
SLAC-PUB-3095 

April 1983 

(T/E) 

COMPOSITE MODELS AND FINITE WIDTH EFFECTS 

ON e+e- + p+p- ASYMMETRY* 

PISIN CHEN 

Department of Physics, University of California 

Los Angelea, California 90024 

Z. REK~ AND F. M. RENARD 

Stanford Linear-Accelerator Center 

Stanford University, Stanford, Cal(fornia 94305 

ABSTRACT 

We investigate the possibility of distinguishing standard model from composite 

models at an intermediate energy range (45 - 60 GeV). We show that effects due to 

multiple neutral weak bosons and their finite widths can be observable in e+e- -+ 

p+p- forward-backward asymmetry. 

Submitted to Physical Review D 

*Work supported in part by the Department of Energy, contract DEAC03-76SF00515 

and by Centre National de la Recherche Scientifique, France. 

ton leave of absence from Warsaw University Branch, Bialystok, Poland. 



1. Introduction 

The discovery of W* and Z0 bosons at CXRN’ is a monumental progress in the 

study of electroweak interactions. However the whole picture of electroweak interac- 

tions is not yet settled. In particular the structure of the weak neutral current is still 

far from precise. Namely’ 

MW = 80.9 f 1.5 GeV , Mz = 95.1 f 1.4 GeV; I’ 5 7 GeV from UAl 

Mw= 81.0 f 2.5 GeV, MZ = 91.2 f 0.9 GeV; I’ 5 7 GeV from IJA2 . 

These results are consistent with the standard model predictions but the low statistics 

in the events still leaves room for small departure in the Z’ mass and for substantially 

larger width. Furthermore even if the mass and the width are close to the standard 

values this does not mean that Z” is necessarily a gauge particle. Further tests are 

necessary in order to precise the nature of these weak bosons. The most accurate 

infojmation on Z” width and couplings should come from direct production in e+e- 

collisions. Unfortunately several more years are needed before we can reach the nec- 

essary energy. In this paper we demonstrate that e+e- --) lJ+lr- asymmetry at lower 

energy (e.g. 45 GeV from PETRA and 60 GeV from TRISTAN) can provide useful 

clues towards the nature of the Z” boson. 

There are proposals of composite leptons, quarks and weak bosons2 as alternatives 

to the standard model. These composite models offer different predictions on the 

neutral current amplitudes. In particular, for those composite models with low mass 

scales (say A < 1 TeV), the low energy neutral current phenomenology may differ from 

the standard predictions. The differences come from the existence of more neutral 

bosons which appear either as excited states of the Z boson or as isoscalar partners of 

the low lying isovector weak bosons. In addition, there will be width elfects from each 

neutral weak boson. Abbott and Farhi and Fritzsch and Mandelbaum4 argue that the 

widths of composite weak bosons might behave similarly to the ordinary resonances 
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and hence be quite sizeable. On the other hand, even if the widths are as narrow as 

the standard predictions ( - 3 GeV), there are still some subtle effects expected from 

the compositeness. There should be new phenomena above some threshold (of the 

order of A), such as productions of exotic leptons and quarks, the jets associated with 

the preons, etc. These new channels will modify the weak boson propagators through 

their contribution to the vacuum polarization. 

In this paper we show that it is possible to distinguish the standard model from 

the composite models through the e+e- -+ ~J+/J- process at the intermediate energy 

range (45 GeV - 60 GeV). The advantages of our approach are twofold: experimentally 

e+e- + p+p- provides a clean information, and theoretically this process is easy to 

describe directly in terms of weak boson propagators. 

We will concentrate on the e+e- -+ fl+p- cross section a and forward-backward 

asymmetry Am. So far calculations have been done by Hollik and others5 only in the 

framework of standard and extended gauge models. To extract the possible composite 

effects we need a more general treatment. 

The contents of our paper are the following: In Sec. 2 we derive a generalized 

formula for the amplitude of a general neutral current process e+e- -+ f 7 passing 

through a photon and a series of weak bosons. This formula involves the modified 

weak boson propagators due to finite width effects. In Sec. 3 we study the structure 

of e+e- + P+/J- amplitude. Sum rules for coupling and mass parameters are given 

by comparison with low energy phenomenology. Two types of illustrations are then 

discussed where one describes a single Z boson case and the other deals with Z and 

an additional boson Y. The results are given in Sec. 4. The calculations are carried 

out at fi = 45 GeV and fi = 60 GeV. A discussion of how future experiments can 

help to distinguish different electroweak models is given at the end. 
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2. Finite Width Effects 

Since we are concerned with the effects due to the broad weak-bosons widths, 

the normal Breit-Wigner shape of resonance propagator should be modified. There 

are obvious effects coming from the phase space, and there are also constraints from 

analyticity and unitarity that the weak-boson amplitudes should satisfy. These are 

well-known features for resonances in hadronic physics.’ This kind of modification also 

appears when one considers higher order corrections in QED and QFD,7 though the 

magnitude of the corrections is generally small (of the order of 9). 

Finite width effects will in general modify the electroweak mixing scheme by ap- 

pearance of complex and energy-dependent couplings and mixing angles. In the present 

work, as we are mainly interested in the energy range reachable by PETRA and TRIS- 

TAN which is below the possible resonance peak of the weak-boson, we shall keep only 

theleading effects. We consider each weak-boson propagator independently and ne- 

glect the phases (small at the low-energy) which come from finite width treatment of 

the non-diagonal mixing terms. We do not consider the modifications of the photon 

propagator; we assume that the main effects (of the type of vacuum polarization) are 

included in the radiative correction programs used when analyzing the experimental 

events. 

After mixing with 7 and other bosonic states each physical boson acquires an 

inverse propagator 

Do(s) = m2 - s + c(s) 

where m would be its physical mass when neglecting the couplings to decay channels. 

C(s) is precisely the additional contribution due to the processes of Fig. 1. The 

physical mass M is now given by the condition 
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ReDo(M2) E m2 - M2 + ReC( A42) = 0 . 

The inverse propagator can then be written 

Do(s) = [l - C’(M2)] D(s) 

(2.2) 

(2.3) 

where 

D(s) SM2 -s + H(s) - ml?(s) (2.4 

having defined 

C’( M2) = {$ ~e~(~)),=~ (2.5) 
n(S) = ReC(s) - ReC( M2) - (s - M2)E’(M2) - 

1 - C’( M2) P-6) 

- 
Mqs) ~ -ImW 

1 - C’( M2) (2.7) 

For s 21 M2, D(s) given by Eq. (2.4) gr a ees with the usual Breit-Wigner formula, 

because II(s) behaves like (s - M2)2 as can be seen from Eq. (2.6). The total width at 

the top of the resonance is MT(M2) given by Eq. (2.7). The factor [l - E’(M2)] is a 

renormalization effect due to the decay channels (F). 

Any amplitude describing this boson formation will be written as 

where 

g2 E gg [I - C’(M2)]-’ 

P-8) 

(2.9) 
and go is the bare coupling constant. Electroweak amplitudes should be normalized 

at 8 = 0 according to the usual phenomenology which fixes Rfi(O) values (see more 

details from the sum rules in Sec. 3). However we have 



2 
Rji(“) = 

g2 
M” ! II(O) = M2(1 + 6) 

which introduces the “finite width coefficient” S 

Then 

6 = n(O) - ReC(0) - ReC(M2) + M2C’(M2) 
M2- M2[1 - C’(M2)] ’ 

In the zero-width treatment one would have 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Comparing Eq. (2.12) and Eq. (2.13) we conclude that the leading finite width influence 
- 

on a single boson propagator will be obtained by the following replacement 

j$- s * 
1+6 

M2 - s + II(s) - iMY ’ 
(2.14) 

with S, II(s) and MI’(s) given in Eq. (2.11), (2.6) and (2.7) in terms of the function 

C(s). This replacement will not affect the various sum rules8 coming from zero energy 

normalizations given by charged current and neutral current phenomenology (see Sec. 

3). 

The amplitude of the neutral current process e+e- -t f 7 due to an exchange of a 

photon and a series (i = 1,. . . , n) of weak bosons will now take the general form: 

e2Qr ' l+bi- --4&leiij~~Vf + c - 
i=l Di(s) 

trf3 7’ (a,i - b,ir5) Uf3 “f 7/i (“/i - bfir5) vf C2*15) 
S 

where &I, a,i, bei, afi, b,i are the charge, the vector couplings and the axial couplings 

of the fermions (see Appendix for the general formulae on cross sections and asymme- 

tries). 



The effects of the replacement (2.14) are threefold. Firstly, there is the (1 + 6) 

factor in the numerator which changes the magnitude of the amplitudes for s # 0. 

For example, at s = M2 this factor gives precisely the difference between the usual 

Breit-Wigner formula M2 - s - iMT and the actual formula. Secondly, the real part 

of the propagator is modified by the additional term II(s). Thirdly, the imaginary 

part of the propagator (the width term MI’(s)) has an energy dependence controlled 

by the phase space of the opened channels (F). 

In order to quantitatively estimate these effects we use the analytic properties of 

C(s) and write the dispersion integral following from definitions (2.6) and (2.7) 

n(s) = - (’ -TM2)2 Re 1 O” M-w) 
a0 (a’- s)(s’ - M2)2ds’ 

(2.1.6) 

with MI’($) = C(F) MI’F(s’). 

coupled to the weak boson. We 

SO is the threshold of 

have then from (2.11) 

M2 / 00 MI’(d) 

the lowest lying channel (F) 

o=zf= --Al 80 $(s’ - ia)2 dd * (2.17) 

To illustrate this point let us look at two extreme cases. If the dominant channels are 

fermion pairs with negligible mass we can see from Eq. (2.16) and (2.17) that II(s) (for 

s < M2) and 6 get positive values. On the other hand if the dominant channels have 

high thresholds (SO 2 M2) these quantities will get negative values. 

In the first case we can approximate the energy dependence of the width by 

(2.18) 

Then from Eq. (2.16) 

lI(s)=s[M2-s(I+log$)] (2.19) 
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with 

(2.20) 

All the finite width effects in Eq. (2.14) can then be expressed in terms of S = 

I’(m2)/rM. To appreciate their importance we can first take the standard case with 

M N 90 GeV and I’(M2) = 3 GeV. This gives 6 N 0.01. If the width is much larger 

due to the presence of, e.g., a large number of generations, supersymmetric partners, 

or composite model effects, then 6 could be much larger. For example I’(M2) N 10 

GeV gives S N 0.03. 

The second case could happen if the weak boson is composite with a scale A > 

M. One expects many new effects to appear for s 2 A2, in particular the opening 

of multifermion, multiphoton, multigluon- channels . . ..etc. From (2.16) and (2.17) one 

observes that they will give contributions to II(s) and 6 of the order of -(M2/rA2). 

The lowest mass scale among the present composite models is of the order of 250 GeV.2 

This means that one cannot expect S to be less than -0.1. 

Without a precise model giving the threshold values SF and the contributions 

Ml?F($) it is impossible to give a definite prediction for 6. Nevertheless from the 

above discussion it appears that a reasonable range for 6 is 

-0.1 5 6 < +0.1 . 

In the following we shall limit ourselves to three different illustrations, namely S = 

I’(A42)/?rM, 6 = 0 and 6 = -0.1. 

3. The Structure of e+e- ---) p+p- Amplitude 

In this section we shall study the scattering amplitude of e+e- -+ /.L+P-. The 

general amplitude involving a photon and several weak-bosons was given in Eq. (2.15). 
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For the sake of illustration we shall limit ourselves to two neutral weak-boson states, 

with the lighter one being the usual Z-boson. We shall call the heavier one the Y-boson 

though it could either be an isovector (e.g., the excited state of Z) or an isoscalar (e.g., 

the partner of Z in some composite models). 

In Eq. (2.15) the couplings of Z@r and Y@f!- are not specified, and it can 

cover any extended gauge model8 or composite model mixing scheme.gT10 By imposing 

universality of couplings to fermion generations (i.e., the same couplings for e+e- 

and p+p-), we are left with eight parameters in the amplitude, namely, the masses 

Mz, My and widths Iz, I’y of the two weak-bosons, plus the vector and axial-vector 

coupling coefficients al, a2 and bl, b2, respectively. 

However, these eight parameters are subject to the constraints from low energy 

phenomenology of weak neutral currents. ‘At s = 0, we must identify Eq. (2.15) wit#h 

- 8G 
zp [ (i3 - sin2eWjem)2 +-Cj& 1 (3-l) 

where the weak isovector current is 

and the electromagnetic current is 

By comparing term by term Eq. (2.15) and Eq. (3.1) we get the following constraints: 

1. From the axial-vector - axial-vector term, 

GP b? G 
g=xq++ ’ 

2. From the vector-axial-vector term, 

=‘P -t3in2ew = 
Wl - 4 

fi % 

+ b2@2 - a21 

M; ’ 

(3.2) 

(3.3) 
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3. And, from the vector-vector term, 

c 8GP 2 

( 1 

- = 16hb2 - a2b112 

a 
2 2 

MZ”Y 
(34 

Experimentally, we have Gm% = 1.029 X 10v5, p = 1, sin28w = 0.23, and C < 

0.03. This means we just have two strong contraints from Eq. (3.2) and Eq. (3.3). 

The last one (Eq. (3.4)) is actually an inequality. 

The remaining freedom in the parameters is quite unrestricted. However it is 

reasonable1,8 to impose the condition that the average boson mass &f, defined by 

l =tggg$ ’ YcP 
(3.5) 

should lie within the range 92-100 GeV. 

It will be clear in the later illustrations that the asymmetry effects are much more 

sensitive to the total width rz of the lighter boson than that of the heavier one. Hence, 
- 

for the sake of simplicity we adopt a simple proportionality relation 

MY ry=-rz . 
MZ 

(3.6) 

At this point we are left with one free mass parameter from Eq. (3.5) and one 

width parameter from Eq. (3.6). As for the coupling coefficients, Eq. (3.2) to Eq. (3.4) 

still leave the relative strengths between Y and Z couplings unconstrained. We shall 

thus study the effects due to Y boson by looking at the extreme cases - either the 

Y boson is decoupled from the leptons or it has the same coupling strength as the Z 

boson. 

In the decoupled extreme it is equivalent to having no Y boson, as we have our 

case 1, 

1. Decoupled Y: 

M;Gp ii 
i%kMz, bl=- [ 1 2J;z ' a1 

= bl(i-4 sin20W) . WI 
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Obviously C = 0 in this case, and we are left with two free parameters MZ 

and Iz. Note that this case can accommodate the standard model. 

In the second extreme there could be several possibilities. Even if Y and Z bosons 

have the same basic coupling strength they still can mix with the 7 differently. With 

this in mind we consider the following four cases: 

2. Same 7 -Y and 7-Z mixings: - 

~1 = ~2 = bl(l - 4 sin2BW) , 

and 

M;= 
M;+4Mp,ti2-4Mj&f4’ 

- 
2(fi2- M;) 

1 . 
Again, C = 0 in this case. 

3. No 7 -Y mixing: 

a2=b2=bl= 

but 

(3.8) 

(3-Q) 

This last expression implies that 

which is consistent with the experimental limit of C < 0.03 if My > 1.5Mz. 

The next two cases are the variances of cases 2 and 3 where we change the relative 

sign between 61 and b2 in Eq. (3.2) w h ereas other couplings are unchanged. 
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2’. b2 = 41, otherwise same as in Eq. (3.8). In this case 

cJ1-4 sin2BW)2M+ Mj - 
4(M; + M;)2 ’ 

(3.lQ) 

Since sin2BW = 0.23, the experimental constraint on C < 0.03 is automatically 

satisfied. 

3’. a2 = -b2 = bl, otherwise same as in Eq. (3.9). Now 

c= -2+4 8in2Bw 
M;Mj 

‘lG(M;+ Mj)i ’ 
(3.11) 

Again, the constraint on C is automatically satisfied. 

Note that since in the last four cases we always have lb11 = lb4. Equation (3.5) 

imposes on the Z mass the condition: 

Mz>j/afi. (3.12) 
- 

In the case of fi = 100 GeV, the extreme low value of Mz is about 91 GeV. 

4. Results and Discussions 

In this section we study the finite-width and Y-boson effects on e+e- ---t p+p- 

total cross section and forward-backward asymmetry (see Appendix) in the energy 

range from 40 GeV to 60 GeV. We will first study the decoupled Y case. We will look 

at the effects due to Z width Iz and the finite-width coefficient 6~. We then will study 

the combined Y and Z effects. In addition to rz and 62, we now have to consider also 

the influence of the average mass u and Z mass Mz. These will be carried out for 

each of the four extreme cases that we mentioned at the end of the previous section. 

4.1 DECOUPLEDY 

In this case we only have one boson Z, and in the following illustrations we will 

take MZ = 92 GeV. As can be seen from Fig. 2a the total cross section in this energy 
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range is insensitive to the Z width even up to rz = 10 GeV. Judging from this fact 

the total cross section is not an efficient tool in probing the difference between the 

gauge and non-gauge models. On the other hand, the effects are more substantiate in 

the forward-backward asymmetry, as can be seen from Fig. 2b. Thus from now on we 

will concentrate only on the asymmetries. 

The naive way to look at the effect of rz on asymmetry is to assume the usual 

Breit-Wigner formula Mi - s - iMzI’z. This is shown in Fig. 3a and Fig. 3b as 

solid curves. As explained in Sec. 2, this formula is not adequate in the case of broad 

resonances. Thus in the same figures we also give the results of the modified formula 

Eq. (2.14) with 6~ = rz(M;)l~Mz, 6, = 0 and Sz = -0.1, respectively. Notice 

that the naive formula gives a much sharper dependence on the width effect. This is 

because at fi = 45 GeV (Fig. 3a) and ‘,/% = 60 GeV (Fig. 3b) I’z(s) are smaller 

than I’z(Mi) due to phase space effects. Furthermore, the asymmetry effects due to 

the closed channels through 62 can be at most fO.Ql at ,/i.= 45 GeV and f0.03 

at ,/% = 60 GeV. One may worry about the effect due to different values of s4n2BW. 

Our calculations for sin28W = 0.23 f 0.02 show that the asymmetry can change by 

no more than fO.OO1 at fi = 45 GeV and f0.005 at ,/z = 60 GeV. 

4.2 COMBINED YANDZEFFECTS 

Now we fix the average mass at &f = 100 GeV and MZ = 92 GeV to study 

the combined Y and Z effects with both S’s chosen to be 6 = I’(M2)/rM. The 

asymmetries for cases 2, 2” 3, 3’ are calculated in comparison with case 1, and the 

results for & = 45 GeV and fi = 60 GeV are shown in Fig. 4a and Fig. 4b, 

respectively. Notice that the curves of combined Y and Z cases lie consistently above 

the single Z case at ,/% = 45 GeV. This is because for all cases, Mz = 92 GeV 

thus for combined Y and Z the &I is higher. At fi = 60 GeV as we are closer to 

the resonance peak the width effects (especially for large I’) become stronger and the 
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asymmetry effects are larger, but the essential features are the same. We find that the 

difference in asymmetries between the extreme combinations in cases 2, 2’, 3, 3’ and 

the single Z case runs from 0.003 to 0.007 at fi = 45 GeV and from 0.010 to 0.025 

at fi = 60 GeV. 

Next we look at the effect of the average mass fi. This is shown in Fig. 5a and 5b 

for the case 2 as compared to the single Z case (Mz = 92 GeV) by varying &f from 

92 GeV to 100 GeV and taking Mz close to the minimal value given by Eq. (3.12). 

Varying m around the standard Z mass, for example from 92 GeV to 96 GeV, leads 

to a change of the asymmetry by +0.004 at ,/z = 45 GeV and +0.012 at ,/S = 60 

GeV. 

4.3 CONCLUSION 

To summarize our calculations we plot the asymmetry versus the width Iz at 

fi=45GeV(F ig. 6a) and fi = 60 GeV (Fig. 6b) for the extreme cases, namely for 

the decoupled Y case (single Z) and for “no 7 - Y mixing,, cases with opposite signs 

in the axial-vector couplings (i.e., cases 3 and 3’). In each case we present it as a band 

allowing for the extreme values of the finite width coefficient 6 (i.e., to vary S between 

-0.1 and r/TM). The dots on the Y-axis in Fig. 6a and 6b represent the predictions 

from the standard model with a width I’ = 3 GeV. 

It can be seen from these two figures that the composite models accommodate an 

asymmetry value between -0.165 and -0.180 at fi = 45 GeV, and between -0.348 

and -0.396 at ,/$ = 60 GeV. This large range of asymmetry values are chiefly due 

to the combined effects of the existence of Y-boson and the possible large widths of Y 

and Z bosons. If the experimental value deviates from -0.178 at fi = 45 GeV but 

still lies within the range (-0.165, -0.178), and if one insists on narrow width of the 

neutral boson, then the composite model can accommodate it by having a Y boson or 

strong closed channels for the Z. But if the asymmetry lies outside this range while 
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still within (-0.164, -0.180) then a broader width should be invoked. 

The situation is similar when ,/% = 60 GeV (Fig. 6b). However, the asymmetry 

effect is much more pronounced allowing for the distinction among the models without 

requiring the same level of experimental accuracy. 

Although the original purpose of our calculation was to estimate the observability 

of large width effects of neutral bosons, it turns out that due to the large variety of 

free parameters inherent in all models this issue is not very unique. As mentioned 

above the large effects following from naive treatment of width (Breit-Wigner formula) 

are largely cancelled by phase space effects which in turn might be counterbalanced 

by the existence of the closed channels and a possible Y boson. Our results indicate 

the advisability of certain caution when dealing with these sorts of effects. 

A realistic analysis of our Fig. 6 a) and b) shows that the chances for experimental 

elimination of most models in the near future are rather slim. However, we believe 

that our curves may serve as good reference for future experiments since any precise 

measurement of asymmetry should eliminate a major domain in parameter space. 

It is conceivable that an independent information then might lead to an ultimate 

elimination of this ambiguity. 

In this paper we have limited our attention to the unpolarized asymmetry associ- 

ated with leptons. As is well known, much larger effects should be expected in e+e- + 

q p processes. The price one has to pay there is the necessity of a unique parent quark 

identification which reduces statistics enormously. Furthermore, the polarization ef- 

fects can give some independent constraints on the neutral current structure. These 

seem to be the useful areas of future development of this program. 
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Appendix 

For the sake of completeness we list in this appendix the formulae for differential 

and integrated cross sections and for the forward-backward asymmetry. We shall 

neglect electron mass everywhere but the mass of final state, ml, will be kept through 

the velocity ,OJ = pGqi. 

Using the approximations (2.18) and (2.19) and denoting photon term by subscript 

0 we get the differential cross section for a general reaction e+e- --) ff proceeding 

through the exchange of a photon and n neutral weak bosons 

do -= 
d costI 

2 5 cijdij (/ij + gij COSO + hij COS'd) (i, i = 0, 1, . . . , n) 
i=O j=i 

where 

co() = 
ra2Q;p, . 

25 ’ 
- 

CYQf tf 
coj=- 4 (i # 0) 7 

cii sPf 
=32n ’ 

Cij = 

doe = 1 , 

(1 + bi)(8 - Mf - Iii(S)) 
d”j = (9 - A4; - IIi(S))2 + (ri(S)Mi)2 

dii = (S - ~~ -tst~+ (ri(s)Mi)2 

(i # 0) y 

(i # 0) 7 

(l+ Si)(l+ Sj)[(~-Mi2--i(8)][("-Mi2-~j(S)] 

dij =  Its - Mf - ni(8))2 + (ri(S)Mi)2][(S - Mj -JJj(t!?))2 + (rj(S)Mj)2] 

(i#i; i,i#O) , 

(A-1) 

(A4 

(A-3) 

(A.4 

(A4 

(A.6) 

WV 

(A-8) 

(A-9) 
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foo = 2-P; 9 

fOj = aejuJj(2 - By) (j #  0) Y 

fii = t2 - Pj)C UziUji + bzi*yi) + p!(“zibji + 6zibfi) (i #  0) 7  

fij = t”eiaej + beibej) 
[ 
C2 - P~b/i”~j + P/“b/ibJj I (i #  j ; 4  i #  0) , 

mo=o, 

(A. 10) 

(A.11) 

(A. 12) 

(A. 13) 

goj = 2Pfbei6/i (i #  O) 9 

Sii = 8Pfueibeiu/ib/i (i #  0) 9 

Sij = 2Pf(uejbei + ueibej)(u~jb/i + uJiblj) (i #  i ; i,i #  0) 9 

(A. 14) 

(A. 15) 

(A.16) 

(A. 17) 

(A. 18) - ho=P/2 , 

hOj = P~“eiufi (i #  0) f (A. 19) 

hii = pj(“zi + bzi)(UTi + byi) (i #  0) y  (A.20) 

hij = P~(UfSej + beibt?j)(a/iafj + b/ibfj) (j #  i ; 4, j #  0) . (A.21) 

All symbols in the formulae above are as defined in (2.15), the indices e  and j at 

the coupl ings indicate coupl ings to electrons or final state particle j. 

In the general case when the small forward and backward cones with opening 

angles 280 are not covered by detector we get for the total integrated cross section 

o~“~(&) = 2  2  2  cijdij [ fij COS60 + 5 hij COSMIC] 
i=O j=i 

and for the global forward-backward asymmetry 

cijdijgij cos2& . 

(A.22) 

(A.23) 

All examples in our paper are calculated for t9u = 0. 
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Figure Captions 

1. Diagrams contributing to C(s). 

2. a) a(e+e- -+ $p-) and b) asymmetry in the single 2 boson case (Mz = 

92 GeV) versus total center-of-mass energy. Solid line: I’z = 3 GeV, SZ = 

rz/?rMz; dotted line: rz = 10 GeV, SZ = I’z/7rMz; dashed line: rz = 10 

GeV, Breit-Wigner case. The sections of the u and the asymmetry ranging from 

55 GeV to 60 GeV are magnified and shown in the insertions, respectively. 

3. Asymmetry in the single 2 boson case (Mz = 92 GeV) versus rz at a) ,/i = 

45 GeV and b) & = 60 GeV. Solid curve corresponds to Breit-Wigner, dotted 

to Sz = Tz/nMz, dashed to 6~ = 0 and dash-dotted to SZ = -0.1. 

4. Asymmetry versus rz in the combined 2, Y cases at a) ,/Z = 45 GeV and b) 

+=60GeV.Th fi e ve cases are described in Sec. 3. 

5; Asymmetry versus &!f in the combined Z,Y cases at a) J”; = 45 GeV and b) 

,/ii = 60 GeV. S o 1 I’d and dotted curves correspond to case 1 with rz = 3 and 

10 GeV, respectively, and dashed and dash-dotted curves correspond to case 2. 

6. Asymmetry versus rz in the combined 2, Y cases at a) di = 45 GeV and b) 

,/i=sOGeV; h d d s a e areas are obtained by varying 6 between -0.1 and A. 

0 Standard model (rz = 3 GeV) 

bK?j Case 1 (see Sec. 3) 

~T7j Case 3 

mfl Case 3’ 

19 



(F) 

4-83 4524Al 

Fig. 1 



0.05 

- 
Ll 
c 

- 
0.04 

‘5 
6- 

0.03 

- 
-0.2 

& 
I- 

: 
& -0.3 
a 

56 58 60 - 

- 

56 58 60 

(b) 

1 

-0.4 
40 45 50 55 - 60 

11-83 & KeV) 4524814 

Fig. 2 



-0.172 

-0.174 

-0.176 

-0. I78 

y -0.180 
r’ 
> - 03 -0.37 
Q 

-0.38 

-0.39 

F 

----Ir._lr._: -.- -.-.-.- 
- 

(a) 
- J-z=45 

-._._ .- .-.L.-.C. -.-. 
_.4.-•- 

(b) 
A=60 

6 
lYz (GeV) 

8 IO 

4524015 11 H:: 

Fig. 3 



1 I I I 
- ffl\ \-, - 

-0.r2 I 
t 

l -.-.- *--.a.- 
*--•--.-.- 

:-•-.- l -•-.-* -I ---.-• 
-0.174 

3’ 

l ‘-**-.._** -0. -..-.- _ 1 
-0.176 

3 
--. -.* I ---•.-•*- 

‘* -0•- ..-.. ___ I 

Y/G=45 

1 I I 

> 
‘>~*..***o.........*........*......... . . . . . . . . . . . . . . . . . . ..****.** 

..I 

‘2 -0.180 
z 
> 
ul -0.37 

-0.38 

‘-*-*-.a.-.-. -.-.-.-.-.-.-•-.-.-.-•-. 

3’. - - 

-..-..- ..-.. 
-..-..-..-.. -.. 

-..-..-..-..-**-I 

3 

rz WV) 4524816 

Fig. 4 



-0.170 1 

I (0) A=45 0’ 
/ 

-0.172 

-0.174 

-0.176 

-0.178 

-0.180 

/ / - 
/ I / / .” 

0 .’ 
0 .’ 

/ .’ 
0 .’ - 

/ .’ / .’ 0 0 .’ 
/ .’ 

/ .’ - 
/ .’ 

0 .’ 
/ 

.’ 
.’ 

/ 
/ .’ 

7 - 
.’ / 

/’ 
,’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~ 

-0.182 I I I - 

-0.37 - (b) ,/560 ,-1;’ 
0 .’ 

0 0 .’ 0 .’ 0 .’ 0 .’ -0.38 - 0 0 0 .’ .’ - 
0 .’ 

0 0 .’ 0 .’ 0 .’ .’ 
-0.39 - - 0 

,+’ 
0 .” 

- 0. ~~....................................................................... 
-0.40 I 

92 94 96 98 - 100 
11-83 M (GeV) 4524817 

Fig. 5 



-0.165 

-0. I70 

id 
z -0.180 

t; 
Q -0.35 

-0.36 

- 0.37 

- 0.38 

-0.39 

-0.40 

1 l-83 

I I 

A=45 

-Js=60 . (b) I 

4 6 8 - IO 

lYz (GeW 4524818 

Fig. 6 


