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ABSTRACT 

In the Kobayashi-Maskawa (K-M) model, a lower bound on the CP violating 
product spp3s~ follows from the imaginary part of the short-distance K” - 
K” mixing amplitude together with a conservative upper bound on the short- 
distance contribution to Kt ---) pp. This leads to a lower bound on Ic’/el in 
terms of a matrix element of a single (V -A) X (V + A) type operator. Familiar 
current algebra and bag model estimates for this operator give jc’/cl > 2 x 10m3. 

We also observe that the experimental upper bound on the branching ratio for 
the b-quark into u-quarks fixes the sign of ~2~2~3~6 and c’/c both to be positive. 
Allowances for QCD corrections and long distance effects are included throughout 
our analysis. 
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With three generations of quarks, mixing between weak eigenstates and quark 

mass eigenstates is parametrized by a 3 X 3 unitary (K-M) matrix’ with three - 
Cabibbo-like angles 8i and a phase 6, which if non-zero generally results in CP 

violation. In the neutral Kaon system, the only place where CP violation has 

been observed2 so far, there can be CP violating effects both in the off-diagonal 

element Ml2 of the K” -K” mass matrix and in the K” + A?T decay amplitude. 

Both effects are due to virtual transitions to charm (c) and top (t) quarks and 

involve amplitudes proportional to sin 02 cos f?2 sin 03 sin 6 E s~c~s~s~. 

It has previously been suggested 3 that the presence of CP violation in the 

decay amplitude, which results in a non-zero value of the CP violation param- 

eter 6’, might well be detectable in experiments of improved accuracy which 

are underway or planned. A value of t’ # 0 would distinguish the explanation 

of CP violation based on the K-M model from models which are “superweak” 

wherein CP violation occurs solely in the K” - fro mass matrix and only the 

parameter 6 is non-zero. Naturally the question arises: In the K-M model how 

small could c’ be? In this paper we attempt to answer this by putting a lower 

bound on spp3sg using the short-distance contribution to the imaginary part 

of the K” - K” mass matrix together with a conservative upper bound on the 

short-distance contribution to Ki -+ pp. 

As just noted, there are two possible contributions to the observed CP viola- 

tion in the neutral Kaon system. “Direct” CP violation in K” -+ 7r7r can give rise 

to different phases for the weak amplitudes for K -+ AT (I = 0) and K + mr 

(I = 2), Au and A2 respectively. This is parametrized4 by the quantity c’ where 

(1) 
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in the standard phase convention where AQ is chosen real and positive. “Super- 

weak” CP violation contributes only to the CP impurity parameter 6 which - 
measures the departure of the mass eigenstates Ki and KS from being CP ‘0 

eigenst at es: 

where 

c 
. 4 IrnI’l2 + iImMl2 

=I 
kAI’+iAM (3) 

and Ml2 and I12 are the off-diagonal elements of the K” -K” mass matrix. In 

the standard convention where 4 is real, IrnI’l2 is negligible, which together 

with the experimental5 relationship -AM = -(MS - ML) es ;(I’, - FL) = 

l AI, allows one to write 2 

The experimental values’ for the strong interaction ~FX phase shifts, 60 and 62, 

in Eq. (1) make 6 and e’ nearly parallel or antiparallel in the complex plane. 

However, if we start with the conventional choice of quark field phases and 

K-M matrix (where the weak couplings among light quarks are real), Au is not 

real since the effective Hamiltonian for AS = 1 weak decays contains CP vi- 

olating terms. These arise from “penguin” diagrams involving virtual c and t 

quarks generated when strong interaction corrections to the weak interaction 

Hamiltonian are taken into account. Insofar as the CP violation enters through 

such induced penguin-type operators in the resulting effective Hamiltonian, it 

is characterized by AI = l/2 and only contributes to the I = 0 final state in 

3 



K” + BA. As a result, the weak amplitude Au, which would have been real in 

this basis were there no CP violation, picks up a small imaginary part, Im&. - 

Defining t = ImAo/&, and using the fact that it is a small quantity, 

where the added subscript on Au is used to emphasize the quark phase convention. 

The standard phase convention where Au is real is restored simply by re- 

defining the phases of the K” and k” states: 

lK” >+ e -it 1~0 > 

so that Pdguatk -+ e -it(Ag)gUark = 4. At the same time, the previously (in 

the quark basis) real amplitude A2 picks up a phase e-‘t and is complex in the 

b&is where 4 is real. Thus from Eq. (l), 

(6) 

where-we have used the experimental values5 of IA2/4l = l/20 and of 1~1 = 

2.27 X 10-3. 

The effective AS = 1 Hamiltonian which is responsible for K” decay has 

been extensively studied elsewhere. 6 The CP-violating contribution to K” + mr 

(I = 0), decay is dominated by the contribution from a single (V-A) X (V +A) 

operator, Q6, in the effective Hamiltonian, U = cf=l CiQi. In&6 is propor- 

tional to the combination of K-M parameters ~2~2~3~6, in addition to the usual 



-. 

factor of *sl characteristic of AS 
Jz 

= 1 weak amplitudes. Thus we write 
--.- 

t 
Im < +I = O)l U IK” > = 

A0 

x Imctj < rn(I = o)l &6 lK” > 
A0 (7) 

= (%?c2s3sg)(Im &j)s Sl 
< +I = 0)l Q6 IK” > 

4 
I 

where GFS~/ fi and 4, the Ko -+ nn(I = 0) amplitude, have values directly 

determined by experiment, which we will use. Im G6 and < ~m(l= O)l&61K” > 

have been studied and discussed elsewhere, and to these we shall return. Our 

objective is to establish a lower bound on the CP violating product S~QS~S~ to 

which we now proceed. 

To constrain the product s2c2~3sg we return to the expression for c in Eq. 

(4) in the basis where 4 is real. Here much previous work used a short dis- 

tance analysis7 for both ReMI and ImM 12. However it is difficult to justify 

neglecting the long distance contributions to ReMl2, and we shall simply use the 

experimental value for AM = 2ReMl2 in the denominator of Eq. (4). On the 

other hand, one can argue that ImMl2 is given almost entirely by the short dis- 

tance contribution in the phase convention where Au is real8 Traditionally, this 

short-distance (sd) contribution (from the box diagram involving heavy quarks 

and W’s) is computed in the quark basis. In the basis where 4 is real, ImM$ = 

(ImMf$park + 2cReM$ and Eq. (4) becomes 

(8) 
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Inserting the familiar expression’ for the shortdistance contribution to ImMl2, 
--~- we have: - 

In Eq. (9) X, = U&Uqd is a product of K-M matrix elements, B parametrizes 

the matrix element of the AS = 2 operator (B = +l for vacuum insertion),7 

and ~1, q2, ~3 take account of the strong interaction corrections to the effective 

AS = 2 Hamiltonian relevant to K” - K” mixing. These latter parameters 

have the values 0.7, 0.6 and 0.4, respectively, for Mw = 80 GeV and AQCD = 

0.1 GeV.g-10 The value of B has recently been extracted by relating the matrix 

element of the AS = 2 operator to the measured contribution of the AI = 3/2 

operator to K -+ AX decay using SU(3) and current algebra, with the resultll 

B = 0.33. Although not written expressly in Eq. (9), we also include the effect!:! 

2 of higher powers of mf/Mw. Inserting experimental masses and dropping terms 

which are second order in sine 0i compared to those of zero order, Eq. (9) becomes 

-0.7mz + 0.6m: 

where (ReXt/sl) = ~2(clt12~3+~2~3~6). Eq. (7) for < shows that it is proportional 

to S~C~S~S~ and considerably smaller than the first term inside the brackets of 

Eq. (10). It is negligible in the domain we are investigating of a lower bound on 

1~‘/~1 and hence on ItI. Here we also point out that the experimental bound13 

on the b-quark branching ratios into up versus charm quark final states B(b -+ 



u)/B(b -+ c) < 0.09 eliminates the sign ambiguity in ReXt and hence in ~2~2~3~6. 

--~- Specifically, it was previously possible l4 that if cb < 0 and s3 > 82, ReXt could - 
become sufficiently negative that the entire coefficient of s2c2s3s6 in Eq. (10) 

would become negative. Then ~2~2~3~6 must also become negative to preserve 

the observed phase of C. However, the constraint B(b -+ u)/B(b + c) < 0.09 

requires l5 7.7 lUua12 < 0.09 x 2.751Ucb12 or that s$ < sz + 2s2s3cg + $3, which 

in turn requires s$ + 282~3~~ > 0. Thus, if ~6 < 0 we observe that Re&/sl 21 

8; + ~283~6 > si + L?s2s3c6 > 0 and therefore ReXt is positive. (ReXt is trivially 

positive if cs > 0.) This fixes the sign of ~2~2~3~6 also to be positive.‘” It now 

follows that the parameter c is negative. This comes from the known phase of 

cu (Imc6/Rec6 < 0) and the requirement that c&6 contribute construcfioely 

to Au which is positive by definition - i.e. that “penguins” contribute to a AI = 

l/2 enhancement rather than a suppression. This in turn fixes ~‘/t through 

Eq. (6) to be positive. l6 Therefore we drop the modulus on le’/cl and treat C’/C 

as a positive quantity. Also, since c is negative, its presence in Eq. (10) only 

strengthens the bound on 82~28286 which one obtains by dropping it. Therefore 

we drop the term involving c, and use the experimental values for 6 and 8: to 

obtain 

s2c2s3sii 2 
2.4 X low2 GeV2 

-0.7mz + 0.6mT +0.4m$ &a$ 
. 411) 

A lower bound on s2~2~3~g obviously requires an upper bound on m:ReXt, 

for which we turn to KL + pp decay. The relevant constraint arises from requir- 

ing that the short-distance contribution to the KL -+ pp branching ratio should 

not exceed the total minus the calculable absorptive contribution from KL -+ 

77 -+ pj~ with on-shell intermediate photons. The only uncertainty here is the 



long-distance contribution from the dispersive amplitude involving off-shell in- 

termediate photons, which might interfere destructively with the short-distance - 
contribution permitting the latter to be larger.17 However, the present experi- 

mental situation5 regarding the analogous decay q + pc( (but without the short- 

distance contribution) indicates that the long-distance dispersive contribution 

is no bigger than the absorptive one (and consistent with zero). This strongly 

suggests that there is at most a factor of two uncertainty in the maximum size 

of the short-distance contribution, even if we allow for complete destructive in- 

terference with the long-distance dispersive contribution. Without this factor of 

two, the constraint from KL + pp reads18 

(ReXt/sl)C(q) q 5 0.9 x 10S2 

where zt = mf/m&, and 

(12) 

7 3 zpenzf 
C(4 = 22 + f & + 4 (I- 42 

and q is a correction factor due to strong interactions which we incorporate from 

QCD (tj = 0.9). l8 The upper bound on m:ReXt which follows from Eq. (12) 

with and without allowance for long-distance uncertainties is plotted in Fig. 1 

as a function of rnt (m:ReXt would be independent of rnt if non-leading terms in 

m:/m& and the rnt dependence of QCD corrections were neglected). 

The lower bound on ~pp3~g which now follows from inserting the upper 

bound on mfReXt in Fig. 1 into Eq. (11) is shown in Fig. 2. With maximum 

allowance for the uncertainties due to long-distance contributions to KL + pp, 

we observe that 82C2838g 2 2 X 10 -4. In constructing this bound we have 

used mc = 1.5 GeV in the denominator of Eq. (11). However the value of m, 
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matters very little: using the upper bound on rn~&Xt, the t quark contribution 

completely dominates CP violation in the K” - ito mass matrix and the other - 
terms in the denominator of Eq. (II). 

Having obtained a lower bound on ~2~2~3~6, we direct our attention to Im G6. 

The Wilson coefficients of the operators appearing in the effective AS = 1 weak 

Hamiltonian have been derived in a number of analyses’ of QCD corrections to 

the weak interaction, usually computed in the leading logarithm approximation 

to all orders in the strong interaction. These analyses’ give Ime % -O.l.lg 

Since ImG6 in particular is generated at momentum scales between rnt and mc, it 

is truly a short-distance effect susceptible to such a leading logarithm calculation 

in QCD and is quite stable with respect to changes in parameters (e.g., AQcD). 

Finally we consider < ~(1 = O)l Qu lK” > where Q6 is the (V-A) X (V+A) 

“penguin” operator, 

through whose coefficient CP non-invariance primarily enters the K -+ AT am- 

plitude. Here also we favor a conservative approach by using the bag model value 

for this matrix element. In particular, we make no assumption about the origin 

of the AI = l/2 rule being due to “penguin” contributions to Au, which would 

require much larger values of < lrnl Q6 IK” > if the usual calculation8 of the 

real part of the Wilson coefficient G6 are also employed. 

To use the bag model matrix element in the literature, we observe that Qu 

is related to the operator 05 used by Donoghue et ~1.~~~~ by a factor of 9/16 

when matrix elements between color singlet states are taken. Therefore, 

+I = O)l Qs IK’>i = $ l(~‘r’(I = o)~o~IKO)I = 1.4GeV3 (13) 
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where we have used directly the value for < a”~o~O~~Ko > from the compen- 

dium21 of bag-model matrix elements. With the same normalization, Au = - 
4.70 2 10B4 MeV, so that 

GF 
z s1 

< 7w=O)IQsIK0 > = 54 
A0 

. . 

It should be noted that the value of the matrix element for < lr”lro 1051K” > 
is actually derived from that of < noI 05 IK” > by use of current algebra, 

assuming the former matrix element is a quadratic form in the external four- 

momenta, matching to the soft pion conditions, and demanding the amplitude 

vanish in the SU(3) limit. As noted in Ref. 15 there is some ambiguity in what 

four-momentum squared to assign the remaining external K and R states in the 

soft-pion limit if they are to remain bag model states at rest. 

Combining Im 86, the bag model matrix element in Eq. (13), and the lower 

bound on ~2~2~3~6, results in the lower bound shown in Fig. 3, from which we 

observe 

k'/c 2 2 X 10-3(0.33/B)lIm i& /O.ll 1 < ?m(l = O)lQulK’ > /1.4GeV31 (15) 

where the dependence of c’/e upon B, Ilrn& I, and the matrix element of Q6 

are explicitly shown. We conclude with a discussion of these uncertainties. 

We have eliminated a major uncertainty by establishing a reliable lower bound 

on s~c~s~s~, the product characteristic of CP violation throughout the K-M 

model. This bound depends inversely on the parameter B, but if typical of other 

results which use sU(3) and current algebra in their derivation, the value of 0.33 

ought to be reliable to within 0(20%). Furthermore, our allowance for long- 

distance dispersive contributions to KL -+ /.J/.J is probably an overestimate of 

the actual uncertainty, and so we regard our bound on ~pp3~g as conservative. 
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Concerning the Wilson coefficient Irn(?‘u, there is good agreement among 

the extant renormalization group analyses. lg As this CP violating coefficient is - 
generated at momentum scales above m,, there is no dependence on an infrared 

cutoff and little sensitivity to AQCD. The uncertainties associated with this 

coefficient are probably 0(30%). 

The largest remaining uncertainty concerns the K + 7rr matrix element 

of Qu in Eq. (13). We note that matrix elements of (V - A) X (V + A) type 

operators such as Q6 are much more certain in the bag model than those of 

(V -A) x (V -A) operators: the integrals contributing enter with the same sign 

rather than opposite signs and there are no delicate cancellations which can lead 

to major uncertainties. 2o Moreover, we do not assume that the AI = l/2 rule is 

due to penguin contributions to the amplitude for K + AX. This would require 

effectively “boosting” the matrix element of Q6 (and hence e’/e) by at least a 

factor of two given most calculation8 of Rec6. We have taken a more conser- 

vative approach in seeking a lower bound on c’/c, by choosing an independent 

evaluation of the matrix element. While it is still possible that the actual matrix 

element is smaller than what we have used, smaller matrix elements make our 

understanding of the observed AI = l/2 dominance increasingly problematic. 
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FIGURE CAPTIONS 

- 
1. Upper bound on ReXtmf as a function of rnt from Ki + p+p- includ- 

ing subleading terms in mf/m& and perturbative QCD: (a) with no 

allowance for long-distance dispersive contributions (dashed); (b) with 

maximal allowance for long-distance dispersive contributions (solid). 

2. Lower bound on the product ~2~2~3~6 from ICI and KL --) p+p- decay 

shown for B = 0.33: (a) with no allowance for long-distance dispersive 

contributions in KL + p+p- (dashed); (b) with maximal allowance for 

long-distance dispersive contributions (solid). The bound scales inversely 

with B. 

3. Lower bound on C’/C in the standard model as a function of mt, shown 

for B = 0.33, IIm &j 1 = 0.1 and I < n?r(l = O)l&ulK” > I = 

1.4 GeV3: (a) with no allowance for long-distance dispersive contri- 

butions in KL + /.L+P- (dashed); (b) with maximal allowance for long- 

distance dispersive contributions (solid). The bound scales proportion- 

ally with Im tiu, < 27r(I = O)l&61K” >, and inversely with B. 

14 



-. 

3-83 

5c 

40 

30 

20 

IO 

0 

cc----- ---e--_ 

/- 
-C--- 

I I I I I I I I I - I I I 
20 30 40 50 60 

q (GeV) 

70 80 

4485A 1 

Fig. 7 



- 

3-83 

6 

I I I I I I 

20 30 40 50 60 70 80 
mt (GeW 4485A2 

Fig. 2 



-. 

6 

5 

s-4 
0 
x 

-3 

3 
-2 

’ I 

0 

N 
. 

w 
\ 

- 
-- 

--- 
---- -- -- -- 

1 I I I I I I I I I I 

I I I I I I I I I I I I 
r - 

20 30 40% 50 60 70 80 

m+ (GeV) 4485A3 
I - 

3-83 

Fig. 3 


