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1. Introduction 

A string is the natural one-dimensional extension of the classical point parti- 

cle. Whereas a particle tries to minimize the length of. its world line, the string 

moves so as to minimize its world surface area. Surface dynamics appear in many 

contexts, in particular domain wall fluctuations1 and dynamics of large Wilson 

loops in non-abelian gauge theories ;2 the low energy excitations of the QCD 

flux tube connecting two quarks are well described by a string model (the “dual” 

model). 

A particularly interesting class of string theories arises when fermions are 

glued to the string. Such theories are found in N = 00 lattice gauge theories,3 

the three-dimensional Ising model,l and dual models.5 The structure of the 

string is enriched by the polarization information carried by the fermions. For 

instance, the fermionic dual model string may be considered as a one-dimensional 

chain of fermionic parton with nearest-neighbor interactions. 

Because of the these many-fold applications, an understanding of the par- 

- tition function or quantum mechanics of strings is of considerable importance. 

However, the quantized string is extremely singular since the zeropoint oscilla- 

tions of the string modes cause the mean displacement to diverge. Early attempts 

at formulating the quantum theory had many inconsistencies - they were only 

consistent in unphysical spacetime dimensions (10 for the fermionic string, 26 

for the bosonic string), the ground state was a tachyon, Green’s functions were 

only known on-shell, etc. Because of these difficulties, the subject lay dormant 

for many years. Recently interest has been revived by the work of Polyakov7 

on the path integral quantization of an action originally proposed by Brink, Di 

Vecchia, and Howe8 and Deser and Zumino.g The basic string variables in 

this model are a set of coordinate functions Xp(z) describing the location of the 

string world sheet in spacetime. Here the index p runs over the directions in the 

d-dimensional imbedding spacetime and z is a set of intrinsic coordinates on the 

world sheet. Coordinate reparametrizations leave the physical configuration of 

the string unchanged, thus we should make the action invariant under general 
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coordinate transformations of the Z’S. This may be achieved by coupling the 

Lagrangian covariantly to a metric gab on the intrinsic coordinates. The simplest 

action that we might write down is 

s= / d2z Jj gabt3aXpadi,~ (1.1) 

The equations of motion derived by varying both gab and X” are just those which 

generate minimal area surfaces. 7s8 Polyakov has evaluated the path integral for 

this action in the gauge gab = c’&,. The local scale factor 4 drops out of the 

action (1.1) allowing an explicit evaluation of the functional determinants arising 

from gauge fixing and integrating over X p. The only dependence on the field 4 

lies in the regularization of the determinants; this is a short distance effect, and 

so the effective action calculated from these determinants is local: 

Qi 
26 - d =--- 

4th 
(l%~5)~ + p2e24 1 + boundary terms . (l-2) 

Thus the consistency of the quantized bosonic string in other than 26 dimensions 

should be restored by the dynamics of the 4 field. An elegant formalism has 

been developed for the analysis of the bosonic string with arbitrary world surface 

topology’0 which exploits the complex structure of two dimensional manifolds 

and employs heat kernel methods for the determinant calculations. 

The most natural way to introduce fermions into the theory is to supersym- 

metrize it. The action (1.1) becomes two-dimensional supergravity coupled to 

a set of d scalar supermultiplets. The effective action may be calculated in a 

manner analogous to the bosonic string using the component fields gab, X“ and 

their partners JJ~,* and x! (o is a two-dimensional spinor index). The present 

work was initiated with the goal of using superspace methods in order to main- 

tain manifest supersymmetry in the calculation. Indeed we have found that the 

elegant calculus of Ref. 10 has a natural superspace generalization-which clarifies 

the discussion of cancellations due to the supersymmetry, especially for string 

surfaces with boundaries. 

In Section 2 we review the superspace formulation of two-dimensional super- 

gravity and introduce the generalization of the complex tensor calculus and heat 
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kernel methods of Ref. 10 to the supersymmetric case. In Sections 3 and 4 we 

analyze the fermionic string path integral using this formalism and find results 

which differ from a previous calculation in component fields.ll In particular, the 

p2 term in (1.2) corresponds to a divergent cosmological constant in the origi- 

nal theory (1.1); in the supersymmetric theory, this divergence cancels between 

bosons and fermions and no such term is generated (this result was first obtained 

in Ref. 12). The presence of a boundary on the world surface spontaneously 

breaks the supersymmetry, so that near the boundary this cancellation fails and 

generates a divergent boundary cosmological term X JIM dz e’#@). Thus at least 

in the interior of the parameter space manifold the action is that of a free field. 

Section 5 contains a discussion of these results. Three appendices are included: 

Appendix A lists the superspace notations and conventions, Appendix B sketches 

the determinant calculations used in Section 4, and Appendix C derives the ef- 

fective action for an alternate choice of boundary conditions on the string fields. 

Much of the analysis presented here is‘a direct corollary of the investigations 

of Ref. 10. Some details only touched on in the following are carefully discussed 

there, and the reader may find an understanding of that paper helpful. -_ 

2. Two Dimensional Supergravity 

The superspace formulation of two-dimensional supergravity is highly redun- 

dant. All two dimensional manifolds are conformally flat, and so describable 

locally by a single superfield;r3 yet the vierbein e2 comprises 16 superfields, 

and the gauge freedoms of local diffeomorphisms and rotations remove only 5 of 

these. The other redundant components must be removed by constraints on the 

vierbein. Such constraints can be applied covariantly by fixing some components 

of the torsion tensor T&, defined by 

[v,,vB) = TLVc + RmM 

where 

VA= eFa,u + HAM 
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is the covariant derivative and Rm, #A, and M are the curvature, spin connec- 

tion, and Lorentz generator, respectively. 

Following Ref. 13, we choose the constraints 

-. Ta”@  = 2~3;~ (2.3~) 

T7 0 a/9 = (2.3b) 

TC ab =o. (2.3~) 

The first of these ensures that the supersymmetry algebra {QLy,Qb} = 

2i r:gPa is maintained, and enables one to express e, M in terms of ef. The 

next two constraints allow one to determine the spin connection 4~ in terms of 

the vierbein just as (2.3~) allows one to solve for the spin connection in ordinary 

general relativity. One may verify that the vierbein of the conformal form 

ea = e*Da ; t?a = e2* 
[ 
aa + i $‘(D~$J) Dg 1 

indeed satisfies (2.3a-c) and the spin connection is determined to be 

(24 

The most general vierbein satisfying (2.3a-c) is locally gauge equivalent to 

(2.4) b M ecause e, is determined from ef, and (2.3b) provides two constraints on 

ef. This leaves 6 superfield degrees of freedom: 2 vector and 2 spinor fields 

generating diffeomorphisms, 1 field generating local rotations, and the conformal 

factor $. 

Having chosen a gauge in which the vierbein takes the form (2.4) we may 

classify the set of tensors on the manifold which carry tangent space indices. 

This is most conveniently done in complex coordinates 

= -r-(x1 + ix2) 
x Jz 

z = $(xl - t-22) 

e lb 
=&,+&) e = -$(el - ie2) . 

P-6) 
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Tensor indices may be freely raised and lowered with the tangent space metric 

(2.7) 

Thus an arbitrary tensor with raised and lowered x, Z, 6, and 8 indices may be 

turned into one with only x’s and 8’s by raising and lowering indices - a raised 

z is equivalent to a lowered x index, etc. The 7 matrices are Clebsch-Gordon 

coefficients between vectors and spinors, so we may use them to replace an x 

index by two t9 indices (only 7&, = -7& = & is nonzero in these coordinates). 

Tensors are classified by their transformation law under the tangent space 

group O(2) = U( 1). A spinor xa transforms as 

(2.8) 

under a rotation by angle ,B. Thus a general tensor with n+ raised 6’ indices and 

n- lowered 8 indices transforms like a spin (n+ - n-)/2 object. The rotational 

transformation properties of a given tensor depend only on the different n+ -n-, 

so all tensors lie in one of the spaces 7” defined by -_ 

Tn = {TIT + e’;a T under a rotation by angle ,f3} . (2.9) 

The covariant derivatives (2.2) on Tn take a particularly simple form in the 

basis (2.4) 

0; = e$Dd + n(Dee$) = e-(n-l)qDd en’ 

Vi = e$Dg - n(Dgeq) = 
(2.10) 

e tn+l)tiDse-n* 

Defining an inner product on Tn by 

< T,S >= / 
d2zes1T*S T,S 6 Tn (2.11) 

M 

we see that formally Vd = -(Va)+, neglecting boundary contributions (these 

will be discussed in Section 4). Note that 0; maps Tn into rnfl whereas V3 
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maps 7n into 7 n-1. We may define two distinct Laplace operators An (*I : Tn -+ 
7n by 

Al;+’ = V(n+‘)vjJ”) 
e 

A’,-’ = V~-‘)$’ 
(2.12) 

In Section 3, we will find that the effective action for the fermionic Polyakov 

string is determined by the determinants of these Laplacians. Although we can- 

not calculate det A for a general vierbein, we may calculate 6 (det A)/&!J and 

hence determine the dependence of this quantity on the conformal factor. 

One conventional definition of the determinant of a Laplacian A is 

tn sdet’ A = -TTstr’[e-““1 
E 

(2.13) 

where the prime indicates that the operation is to be carried out over the space 

orthogonal to the zero modes of A (for a definition of sdet and str, see Appendix 

A). The lower limit c of the integral over t regulates the divergences of the 

- determinant by cutting off the large eigenvalues of the Laplacian. However, the 

heat kernel estAi*) does not have a diffusive behavior and does not tend to zero 
(4 as t + 00 since the spectrum of An is not bounded below; thus eVtAn has 

spurious poles and divergences in its behavior even in flat space. To remedy this 

situation, we calculate instead 

&zsdet’A(,f) = ’ ?tn sdet An I( (*I)2 = -I/“~str’e-tAFJ2 
E 

(2.14) 

which is perfectly well behaved since (Ak*))2 = -~CI in flat space. If we perform 

a variation of A?) with respect to the conformal factor $, we find 

(2.15) 

Proceeding along the lines of Ref. 10, one may prove that 

6fh sdet ’ A(+) = n (-)“I(. -I- I)str’(a$e-‘A~‘2) + 2nstr’(&,be-LA~?:)] (2.16) 
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where the different signs arise from the fact that we are taking the strace and not 

the trace. Equation (2.16) is tractable because it only involves the local structure 

of the manifold; a diffusing particle cannot travel far in an infinitesimal time. We 

defer calculation of the determinants until we have properly treated the boundary 

conditions on the spaces Tn. 

3. The Fermionic String 

The extension of the action (1.1) to the fermionic string was first considered 

in Refs. 8 and 9. In this section we review the description of the string in 

superspace, l3 deriving the equations of motion and boundary conditions for the 

string fields as well as the Faddeev-Popov determinant for the conformal gauge 

(2.4). This will set the stage for the computation in Section 4 of the effective 

action coming from the integration over the gauge group and string fields. 

The action for the string may be written - 

- 
S = :A / d2z ewleaXp - e,Xp + B d2z eSIR + / 1 dsk 

M M ~dM 
(3.1) 

+C d2zeB1 
/ +D / ds+E / dsk 

\ I 

M dM l3M 

where k = 1, --- , d (the dimension of the imbedding space of the string), M is 

the parameter space manifold, Xp and the unconstrained components of ey are 

dynamical variables, and 

e = sdet ey (3.2~) 

R = - f 75a47,Vg 
27 
l 5”Bv,(l+g =-- 

/ dsk= / dx/d2Be-‘[-i na750pe~nmVpta] 
8M 8M 

(3.2b) 

(3.2~) 

Here na and ta denote the unit tangent and normal vectors to the boundary. 

Possible terms involving the torsion T& may be expressed in terms of R by using 
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the constraints (2.3) and the Bianchi identities.13 Thus the action (3.1) includes 

all the terms which are allowed under the requirements of general covariance and 

renormalizability. The B term in (3.1) is the superspace version of the Gauss- 

Bonnet invariant - 

1 
5 / 

d2zem1R + 
J 

ds k = 2q(M) (3.3) 
M dM 

where the Euler characteristic X(M) depends only on the topology of the manifold: 

x(M) = 2 - 2 e (# handles of M) - (# boundaries of M) (3.4 

Since (3.3) is metric-independent, it will have no influence on the dynamics of the 

string. We will find that supersymmetry prevents renormalization of the C term 

for either Neumann or Dirichlet boundary conditions on Xp. The D term is the 

length of the boundary in superspace, hence it is an integral over one bosonic 

and two fermionic coordinates. In the gauge (2.4) this term will be independent 

of @  since the factors of e tl, cancel in the vierbein determinant in the measure. 

An important consequence of this fact is that any boundary-cosmological term 

which does depend on + must break supersymmetry. 

Variation of the action yields 

SS = A 

+ 6HaBepXp - t!&’ i- GHabe,Xp . ebXc( 1 
+ boundary terms 

M 

where 

Au = -eeae-‘ea (3.6~) 

(3.6b) 

(3.5) 
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We concentrate on the A term which will result in the “classical” string equations 

of motion. It is straightforward to show that 

6T& = HiTgB - Tfil)8H$ + (-)abHgDTL _ 

+ V,H,C - (-)abV~H,C + (HAD40 - 6$~)Mg - (-)ab(H~+~ - QB)M~ 

(3.7) 
which, combined with ST&, = 0, yeilds 

Substituting this result into (3.5) yields the equations of motion 

AoXp = o 

(7b7a)aBvjjX’ * vbx’ = 0 
w 

Equations (3.9) when written in component fields, reproduce the usual fermi - 
string equations.5. In contrast to the bosonic case, an algebraic solution for the 

vierbein in terms of the matter fields is not possible due to the-necessity of using 

tangent space indices. 

Now we turn to a discussion of boundary terms. The boundary term in (3.5) 

arising from the matter field variation is 

/ 
dxd2B6X”B+DXko (3.10) 

dM 

where na is a unit vector normal to the boundary. Let 

X(X, e) = A(X) + ie - X(X) + ie2qx) . (3.11) 

Then there are two choices of boundary conditions for which (3.10) holds: 

on 3M 
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and 

on 8M 

where nZ, nz are the components of fi in the basis (2.6). These conditions are 

sufficient to ensure that (3.10) vanishes provided the variation SX also obeys 

(3.12) and (3.13). The choice of boundary conditions depends on the physical 

problem we wish to model. The fluctuations of surfaces with a fixed boundary 

provides a toy model of the Wilson loop. When we vary the action, the boundary 

of the string is held fixed; thus (3.12) is the appropriate boundary condition. 

In the case of the dual model, the end of the string is free; hence the string 

variables satisfy the condition (3.13). The Neumann boundary conditions (3.13) 

are just those of Ref. 11, where they are derived by performing supersymmetry 

transformations on n a 8A = 0. We will complete the discussion of the boundary 

conditions on X@ below when we discuss the problem for fields belonging to any 

of the spaces 7n. 

We now must discuss the measure and gauge-fixing determinant for the vier- 

bein. Since ef is determined from ef we look for the most-general metric on 

the space of eE 

(3.14) 

In the first term, 6,6Sa@ = 6;6! - #Sf implies that only the Sd,Ga@ term is 

independent. The constraints (2.3) imply, through their variation (3.7), that 

7z@Hj is related to Hi, 7ipHF, and H g. Thus the only independent terms are 

II&all2 = / d2z em1 [HabHab + a(7kBHF)2 + b(H$)2] (3.15) 

We fix the gauge by specifying 

ea *- =e f?a (3.16) 

with 2, a suitable background vierbein satisfying the constraints (2.3). Next 

let us decompose (3.15) into gauge transformations (diffeomorphisms), local tan- 

gent space rotations, and conformal transformations. The variation induced by 
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a diffeomorphism 6zM = AM, tangent space rotation W, and conformal trans- 

formation $ is 

from which one may show 

HAB = aCT,B, - V,AB + (A’$, + W)Mj + $6! (3.18) 

Substituting (3.18) into (3.15), the Jacobian for the change of variables from er 

to $, W, and AA may be computed to be 

(a,~~~Al~ = l%i = (sdet Q+Q)lj2 (3.19) 

where a and b are the constants in (3.14) and Qm is determined from the first 

term of (3.15): 

J 
d2z emlHabHab = 

J 
d2z eml(ACTEb - vaAb)(ADTDab - v&b) 

= 
/ 

d2z eWIAC( Tzb j- b&V&)( TDab - 6DbVa)hD 

so that 

(3.20) 

(Q+&)cD = (Tzb + &V*)(TDab - 6Dbva) (3.21) 

This expression may be simplified by use of the formula 

-. sdet A B 

H-1 
= sdet (A - BD-‘C) sdet D 

C D 
(3.22) 

where the block form denotes any partition of the bose and fermi variables. 

Choosing D = (Q+Q)7s we find 

s&t Q+Q = const. x sdet [Va(7d7c)i~B] (3.23) 
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which, when evaluated in the complex basis (2.10), becomes 

sdet Q+Q = const. X (sdet Ap))(sdet Akd) . (3.24) 

We can now write a complete expression for thestring effective action ob- 

tained in the conformal gauge (3.16) after integrating over the string fields Xp, 

diffeomorphisms AA, and local rotations W: 

Sell [$J] = 5 In (sdet AF) . sdet A$)) - t In sdet AQ 

+ I3 - x(M) + c J d2z 2-l c2+ 
M (3.25) 

+E J 
dsd28k 

8M 

The contribution of the string and ghost determinants in (3.25) is 

S matter + ghost 
e/j =~/d2ai-‘[2”d.iod+Bd] 

M (3.26) 
- 

+ boundary terms 

in agreement with Polyakov’s result. 7y12 We will obtain this result, and its bound- 
ary corrections, in the following section. 

4. The String Effective Action 

We will now evaluate the determinants of all the Laplacians (2.12) using 

(2.16). We will thus find the $-dependence of the determinants in (3.25). The 

first step in this program is to find the appropriate boundary conditions on the 

tensor spaces Tn on which the Laplacians act. The analysis is similar to that of 

Ref. 10. Define the tensor space Sn as the direct sum Tn $ 7-n along with the 
(4 corresponding differential operators Dn = 0; $08” and Ln (4 = A, PF) @ A-, . 

First note the identity 

(~l,Dn4t2)-(Dn+~l,02)=21rn / dzd2Be-*@;i~%?n,~2 
8M 

(41) 

for +r c S n+l, *p2 6 Sfl 
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We would like the right hand side to vanish, for then the operators Dn would 

have well-defined adjoints. This will define the proper boundary conditions for 

S(n+l) in terms of those for Sn. If we denote the components of 4n~rn and $J 

by - 

4” =An+it9xn+i~~“+i80Fn 

+=~+ietj+iiiiji-ii9ep 

then the integral on the RHS of (4.1) is 

(4.2) 

0 = 1m / dz ,/2j-~-(n+‘)~” + x-(n+l)An + qA-(n+l~An],-m (4.3) 
dM 

For the present discussion we choose coordinates in which 3M is the sl axis, so 

that n, = -nz. The boundary condition (3.12) x0 = &x0 implies A1 = -&l-l 

and q = f q from the first and last terms of (4.3). Using the second term we 

find x2 = fxq2. 

Additional conditions may be found from the requirement An4neTn; for 

instance, we find that Fn and An obey the same boundary conditions because 

A, maps the Fn part of the space Tn into the An part of that space. We also 

need Vr$n~Tn+l and V~C#J~CT n-1; for instance, the constraint x2 = fxm2 

implies d,A’ = &A-l. 

Some boundary conditions are dictated by physical considerations. Diffeo- 

morphisms of the coordinates 2 and 2, which belong to the space S2, must map 

the boundary into itself. This means that the normal component of the vector 

field specifying an infinitesimal diffeomorphism must vanish on the boundary, 

resulting in the boundary condition A2 = AB2 for our choice of coordinates. 
Also, conditions (3.12) or (3.13) are required by the variational problem for Xp. 

Starting from physical conditions such as these we can generate boundary condi- 

tions for all the spaces Sn through the requirements given above. We thus find, 

for 71 # 0 

( boson)n = (boson)-n ( ferfnion)n = f( fermion)-” 
a,(boson)n = dz(boson)-n 62(fermion)n = ~i?z(fermion)-n (44 
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where (60son)~ and (f ermion)n denote the bosonic and fermionic parts of dn, 

respectively. These are just the mixed boundary conditions of Ref. 10. 

For 7O these boundary conditions are replaced by (3.12) or (3.13). By re- 

quiring invariance under supersymmetry transformations E which preserve dM, 

namely E = f P, we may find a complete set of boundary conditions for the space 

To. The transformations of the component fields are 

SAO =d @x0 + z x0) 

tjxo = - (&?,A0 + E F”) 
(4.5) 

bF” =i fi(z &x0 - & x0) 

from which we find the additional conditions’l 

&x0 =*&x0 

- F0 =o if n.aA’=O 
or w-3 

n2F”=0 ifA’=() -- 

This last condition violates the requirement A&O 6 ‘7O; that is, the component 

equations of the eigenvalue problem A&’ = XC$O are 

-i&x0 =x x0 
(4.7) 

uA” =XF” 

F” =XA” 

-. 
which has no solutions unless A0 and F” obey identical boundary conditions. 

The correct boundary conditions on 7’ are thus either 

A0 =F”=O 
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or 

Tt4A0 =,,.dF’=O 

-. 

X =*t __ (4.9) 

These boundary conditions spontaneously break supersymmetry and will give 

rise to nonsupersymmetric boundary terms in the effective action. Although 

(4.8-4.9) seem to be the most natural choice, it is possible to choose supersym- 

metric boundary conditions (3.12-3.13) and (4.6). In this case A0 would not 

have eigenvectors because A&’ /7’; nevertheless, (A~)~q5’~7~ and therefore 

the heat kernel eet(*o)* appearing in (2.16) is well defined. The derivation of the 

effective action given below may thus also be carried through for supersymmetric 

boundary conditions; we sketch this analysis in Appendix C. 

If we let G(q, 22; t) be the bulk heat kernel, then in the coordinates in which 

3M is the sr axis the full heat kernel on-the spaces-s”, n # 0, is 
- 

Gg(~1,22; t) = G(zl, ~2; t) f G(zl, %I; t) ‘_~,B;l~h~,n 
._ (4.10) 

One may verify by expanding in 81 and t92 that this expression satisfies (4.4). 

Since we are only interested in the short-time behavior of the diffusion operator, 

a diffusing particle only feels the local structure of the manifold and hence (3.27) 

is sufficient to calculate (2.16). The calculation is easily done by treating the 

operators AL*)’ locally as perturbations about the flat space Laplacian a2/dz2 

with bulk heat kernel 

Go(a, ,752; t) = ~~~ ’ -(zl-z2)“/4tqe1 - 02) (4.11) 

The b-function in e-space greatly simplifies the calculation compared to the 

bosonic case (in particular Go(zl = ~2) E 0 so the leading divergence can- 

cels) and one finds 

str /e 
-t&+1* 

= (-)n(F)[a / d2zes1Rf + / dsd28 kf] . (4.12) 
M CYM 
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For some details of the calculation, see Appendix B. Inserting this result in (2.16) 

gives us 

S en sdet ’ LL+) = 
2(2n + 1) 1 

A I[ J 
5 d2z ewlR&lm+ J dsd2Bk~ 1 

M dM 

- 2(n + 1) str (&$ Ker (LPI)) - 2n str (&!J Ker (L(,-!l 
))I 

(4.13) 
(4 ’ If we write out the Laplacians An m components we see that, in a background 

field where $(z, 0) = d(z) ( i.e., only the bosonic conformal factor is nonvanish- 

ing), sdetLp) is the ratio of the determinants of the Laplacians of Ref. 10 for 

n/2 and (n - 1)/2. That the results agree is another check on the consistency of 

our approach. 

The kernel terms in (4.13) are important when the topology of M is non- 

trivial. In this case there are deformations of the vierbein which preserve 

the gauge choice (3.16) but cannot be expressed as a diffeomorphism; i.e., Ker 
(‘1 (A, ) # 0. An extensive discussion of these “Teichmiiller” deformations is pre- 

sented in Ref. 10 for the bosonic string. We will not-consider this problem here, 

but a similar analysis should be possible with the formalism of this paper. 

The determinant of AQ = 4 
[ 
Ae’ + Al;’ 1 must be treated somewhat differ- 

ently due to the boundary conditions. The flat space heat kernel is 

G$(%, 2; t) = Go( Z, 2; t) f -& e-(z-2’)2/4t[( 8 - erj2 + 2e+eL] (4.14) 

where 8* = e&e. The 0+0i part of the image term guarantees that the fermion 

components x+ and x- obey opposite boundary conditions. However, it also 

explicitly breaks supersymmetry: the bosonic superfield components obey the 

same boundary conditions as discussed above. Using (4.14) we find 

bt!n sdet AQ = R 2 ’ l d2ze-1RS$+ J [J dsd20k&$ 1 
M CYM 

(4.15) 

+ p J 1 2 \/;;;aM 
ds W e=o + $ J ds na&W Leo 

t3M 
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where p = 1(-l) for Neumann (Dirichlet) boundary conditions. Note that the 

area divergence cancels but not the perimeter divergence because of the non- 

supersymmetry of the bosonic components on the boundary. 

Combining the scalar determinant arising from the path integral over the 

Xp’s with the gauge-fixing determinant (3.24) we find 

($Sey;tt” + ghost = (v)[; J d2z e-‘R S$ + J dsd28kb$] 
M 8M 

Pd 
+“fiaM 

J dsd2es(ep++~ J dsd2ee+m+ 
f3M 

+ (Ker terms) . 
(4.16) 

Equation (4.16) may be easily integrated in the gauge (3.16) to give 

S matter + ghost 
ell - 

=(fs”)[/dZz ,-I[;~ita&+,+)+;&] 
M 

+ J did2t?i+ 1 aM 

Pd -J 4 Jnc 
d jr d28 6( B)e-J’ 

BM 

(4.17) 

+ (Ker terms) + (indep of @) . 

Hats refer to quantities calculated with the background matrix 2,. 

Several remarks are in order. First, the result (4.17) differs from Polyakov7 

by a factor of 4 in the first term only because of a difference in the definition of 

$. Note that the leading divergence cancels even when a boundary is present, 

in contrast to the result of Ref. 11. Thus the C term in Eq. (3.1) is not 

renormalized. This is to be expected for reasonable boundary conditions on the 
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fields because the propagator GB is obtained by adding image sources outside of 

the domain M; these cannot contribute to the short-time diffusion behavior in 

the bulk of the domain. Neither the calculation just presented nor the calculation 

with supersymmetric boundary conditions presented in Appendix C agrees with 

the result of Ref. 11. In both cases, however, the A0 and x0 determinants agree 

with the results explicitly calculated there; only the contribution of F” terms 

differ. For supersymmetric boundary conditions, our method gives 

vet B2 I 112 
sdet A’ = (det q )(D(det [7)1N 

(4.18) 

where the subscripts denote the boundary conditions. We may thus interpret the 

F” component as representing the ratio 

(det q )lo t 1 f112 
s&t AOIF compt. = 

tdetmv - 
(4.19) 

Hence the properly regularized p determinant gives a contribution which cancels 

the boundary divergence of the A0 and x0 determinants as shown in Appendix C. 

For nonsupersymmetric boundary conditions, we can understand the difference 

between the two calculations because in Ref. 11 it was assumed that a remnant 

of supersymmetry exists when there is a boundary. The effective action was 

obtained from the purely bosonic sector by supersymmetrization, but we see that 

this cannot work since supersymmetry is completely broken for the boundary 

conditions (4.8-4.9). 

The divergences of the determinants come from the small time behavior of 

eetA2. Substituting (4.12) into (2.14) we obtain a logarithmic divergence 

en sdet Lp) = (-)n{v[f Jd2rR+ J dsd28k]-dimKer L~)}tns 
M CYM 

+ finite as E + 0 . 
(4.20) 
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Similarly, for the scalar determinant we have 

en sdet AQ = {-&[a/d2zR+ J dsd28k]-dimKerAo}enr 
M dM 

P 
(4.21) 

+ TqEM J dsd28e$+finiteas e+O. 

Combining (4.17), (4.20), (4.21) and (3.25) we arrive at our final result for the 

effective action 

sejj = b+(qf en#M)++C/d2z .c’eB2@ 
M 

+ -$ /- d ZI d2e &(tp-* + (E + g) / ds d2t? k 
dM 8M (4.22) 

- +($$)[/622 i-‘[f a”d,$d+- J did20k@ 
M C3M 1 

+ (Ker terms) + (indep of $) ~_ 

where B, C, and E are the bare parameters of Eq. (3.1). 

This is our major result. By varying $, we obtain the equations of motion of 

the supersymmetric Liouville theory14 

AQ T/J = p2es2* + j) (4.23) 

together with the boundary conditions 

(recall $ = 4 + ieq + i 8 q + 8 t9p) for the dual model case, and 

+o 
rl =ztq 

for the Wilson loop case. 
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5. Discussion 

We have succeeded in generalizing the differential operator formalism of Ref. 

10 to superspace, and have calculated the effective- action of Polyakov’s for- 

mulation of the fermionic string in this manifestly supersymmetric formalism. 

The calculations are simpler and more transparent than previous calculations in 

component fields. In particular, the nature of divergence cancellations due to 

supersymmetry has been clarified. The cosmological constant is not renormal- 

ized, which raises the possibility that it may be consistent to set C = 0 in Eq. 

(4.22). This would result in an effective action which is a free field obeying either 

Dirichlet boundary conditions for the Wilson loop case or “Liouville” boundary 

conditions (4.24) for the dual model case (due to the perimeter divergence in 

(4.22)). 

The reader should keep in mind, however, that a nonzero value of C is cer- 

tainly permissible in this theory. One might, in fact, argue that eliminating the 

cosmological constant (i.e., the Liouville interaction term) is not a natural choice, 

since any nonzero value of C in Eq. (4.22) may be transformed-to any other value 

by changing $J by an additive constant. However, classically $J tends to move 

to the minimum of its exponential potential, which corresponds to decreasing 

C. The value of the effective cosmological constant in the quantum theory is a 

dynamical question which still is not completely understood. Even so, it seems 

likely that there is no problem in taking C to be small or zero. The assumption 

that C = 0 should simplify the probem of quantizing the effective action. Fur- 

ther, whatever value we choose for the cosmological constant C, it need not be 

equal to the boundary cosmological constant, as is claimed in Refs. 11 and 14. 

Indeed, since the boundary term is divergent while C is not, it can be argued 

that its coefficient ought to be much larger than C. 

Several problems still remain even if the action for ?+!J is a free field. First, the 

boundary conditions for the dual model case are nonlinear; the low-frequency 

modes will not be simple harmonic oscillators of the $ field. The short dis- 

tance fluctuations of II, must be cut off at some small proper distance scale 
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depends on $J itself, which greatly complicates the regularization procedure. 

Friedan15 has argued that the full theory should be invariant under resealings 

of the background vierbein 2 a, since this is just an arbitrary reference choice in 

the class of metrics {e$ &}. Hence the full theory should have no trace anomaly; 

this restricts the quantization of $J, since the trace anomaly of the $J -field stress 

tensor must cancel that of the string and ghost fields. Friedan15 showed that 

straightforward canonical quantization of $J does not have this property. 

The free field effective action for the fermionic string theory should provide a 

simplified laboratory for the investigation of these remaining difficulties without 

the additional complication of quantizing a theory with an exponential interac- 

tion. The formalism presented here makes the analysis of the supersymmetric 

string no more difficult, and perhaps simpler, than that of the bosonic string. 
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APPENDIX A. Notations and Conventions 

We denote tangent space (coordinate) indices by letters from the beginning 

(middle) of the alphabet; latin (greek) letters represent vectors (spinors), and 

capitals denote a general index. Define an orthonormai frame field eA = f?yC?M, 

define the structure constants 

kA, eB> = CLec (A4 

where [, } denotes the graded commutator. The action of the Lorentz generators 

is 

MVA = VBM# where Mf - 
6: on vectors 

- 1 58 Z ra on spinors tfw 

The covariant derivative VA = eA + HAM defines the torsion and curvature 

through 

- 

from which 

[VA, v,} = T&V, + RABM (A.31 

T%l = &I - 4pMBc) (A-4 

The flat space vierbein is 

2&=Da = a, + i(e pJa 
2a = a, (A-5) 

For a general matrix M: the superdeterminant and supertrace are defined by 

-. 
sdet M = det (Mi - M~M~16M~)det-1 (Ml) 

strM=Mi-Mt 

(4 

(A-7) 

The h-function in e-space is 6(01 - 02) = (fIl - 82)2 SO that J d2Bb(t9) = 1. 
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APPENDIX B. Sketch of the Determinant Calculations 

We wish to calculate 

str (fe+** = ) J d2z e-‘(z) f(z) (~li’~**lz) (W 
M 

for t -+ 0. We write 

A2= -wh! + v (B.2) 

where V contains the information about the geometry of the manifold as it 

deviates locally from flat space. The Green’s function appearing in (B.1) may 
then be expanded in perturbation series 

G = Go + GoVGo + O(&) tw 

where - 

and Go = e-t(-aza*) ’ z-.-e 
4tt 

-(2-Z’)2/4t(e _ e/)2 (B.4 

(for manifolds without boundary) 

Because of the factor (0 - e’)2, GQ(z, z; t) = 0; hence only the second term 

contributes: 

GoVio( z, z, t) = J d2zr 1 dt’ @$~~fj e-(z-z’)2/4(t-t ‘1 

0 (B.5) 
m.  

x V(*‘j te - v2 e-(2--z’)*/4t’ 
4nt’ 

Since (e - erj3 = 0, only the aeragr part of V contributes. This term is 
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for the Laplacians (2.12). In the neighborhood of z we may choose coordinates 

such that De+ = D@ = 0. Then we have that 

GoVGo(z,z;t) = (D@&(z)) - (c) VW 

Essentially the calculation boils down to counting factors of DgD&. The calcula- 

tion for surfaces with boundary differs only in that we must use the propagators 

(4.10) or (4.14) which obey the appropriate boundary conditions and in that n-&j 

cannot be gauged away. 
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APPENDIX C. 

Effective Action for Supersymmetric Boundary Conditions 

The heat kernel formalism may also be used to calculate the scalar determi- 

nant when the supersymmetric boundary conditions (3.13) and (4.6) are chosen. 

The zeroth order heat kernel is 

Gog(~, 2; tj = GO(t, 2; t) f -& 2%@ [(e, + e’,)(e- - 8’_)/2] W-1) 

where 8* = 8 f 8. Note that GL(z = z’) = 0 even at the boundary due to the 

residual supersymmetry under boundary-preserving supersymmetry transforma- 

tions, and hence neither area nor perimeter divergences are generated. The 

variational equation for the determinant becomes 

dsd28kb$ . 
1 

Thus we find, instead of (4.17): 

+ J dS d20 kt) . 
dM 1 

(C-2) 

(C-3) 
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