,\tilde{m}^2 + m_t^2 & A \,\tilde{m} \,m_t \\ A \,\tilde{m} \,m_t & R^2 \,\tilde{m}^2 + m_t^2 \end{array}\right) \,\left(\begin{array}{c} \tilde{t}_L \\ \tilde{t}_R \end{array}\right) \tag{10}$$

where we have written $A \equiv \hat{A} + (\epsilon \, \bar{v} \, / \, \tilde{m} \, v)$. The \tilde{t} mass eigenstates $\tilde{t}_{1,2}$ are rotated relative to \tilde{t}_L and \tilde{t}_R by an angle θ : $\cos \theta \equiv c$, $\sin \theta \equiv s$ and

$$\tan 2\theta = \frac{-2Am_t}{(L^2 - R^2)\tilde{m}} \tag{11}$$

and have squared masses

$$m_{\tilde{t}_{1,2}}^2 = m_t^2 + \left[\frac{(L^2 + R^2)\tilde{m}^2 \pm \sqrt{(L^2 - R^2)^2\tilde{m}^4 + 4A^2m_t^2\tilde{m}^2}}{2} \right] . \tag{12}$$

In the cases of lighter quarks q, $m_{\tilde{q}_{1,2}}^2 \approx (L^2, R^2) \tilde{m}^2 \gg m_q^2$. However, in some models [7] $\tilde{m}^2 \ll m_W^2$ while [7,8] $m_t \geq O(m_W)$, so that in these cases $\tilde{m}_{\tilde{t}_{1,2}} \approx m_t$ and θ can be large. In particular, it is clear from eq. (12) that the lighter \tilde{t} may actually weigh less than the t quark. For given values of L, R, and A the minimum mass occurs when

$$\frac{\tilde{m}^2}{m_t^2} = \frac{A^2}{LR(L+R)^2} \tag{13}$$

in which case

$$m_{\tilde{t}_1}^2/m_t^2 = 1 - \frac{A^2}{(L+R)^2}$$
 (14)

The first line of the table displays the minimum values of $m_{\tilde{t}}/m_t$ for the five models of ref. 7.

We now turn to the Θ decay modes involving gluinos and \tilde{t} squarks. In the non-relativistic limit the relevant $\tilde{t}t \to \tilde{g}\tilde{g}$ interaction generated by the \tilde{t} exchanges of fig. 1 is (where λ is the gluino field)

$$\frac{g_3^2}{24} \frac{C}{m_t^2} \left(\bar{t} \, \gamma_\mu t \right) \left(\bar{\lambda} \, \gamma_\mu \gamma_5 \lambda \right) \tag{15}$$

where C is a coefficient related to the parameters of the model (8,9,10):

$$C = (c^{2} - s^{2}) \left[\frac{1}{(m_{t}^{2} - m_{\tilde{g}}^{2}) + m_{\tilde{t}_{1}}^{2}} - \frac{1}{(m_{t}^{2} - m_{\tilde{g}}^{2}) + m_{\tilde{t}_{2}}^{2}} \right] m_{t}^{2}$$

$$= \frac{(L^{2} - R^{2}) \tilde{m}^{2} m_{t}^{2}}{L^{2}R^{2} \tilde{m}^{4} + (L^{2} + R^{2}) \tilde{m}^{2} (2m_{t}^{2} - m_{\tilde{g}}^{2}) - A^{2} \tilde{m}^{2} m_{t}^{2} + (2m_{t}^{2} - m_{\tilde{g}}^{2})^{2}}$$

$$(16)$$

This coefficient is maximized if

$$\tilde{m}^2 = \frac{(2m_t^2 - m_{\tilde{g}}^2)}{LR} \tag{17}$$

in which case

$$C = \frac{(L^2 - R^2)}{\left(2 - \frac{m_{\tilde{g}}^2}{m_t^2}\right)(L + R)^2 - A^2} \ . \tag{18}$$

We see in the interaction (15) that the final state gluinos are in a P-wave, as required by their Majorana nature. This means that 3S_1 orthotoponium can only decay into them if parity is violated, as is the case if $L \neq R$ in eq. (9). This requirement is mirrored in the numerator of the expression (18) for the coefficient C. Using the operator (13) we find

$$\frac{\Gamma(\Theta \to \tilde{g}\,\tilde{g})}{\Gamma(\Theta \to \gamma^* \to e^+e^-)} = \left(\frac{\alpha_3}{\alpha}\right)^2 C^2 \left(1 - \frac{m_{\tilde{g}}^2}{m_t^2}\right)^{3/2} \tag{19a}$$

$$\approx 400 C^2 \tag{19b}$$

if we assume $m_{\tilde{g}} \ll m_t$ and take $\alpha_s \approx 0.15$. The ratio (19) is therefore larger than 1 if $C \geq 0.05$. The second line of the table displays the maximal values of C for the five models of ref. [7]. These give values of the ratio (19) of decay rates which can easily be $\gg 1$. If $m_{\Theta} \approx O(m_{Z^0})$ the rate for $\Theta \to e^+e^-$ receives an important contribution from Z^0 exchange and there are other effects [10] on Θ decays, but $\Theta \to \tilde{g}\,\tilde{g}$ may still

be a dominant decay mode. Perhaps orthotoponium will decay predominantly into gluino pairs?

Figure 1 can also be used to calculate the $\Theta \to \tilde{\gamma}\,\tilde{\gamma}$ decay rate. We find

$$\frac{\Gamma(\Theta \to \tilde{\gamma}\,\tilde{\gamma})}{\Gamma(\Theta \to \gamma^* \to e^+e^-)} = \frac{8}{9} C^2 \tag{20}$$

if $m_{\tilde{\gamma}} \ll m_t$. This could be substantial for some of the models [7] listed in the Table. We would expect the photinos to escape as invisible neutral energy. One way to trigger on such events is to look for $e^+e^- \to \Theta'$, $\Theta' \to \pi\pi + (\Theta \to \text{missing neutrals})$ as has previously been discussed [11] as a way of counting neutrinos. Formula (20) and the table indicate that $\Theta \to \bar{\nu} \nu$ decays may be an insignificant background to $\Theta \to \tilde{\gamma} \tilde{\gamma}$ decays.

The corresponding effective interaction for non-relativistic 3S_1 \bar{t} t annihilation into \bar{t}_1 t_1 squark pairs due to the gluino exchange of fig. 2 is:

$$\frac{2}{9} g_3^2 \left(\frac{1}{m_{\tilde{g}}^2 + m_t^2 - m_{\tilde{t}_1}^2} \right) (\bar{t}_i \gamma_\mu t^j) (\bar{\tilde{t}}_1^i \stackrel{\longleftrightarrow}{\partial_\mu} \tilde{t}_{1j}). \tag{21}$$

From this interaction we calculate the ratio of decay rates

$$\frac{\Gamma(\Theta \to \tilde{t}_1 \, \tilde{t}_1)}{\Gamma(\Theta \to \gamma^* \to e^+ e^-)} = \frac{4}{3} \left(\frac{\alpha_3}{\alpha}\right)^2 \Phi\left(m_{\tilde{g}/m_t}, m_{\tilde{t}_1/m_t}\right) \tag{22a}$$

$$\approx 500 \Phi$$
 (22b)

where Φ is a factor containing finite mass corrections:

$$\Phi = \left(1 + \frac{m_{\tilde{g}}^2}{m_t^2} - \frac{m_{\tilde{t}_1}^2}{m_t^2}\right)^{-2} \left(1 - \frac{m_{\tilde{t}_1}^2}{m_t^2}\right)^{3/2}.$$
 (23)

This formula exhibits a supersymmetric analogue of the Coulomb binding singularity when $m_{\tilde{g}}/m_t \to 0$:

$$\phi \approx \left(1 - \frac{m_{\tilde{t}_1}^2}{m_t^2}\right)^{-1/2} ! \tag{24}$$

It is readily apparent from eq. (22) that if $m_{\tilde{t}_1} < m_t$, as is seen from eq. (14) and from the Table to be a definite possibility, then $\Theta \to \tilde{t} \, \tilde{t}$ may be the dominant decay mode unless $m_{\tilde{g}} \gg m_t$.

There is another interesting possibility for Θ decays which exists if the decay $t \to \tilde{t} + \tilde{\gamma}$ is kinematically accessible. If so, we find

$$\Gamma(t \to \tilde{t} + \tilde{\gamma}) = \frac{\alpha}{9m_t^3} \left[(m_t + m_{\tilde{\gamma}})^2 - 2m_{\tilde{\gamma}} m_t (1 + \sin 2\theta) - m_{\tilde{t}_1}^2 \right] \lambda^{1/2} \left(m_t^2, m_{\tilde{\gamma}}^2, m_{\tilde{t}_1}^2 \right)$$
(25)

where λ is the usual kinematical function. This is sufficient to dominate toponium decays:

$$\frac{\Gamma(\Theta \to t \,\tilde{t}_1 \,\tilde{\gamma} + l \,\tilde{t}_1 \,\tilde{\gamma})}{\Gamma(\Theta \to \gamma^* \to e^+ e^-)} \approx 300 \,\, m_t \,\, (\text{GeV}) \left(1 - \frac{m_{\tilde{t}_1}^2}{m_t^2}\right)^2 \tag{26}$$

if we take $\Gamma(\Theta \to \gamma^* \to e^+e^-) \sim 5$ keV and neglect $m_{\tilde{\gamma}}$. The electromagnetic $t \to \tilde{t} + \tilde{\gamma}$ decay also dominates free t decay:

$$\frac{\Gamma(t \to \tilde{t}_1 + \tilde{\gamma})}{\Gamma(t \to bf \, \tilde{f})} \approx 100 \, \left(\frac{m_W}{m_t}\right)^4 \, \left(1 - \frac{m_{\tilde{t}_1}^2}{m_{\tilde{t}}}\right)^2 \tag{27}$$

for $m_{\tilde{\gamma}} \approx 0$, $m_t \ll m_W$, and the decay $t \to \tilde{t} + \tilde{\gamma}$ is also competitive with $t \to b + W$ if $m_t > m_W$. This would modify the conventionally expected signatures for naked t decay.

Our analysis has shown that 3S_1 orthotoponium Θ may have very unexpected dominant decay modes in some supersymmetric theories [7,8] Similar results would apply to other toponium states, such as the 3P_1 state which could be produced in Z^0 annihilation in e^+e^- annihilation and also decay into e^+e^- via Z^0 exchange. These possible bizarre final states in Θ decay should perhaps be taken into account when interpreting experimental searches in e^+e^- annihilation and elsewhere. We would expect the decay modes

$$\tilde{g} \to (\bar{q} \, q) + \tilde{\gamma}$$
 (28)

to dominate \tilde{g} decays. The dominant decay modes of the \tilde{t} may be

$$\tilde{t} \to b + \tilde{W}^*$$

$$\to \bar{\ell} + (\tilde{\ell} \to \ell + \tilde{\gamma})$$
or
$$\to (\bar{q} q, \bar{\ell} \ell) + \tilde{\gamma}$$
(29)

In both of these cases the final state would have missing energy and an unusual structure containing 4 hadronic jets (25a) or 6 assorted leptons and jets (25b). If toponium were found to decay in such a manner, it could be the first experimental evidence for susy.

REFERENCES

- [1] Supersymmetry versus Experiment Workshop, Proceedings, ed. D. V. Nanopoulos, A. Savoy-Navarro and C. Tao, CERN preprint TH-3311/EP-82-63 (1982); I. Hinchliffe and L. Littenberg, Proc. D.P.F. Summer Study On Elementary Particle Physics and Future Facilities, Snowmass, 1982, ed. R. Donaldson, R. Gustafson and F. Paige (APS, 1982), p. 242.
- [2] G. Farrar and P. Fayet, Phys. Lett. 76B (1978) 575 and Phys. Lett. 79B (1982)
 442; G. Kane and J. P. Leveille, Phys. Lett. 112B (1982) 227; P. Harrison and C. H.
 Llewellyn Smith, Nucl. Phys. B213 (1983) 223; CHARM Collaboration: F. Bergsma et al., Phys. Lett. 121B (1983) 429.
- [3] B. A. Campbell, J. Ellis and S. Rudaz, Nucl. Phys. B198 (1982) 1.
- [4] S. Jones and C. H. Llewellyn Smith, Oxford University preprint OUTP 73/82 (1982).
- [5] P. Nelson and P. Osland, Phys. Lett. 115B (1982) 407; G. L. Kane and W. B. Rolnick, Nucl. Phys. B217 (1983) 117.
- [6] W.-Y. Keung, Brookhaven preprint (1983).
- [7] J. Ellis, J. S. Hagelin, D. V. Nanopoulos and K. Tamvakis, SLAC preprint SLAC-PUB-3042 (1983).

- [8] L. E. Ibáñez and G. G. Ross, Phys. Lett. 110B (1982) 215; J. Ellis, L. E. Ibáñez and G. G. Ross, Phys. Lett. 113B (1982) 283 and CERN preprint TH-3382 (1982); K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 68 (1982) 927; J. Ellis, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. 121B (1983) 123; L. Alvarez-Gaumé, J. Polchinski and M. B. Wise, Harvard preprint HUTP-82/A063 (1982); L. E. Ibáñez and C. López, Universidad Autónoma de Madrid preprint FTUAM/83-2 (1983).
- [9] H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
- [10] J. D. Jackson, S. Olsen and S.-H. H. Tye, Proceedings of the D.P.F. Summer Study, op. cit., p. 175.
- [11] J. Rich and D. R. Winn, Phys. Rev. D14 (1976) 1283; J. Ellis, Proceedings of 1978 SLAC Summer Institute on Particle Physics, ed. M. Zipf, SLAC-215 (1978), p. 69.

TABLE I

The minimal \tilde{t} squark masses and maximal \tilde{g} , $\tilde{\gamma}$ decay coefficients C in the 5 models shown in the 5 columns of table I of ref. 7.

Models		1	2	3	4	5
$m_{{ ilde t}_1}/m_t \geq$		0.50	0.62	0.76	o	0.44
$\left \begin{array}{c} \\ C \leq \end{array} \right \left \begin{array}{c} n \end{array} \right $	$n_{\widetilde{g}}=0$	0.06	0.03	0.19	0.14	0.05
l <i>I</i>	$m_{\widetilde{g}}=m_t$	0.32	0.10	0.51	0.19	0.31

FIGURE CAPTIONS

- 1. Diagram for \tilde{t} exchange which contributes to $\Theta \to \tilde{g}\,\tilde{g}\,,\tilde{\gamma}\,\tilde{\gamma}$ decays.
- 2. Diagram for \tilde{g} exchange which contributes to $\Theta \to \overline{\tilde{t}}_1 \, \tilde{t}_1$ decays.

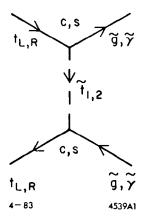


Fig. 1

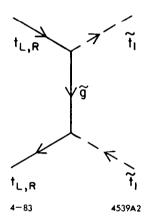


Fig. 2