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ABSTRACT 
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idea of using entropy as a measure of uncertainty to remove the inadequacies of 

the standard treatment, is presented. This uncertainty in general involves the 
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In a recent letter,’ Deutsch presented a compelling criticism of the standard 

quantitative formulation of the uncertainty principle (usually expressed in terms 

of variances and based on the Heisenberg inequality and its generalizations:! ). 

He then proposed the natural and appealing alternative of using entropy as a 

measure of uncertainty, and presented arguments to demonstrate the viability of 

this entropic definition of uncertainty. However, his formulation, while essentially 

correct, is incomplete, and the required modification turns out to be of a rather 

fundamental nature, as will be seen below. The purpose of this note is to present 

this modified structure and to demonstrate that the emerging formulation is a 

complete and satisfactory expression of the uncertainty principle according to 

the criteria of Ref. 1. 

Given a pair of observables represented by (self-adjoint) operators h and & 

with discrete spectra, Ref. 1 defines the uncertainty in the simultaneous mea- 

surement of the pair in the state I$J) to be 

where the entropy is defined by 

SAW) = - c I(4~)12w4~)12 I a (1) 

and where {la)} is the set of eigenstates of A (see Ref. 1 for details). It is then 

demonstrated that U is never less than -2 e&(1 + sup l(alb)l)], thus showing 

that U is a satisfactory measure of uncertainty. Although it is further noted that 

a generalization of the above definition to the continuous case is inappropriate, 

this is dismissed as a technicality on the strength of the statement that actual 

measurements always involve a countable set of outcomes. While this assertion is 
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correct, it does not reduce the continuous case to the discrete one, and it therefore 

leaves one with a severely limited definition (e.g., the cases of position-momentum 

and angle-angular momentum are excluded). In fact even the purely discrete case 

is not dealt with in a completely satisfactory manner. For example, in the case of 

a discrete spectrum with a limit point (such as the bound sates of the Coulomb 

potential accumulating near the ionization limit), the fact that any measuring 

device has finite resolution and cannot resolve the entire set of eigenvalues is not 

accounted for by the above definition of entropy. The resolution of the above 

difficulties lies, not unexpectedly, in a formulation more intimately anchored in 

the details of the measurement process. To wit, the relevant characteristics of 

the measuring device must be included in a correct formulation. This inclusion, 

as the sequel will show, has non-trivial consequences. 

-A measuring device fl, used to measure the observable A, in general corre- 

sponds to a partitioning of the spectrum of A into a-collection of subsets ai, and 

the assignment to a state I$) of a corresponding set of probabilities Pk($IDA). 

These numbers (to be abbreviated pi”) express the probability of finding the 

outcome of the measurement to have a value in the subset ai. In symbols, 

where +f is the projection onto the subspace spanned by the states corresponding 

to the points of oi. 3 Note that while the whole spectrum is characterized by A, 

the manner of its partitioning is a property of the measuring device. Often the ai 

are a collection of intervals, which we may descriptively refer to’as “bins”. The 

existence of the .iFf is assured by the spectral theorem, valid for any self-adjoint 

operator3, and the completeness property is given by the operator statement 

Ciirf = 1. 
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The entropy associated with the measurement by means of the device DA is 

now defined as 

which is an inherently non-negative quantity. In the rather special case that each 

ai includes one point of the spectrum (degeneracies being ignored for simplicity), 

namely an eigenvalue ai, one has +t = lai)(ail, and the above definition reduces 

to that of Ref. 1. In realistic situations, however, at least some of the oi will be 

infinite-dimensional (e.g., continuous spectra, discrete spectra with limit points), 

which is the essential reason necessitating the present formulation. 

It will now be shown that the uncertainty in the measurement of two observ- 

possesses a lower bound which in general depends on the measuring devices, but 

not on I$). Since the PiA are probabilities, one can write (following Ref. 1) 

upA, DQ) = -CP,“Pjs hz(Pi”PjB), 
Ci 

and proceed to find the infimum of -e~(PiAPj”) for a given pair (i, j) and all I$). 

To that end, let Ilkll denote the norm of ii. Then for any 1s) with ($I$) = 1, 

implying that Pi”Pj” < :I]+~ + +Tll”. Hence 
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U(DA, PI?+!J) > - c PpPjBtn (pf + $712/4) 
i,j 

(5) 

Since the 5ii are projections, it follows that 1 5 Il+$ + *$/I < 2, where the 

upper bound is attained if and only if 64 and q have (at least) one eigenvector 

in common. 4 Clearly Eq. (5) is a satisfactory quantitative expression of the 

uncertainty principle according to the criteria of Ref. 1.’ 

The physical consequences of the present formulation will now be illustrated 

by means of two examples. The first is the celebrated angle-angular momentum 

case,2 i = $, B = e,. However, our formulation requires further detailes of 

the measuring devices, namely their bin assignments. As a simple arrangement, 

we-shall assume that the device measuring cp is organized in bins of size A’p 

(2n/A(p = some integer), and that the device measuring L,- can resolve down 

to a single value of the angular momentum. For a given angular bin (pi, pi+l) 

and a value ,!I,, = m, the corresponding projections are defined by (63 is the step 

function) 

*’ NCO) = W(P - PiP(Pi+l - P)?HcP) 7 

& $(p) = (27+-l idp’ exPb(cp- dMw) 9 
0 

where I/I(~) is the p representation of I$) ( no t e a slight change of notation, j -+ 

m). A simple calculation shows that the extremal values of Pi”P~ are attained 

by the eigensolutions of the (bounded, self-adjoint) operator ji-7 + &, 

(jF7 + i&Iv) = XIV) ) 
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so that max(PjPP$) = ix&,,, in accordance with the general inequality derived 

before. The relevant solution is found to be 1~~~~) = [I + (A,P/~x)-~/~ irr]lm) 

with X maz = 1 + (Ap/27r)lj2, where e, lm) = mlm). Therefore 

(6) 

Note that Acp is not a variance, but effectively the resolution of the measuring 

device. The criteria of Ref. 1 are fulfilled by (6); see remark (c) below. 

Finally, we consider the archtypal example, the case of position and momen- 

tum (restricted to one dimension for simplicity). Here, we shall assume that 

position and momentum are measured in bins of size Ax and Ap, respectively. 

The projection irf is then an exact analogue of ‘r’ considered above, and 

- Pi+1 +a 
kp t)(x) = (2a)-’ / dp / dx’exp [ip(x - x’)] $(z’) . 

Pi -cm 

Just as in the previous example, max(P,Z$‘) is obtained from the solution of an 

eigenvalue equation for the (bounded, self-adjoint) operator ?f + irs. After some 

computation, one transforms the above equation to the form 

1 

/ dh(E’)(C- t’)-‘sin k?r(t - [‘) = rp2w(c) (0 < 5 5 1) , 
0 

with max( Pi’P’) = : ( l+pmaz)2, where ?T/.$,.,~~ is the largest (positive) eigenvalue 

of the above integral equation (guaranteed to exist by the compactness of the 

kerne14), and k = (Az)(Ap)/(2w). It suffices for our purposes to find the behavior 

of pmaz for the limiting values of k. One finds from the integral equation that 

2 
Pmaz + k(l) for k + O(oo). Assembling the above information, we finally arrive 



at 

U(DZ,DPI$J) 2 2492 
2 

l+Pmaz ’ 

(7) 
Pmaz + [(Ax)(AP)/W”~ 9 (Ax)(AP)/~~ K 1 9 

Pmaz + 1 9 (Ax)(AP)/~~ B 1 r 

with llrnaz restricted to [0, 1). It is worth recalling that the results given in 

Eqs. (6) and (7) crucially depend on the introduction of the resolutions of the 

measuring devices into the basic definition of uncertainty. 

We conclude with a few remarks. (a) The contrast between the standard 

and the entropic measures of uncertainty is highlighted in the example of i, and 

]T+!J) = I-m)+l+m). While the variance of L, in this state is Irnl and unbounded, 

the entropy is independent of m and equal to h 2. (b) The lower bounds given in 

E+ (6) and (7) are not necessarily optimal (i.e., they are not the infima), even 

though those corresponding to -Cn Pi”Pj” are. (c) In both examples considered 

above, the minimum of the lower bound given for U is attained for the case of 

minimum resolution, i.e., (Ap)/27r = 1 and (As)(Ap)/2~ = 00, respectively. 

This is exactly as it should be, since, given these resolutions, one is already 

in possession of the maximum accessible information about cp, respectively x 

and/or p, without the need to perform the corresponding measurement. (d) 0 5 

S(DAl$) 2 hz(No. of 6 ins of DA) 2 h (rank of A). For a given I$), one can 

(in principle) design measuring devices such that either bound is approached as 

closely as desired. For a given device (e.g., fixed resolution), on the other hand, 

the bounds may not necessarily be attainable, as can be seen in the examples. 
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