
SLAGPUB-3673 
CERN/DD/83/4 
March 1983 

(W 

DATA ACQUISITION USING THE 168/~ 

J. T. CARROLL* 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 9&?&i 

and 

CERN, 1211 Geneva 23, Switzerland 

SCITTOLIN, M. DEMOULIN, A.FucqB. MARTIN 
A. NORTON, J.P. PORTE, P.Ross~ AND K.M STORR 

CERN, 1211 Genetie 23, Switierland 

- 

ABSTRACT 

Event sizes and data rates at the CERN i>p collider compose a formidable environ- 
ment for a high level trigger. A system using three 168/~ processors for experiment 
UAl real-time event selection is described. With 168/E data memory expanded to 
512K bytes, each processor holds a complete event allowing a FORTRAN trigger al- 
gorithm access to data from the entire detector. A smart CAMAC interface reads five 
Remus branches in parallel transferring one word to the target processor every 0.5 ps. 
The NORD host computer can simultaneously read an accepted event from another 
processor. 

-. Presented at the Three Day In-Depth Review on the 
Impact of Specialized Processors in Elementary Particle Physics, 

Padova, Italy, March 23-25, 1983. 

* Work supported by the Department of Energy, contract DEAC03-76SFOO515. 



1. INTRODUCTION 

The UAl experiment uses a large image chamber central detector in a dipole mag- 
netic field. The Central Detector (CD) surrounded by electromagnetic and hadronic 
calorimeters, muon chambers and forward detectors is described extensively else- 
where.l The full detector has about 20,000 channels generating 1.6M bytes of raw 
data for each event. For the CD which produces most of this, zero suppression and 
data compaction yield an average of 38K bytes which must be recorded on tape. There 
is no data reduction for electromagnetic and hadronic calorimeters which have =2K 
channels producing 8K bytes per event. The 5K muon drift tubes produce only a few 
hundred bytes for a typical event. A distribution of event sizes from a December 1982 
run is shown in Fig. 1. 

All front end digitizer and trigger electronics is located in a Mobile Electronic 
Control room (MEC) close to the detector. Data is collected and concentrated using 
the CERN Romulus/Remus CAMAC branch system.:! As shown in Fig. 2, five Remus 
branches transmit calorimeter, muon, forward detector and CD data from the MEC 

50 I I I I I .I ._ 

40 
Total event sze 

- <WC> =51.2 K words 
2 Run 4096 

30 
- 

El 
2 20 - 

IO - 

0 I 
0 20 40 60 80 100 120 140 

50 I I I I 
(b) 40 Moxlmum branch size - 

<WC) = 17.5 K words 

0’ II I I I I II 
0 5 IO 15 20 25 30 35 

3-83 WORD COUNT (IO3 16-bit words) 4484118 

Fig. 1. UAl event sizes. 

. 

2 



to the main control room - a distance of 100 meters. The primary computing system 
at UAI is based on two Norsk Data 100/500 machines referred to as NORD-A and 
NORD-B. Usually NORD-A is the master running a CERN Data Acquisition System 
(DAS) and the Remus routers in Fig. 2 are set to allow NORD-B to spy on the data 
transfer. An event trigger generates an interrupt to DAS running on NORD-A which 
then sends “Prepare and Go” commands to the five Remus branch drivers (RWBD) in 
the NORD-A CAh4AC system crate. Data transfer from h4EC to main control room 
then proceeds in parallel at an average rate of 2.5 1~s per M-bit word on each branch. 
Remus buffer memory can hold a single event while NORD-A reads the branches 
sequentially. A complete description of this UAl data acquisition has been presented 
elsewhere.3 

1 Calorimeter + Muon 1 

i; - 

I ‘Fo~wa rd 
Detectors 

MEC 
I 

I I I I 
~_ 

iij4j ---_--_- 
Main Cont rol Room 

Fig. 2. NORD Remus system without 168/~. 

. 

3 



With six collider bunches there is a beam-beam crossing every 3.8 ps. At the design 
luminosity of 103’ cmB2 8- 1 this should yield an interaction rate of 50K Hz while the 
maximum rate for recording production data on magnetic tape is about 5 Hz. There 
are 4 levels in UAl trigger logic. The 0th level uses a&20 ns coincidence between 
hodoscopes in the p and p detector arms to select bunch-bunch crossings which have 
an interaction. This decision, made with NlM logic, provides a minimum bias trigger 
with rejection of background such as beam gas interactions. This is followed by 1st 
level calorimeter and muon triggers. A fast arithmetic processor groups and adds 
calorimeter FADC measurements providing total and transverse energy triggers in 2-3 
ps. Another set of muon hardware processors searches for track candidates which point 
to within 100 mrad of the interaction vertex. A muon track is required to have three 
hits within a cone passing through a set of four parallel planes in one muon projection. 
This decision takes about 1 ps and uses only muon drift tube numbers - drift time is 
not available at this level. There is no dead time for the 0th and 1st level decisions 
which are completed between bunch crossings, but after a good 1st level trigger there 
is a &ad time of 3-10 ms for CD data reduction. A muon 2nd level trigger using the 
FAMP4 system is available during these few ms. It uses drift time to reconstruct muon 

- tracks with 10 mrad accuracy. When an interaction produces a-good 1st or 2nd level 
trigger, NORD-A initiates read-out on the 5 Remus branches and this transfer cannot 
be interrupted. All hardware for trigger levels 0, 1 and 2 is located in the MEC. The 
168/~ processors5 in the main control room provide a 3rd level trigger. 

-. 

As collider luminosity increases towards design value, the current 1st level trigger 
rate would soon exceed NORD capacity. Increasing the trigger rate by a factor of 5 
over December 1982 rate of 0.7 Hz would require writing a 6250 bpi magnetic tape 
every 3-4 minutes and off-line processing costs probably prohibit running at this NORD 
limit. Under such saturated conditions another level of on-line filtering which reduced 
the NORD rate by only a factor of 2 would deserve consideration since it would double 
the effective luminosity for the experiment. 

Several options for using 168/~ processors were considered and in Fall 1981 a single 
processor was installed with 128K bytes of data memory and CAMFAST interface as 
shown in Fig. 3. This system was similar to the SLAC Hybrid Facility 168/E trigger.7 
The CAMFAST module can spy on NORD CAMAC I/O and transfer data to a 168/E 

4 



with no additional dead time. Since this interface is quite passive, considerable on- 
line development and testing was done while the experiment was in progress.8 For 
an algorithm using only one Remus branch and with execution time limited to 25 ms, 
the system shown in Fig. 3 could at best achieve a factor of two improvement in data 
rate. 

Remus Branch 

I2345 

C 

ii 1 F 

50 

‘r 

V 
NORD 100 

168/E 

I 

A 
t e 
: 
c” e 

Fig. 3. 168/~ with CAMEAST interface. 

-. 

Much stronger improvement in performance can be obtained with a 3rd level trigger 
which provides event buffering and parallel processing. CAMAC memory buffers were 
considered but using 168/~ processor memory as the event buffer gives the algorithm 
access to an entire event and is less expensive than Remus buffer memory. A 168/~ 
software filter at this level provides easy implementation of new ideas as one acquires 
experience with the UAl detector. Algorithms written in IBM FORTRAN can be 
fully tested on any IBM compatible machine and incorporated into DAS with minimal 
overhead for on-line tests. A new 3rd level trigger using the 168/~ has been developed 
with the following objectives: 

l support algorithms using calorimeter, muon and CD data, 

l improve performance using event buffering and parallel processing, 

5 



l maintain compatibility with Remus branch structure and transfer data from 
MEC to 3rd level processors at the optimum Remus rate, 

o minimize overhead on the NORD-A host computer, 

l process 20 triggers per second for an algorithm with rejection rate of .75 and 
execution time of SO-100 ms, i.e. a factor of 4 in effective luminosity for a 
saturated system. 

In order to achieve these objectives, a new PAX-GREYHOUND interface to the 168/~ 
has been developed. 

2. NEW HARDWARE FOR THE 168/~AT UAl 

2.1 PAX 

The 168/~ interface developed for UAl employs a CAMAC module called PAX 
which provides both autonomous read-out of Remus branches and all 168/~ control 
functions for the host computer. Only four of the PAX CAMAC functions defined in 
Table; are required for the host computer to load a 168/E program, start execution, 

- check processor status and read results from 168/~ data memory. For example, the 
basic sequence of PAX functions to load and execute a program is as follows: 

(a) F16 A2 - load PAX control register with target CPU# and select program 
memory, 

(b) Fl6 A4 - load PAX address register with start address in 168/E program 
memory, 

. 

-. 

(c) F16 A6 - write to 168/~ program memory, 

(d) repeat steps (a)-(c) to load 168/E data memory, 

(e) F16 A2 - load PAX control register with target CPU# and program control 
bits set, 

(f) F16 A6 - write 168/~program counter and start execution. * 

Six of the functions in Table 1 refer to the sequencer and address file which are the 
key logic for PAX operation as an auxiliary controller. A block diagram of sequencer 

* This step is described in the Greyhound interface section. 

6 



Table 1. PAX CAMAC Functions 

Function 

FCI A0 

FO Al * 

PO A2 

PO A3 
F16 A0 
F16 Al 
F16 A2 * 

F16 A3 
F16 A4 * 

F16 A5 

F16 A6 
F16 A7 
F16 A8 
F16 A9 

Definition 

READ PAX Status Register: 
bits l-7 = sequencer address, 
bit 8 = time out, 

9 = not end of read sequence as 
defined by LAM mask in 
control register, 

10 = overflow. 
11 = not used, 
12 q interrupt process. 

READ PAX Address File: 
32 Base and 32 Current 168/E addresses 
indexed by the PAX EXEC register. 

READ from 168/E and Increment Address Reg. 
Read program and data memory, CSR and PC. 

Test LAR, Q=l if LAN set. 
WRITE Sequencer Memory and Increment Counter. 
ENABLE LAM. 
WRITE PAX Control Register: 

bits l-3 = 168/E CPU # - (O-7) 
4 q Read/Write (l/O) 
5 = Control/Memory (O/l) 
6 = Program/Data (l/O) 
7 = Clear Greyhound 
8 = Overflow enabled 
9 = Sequencer time-out enabled 

10 = End condition enabled 
11-18 = LAH Mask f O-377 octal 1 

19 = Cycle time Cl=> 0.5 PSI 

START PAX Sequencer. 
WRITE PAX Address Register and Word Count. 

WRITE Sequencer Transparent. 
Same as F16 A0 with sequencer instruction 
executed immediately instead of stored 
in memory. 

WRITE to 168/E and Increment Address Reg. 
INHIBIT LAN. 
RESET LAM and Sequencer Logic. 
WRITE Address File to 168/E + Inc. Register. 

An entry selected by a previous Seq-Internal 
(F16 A51 is transferred with 2 instructions 
Upper/lower halfword is selected by address 
register LSB = O/l. 

F16 A10 * WRITE Address File. 
The station # address file entry can be 
set with a Seq-Internal (F16 AS.1 

* => 24-bit CAMAC I/O 



logic is shown in Fig. 4. Sequencer memory provides a maximum of 128 16bit instruc- 
tions. As shown in Table 2, sequencer instructions are divided into four classes defined 
by bits 15-16 in sequencer memory. A Sequencer-External instruction can read any 
CAMAC module in the same crate with the PAX and transfer a M-bit word to 168/,13 
memory in one CAMAC cycle. Sequencer-Internal instructions provide internal PAX 
control, transfer address file data to 168/~ memory and start the processor. Loops 
within sequencer memory and tests for end of a CAMAC read sequence are obtained 
with Sequencer-Branch instructions. The rather complex Seq-Branch instruction has 
six types of branch and test operations. Timing and physical constraints on PAX de- 
sign forced some complexity in sequencer instructions - there were only two free slots 
in the main NORD-A system crate when PAX design was initiated. The Write-Block 

-. 

. 

File I Ir+l 

16 18 7 
Doto Address Control 

l------Greyhound Bus to 168/E-------] 

Fig. 4. PAX logic diagram. 

8 



Table 2. Sequencer Instructions 

Bits 
Instruction 1111111 

6543210987654321 
Definition 

External OONNNNNAAAAFFFFF 

lL 

L CAMAC function 

CAMAC subaddress 

CAMAC station # 

Internal OlAAAAA X X 

[L’ 

L 

L L Load address register 
Load word count (WC) 

Write WC to address file 
Write address file to 168/E 

Start 168/E 
Halt sequencer 

Base/Current address (O/l) 
Address file index (O-31) 

Branch 1ONNNNNTTAAAAAAA 

I II 

L Branch Address 

00000 - Unconditional branch 
10100 - Start 2 ps wait cycle 
11000 - Test for end of wait cycle 

II 
01 - Branch if LAM(N) = 0 
10 - Branch if Q = 0 
11 - Branch if PAX end condition false 

Bits 8-9 define the branch type. For brancl 
type 01 bits lo-14 define the station #. 
For branch type 00 bits lo-12 define the 
type of wait operation and bits 13-14 are 
not used. Bits 1-7 contain the sequencer 
branch address (O-127 decimal.) 

Write Block 11XXXXXXXXXXXXXX Enable block transfer. 
I- 

instruction enables a block transfer from 168/E memory to CAMAC highway. Once 
executed, it freezes the data path from 168/~ memory in read mode allowing external 
write instructions to direct data to any CAMAC module. 

In order for the sequencer to read Remus branches in parallel, the PAX must 
maintain a set of target addresses in 168/~ memory. For each CAMAC station, the 
address file in Fig. 4 has a Base Address (BA) and Current Address (CA) in 168/~ 
memory (a total of 64 l&bit addresses.) The PAX EXEC register holds the function, 
station and subaddress for CAMAC I/O and points to the corresponding address file 

. 

9 



entry. The l&bit address register in Fig. 4 holds the target address in 168/Ememory. 
Seq-External loads this register with CA for station N, loads the word counter with 
the same CA, increments the address and stores the result back in the file if & = 1. 

An &bit sequence counter selects the next instruction’for execution. It increments 
after external or internal operations and is set/cleared by a Seq-Branch instruction. 
A 7-bit control register holds the target CPU# (maximum of 8 processors) and Grey- 
hound interface control lines. During NORD CAMAC I/O to a 168/~ the sequencer 
and address file operate in a transparent mode. For example, when the NORD loads 
PAX address register (F16 A4) the l&bit address is transferred through the address 
file in unused address space - sequencer instructions access 64 out of 128 words in this 
file. Similarly, F16 A5 can execute any sequencer instruction immediately. 

A flowchart of a PAX sequence to read UAl Remus branches is shown in Fig. 5. 
Before entering a CAMAC read loop, the PAX executes Seq-Internals which copy BA 
to corresponding CA for each CAMAC station. The GAMAC read loop executes five 
Seq-Externals, one per Remus branch. A Seq-Branch instruction tests a 2.0 ps wait 
cycle-to guarantee a minimum delay between successive read cycles on the same RWBD 

- as required by Remus specifications. If this wait cycle is not complete, the sequencer 
pauses and reexecutes this wait test every 125 ns. At UAl the end of an event transfer 
has been defined by the logical AND of a LAM mask in the PAX control register (Fl6 
A2 in Table 1) and Remus End LAM’s for the five branches. The station numbers 
for each bit in this mask are set by jumpers in the PAX. When the end condition 
is true signalling completion of transfer on all branches, Seq-Internals copy BA and 
CA for each branch to 168/E memory. The 168/~ algorithm needs these addresses 
to calculate word counts for each branch. Finally Seq-Internal instructions start the 
processor and halt the PAX sequencer. Such a sequence to read 5 UAl branches takes 
43 instructions and the sequence to start the Remus transfer is 16 instructions. The 
mean transfer time, fixed by the largest branch, is 44 ms for the distribution in Fig.1. 

The PAX sequencer executes with an internal cycle of 125 ns. If the external 
CAMAC cycle is 0.5 ps there are four PAX internal cycles for each CAMAC cycle. 
Only the first internal cycle is required to initiate an external CAMAC operation. A 
maximum of 3 Seq-Branch instructions immediately following a Seq-External can be 
executed while the PAX-CAMAC cycle is in progress. Consequently a sequence read 

10 



I 

loop like that shown in Fig. 5 can easily be organized with 
operations. Seq-Internal requires all 4 internal PAX cycles. 

no overhead for branch 

S-I BA+WC Initialize address file with 
S-I WC+CA target 168/E address for each 

station, 2 instr. per station 

S-B Start Wait cycle I 

I 
I 

I 
I 

I I 

/\ S-E One Instruction per 
station to read and 
transfer one word 

S-B Pause until Wait 
cycle is finished 

-/ False \ 

1 

S-B Test End LAM condition 

, 
S-I Load PAX address register with 

168/E address for PAX address 
file transfer 

I S-I Four instructions per station 
to write BA and CA to 168/E I 

S-B = Sequencer Branch BA = Base Address 
S-E = Sequencer External CA = Current Address 
S-I = Sequencer Internal WC = Word Counter 

Fig. 5. Flowchart for a PAX read sequence. 

11 



2.2 THE GREYHOUND INTERFACE 

The 168/~ processors at UAl need an interconnection that allows the PAX to 
transfer data over a distance of -5 meters at 500 ns per M-bit word. The interface on 
each processor must allow either of two such buses access to 168/~memory and control 
functions. Without this feature there would be a dead time of -100 ms whenever an 
accepted event is read from 168/~ memory. The two buses do not need simultaneous 
access to 168/,r~ memory. However, the 168/~ Control Status Register (CSR) needs a 
true dual port read function so each PAX and the corresponding support tasks on the 
host computer can obtain 168/~ status independently. 

The early Fastbus interface was inadequate and a more parallel structure called 
the Greyhound Bus has been developed for UAl. The Greyhound bus is carried over 
two 50 way twisted pair flat cables - two cables for each PAX. As described in Table 
3, there are 18 address lines for the half megabyte 168/~ data memory space and 16 
data lines. The wordsize for Remus data transfers at UAl is always 16 bits. The LSB 
of the address field set to 0 (1) selects the upper (lower) halfword in 168/~ memory. 

There is no protocol on the Greyhound bus. To the PAX the 168/~‘s appear as 
-elements in its memory map as accessed through Greyhound address and control lines. 
The interface in a 168/~ crate DC-follows the PAX which has asserted mastership and 
write operations are triggered by the Greyhound Sl signal. Since there is no protocol, 
the host computer and 168/~ programs are responsible for checking data transfer 
integrity. 

A block diagram of Greyhound dual port structure is shown in Fig. 6. Both PAX 
ports have access to program or data memory and to the CSR. The CSR described in 
Table 4 provides all control and status functions required to operate a 168/~ processor. 
The host computer selects Greyhound control space by loading PAX control register 
bits 5-6 with Vontrol” and “Program” options as defined in Table 1. When control 
space is selected any even address will access the CSR and odd addresses access the 
lower 16 bits of the 168/~ program counter. The host computer can start a 168/~ 
program with the following operations: 

12 



I 

Table 3. Greyhound Bus 

(4 
P4 

(4 

Sisnal Definition 

Al-18 l Eighteen 168/E address lines. 
DO-15 Sixteen bi-directional data lines. 

R/W l Control line indicating read or write cycle. 
D/C l Control line indicating control or data 

space access. 
P/D * Control line indicating program or data 

space access. 

PRESEL l Pulse generated in the PAX by setting PAX 
CR ready to write into processor data space. 
The pulse triggers the selected 168/E into a 
mode in which it alone will respond to 
PAX operations. 

Sl * Timing signal used in write operations. Sl is 
true 250 ns after validation of the address 
lines and lasts for 250 ns. There is no timing 
during cycles. The interface ‘DC-follows’ the 
address lines until CYCVAL is negated. 

RESET * Master Clear. 
HALT Wired ‘OR’ of all 168/E halt interrupts. 

This sets PAX status register bit 12 and is 
available on the PAX front panel. 

PNO-2 * Encoded processor select. 

START * A pulse of not less than 1OOns on this-line 
will start the selected processor. The user 
must ensure that the required PC value is set 
before enabling this action. It is only 
generated by the PAX sequencer. 

* => unidirectional 

load an odd address in the PAX address register, 

use F16 A6 to write zero to the 168/,?3 program counter. This function 
increments the PAX address register so the next write will access the CSR. 

Write 5 (Dj to start the processor with halt interrupts disabled (enabled). 

Logic for 168/~ clock signals on the Greyhound interface is identical to the Fastbus 
interface. 

While the CSR can be read simultaneously from both ports, a PAX must secure 
mastership of a processor before any other I/O. This is accomplished with the following 
sequence of PAX functions: 

13 



(a) Fl6 A2 - load PAX control register with target CPU# and all other bits 
set to zero, 

(b) F16 A2 - load PAX control register with same CPU# and bits 46 set to 
write-data-memory. ~. 

This sequence generates a PRESELECT pulse on the Greyhound bus. If both PAX’s 
do this simultaneously, then CONFLICT bit, 9 is set in the Greyhound CSR. This 
indicates a potentially fatal error in the control task on the host computer which must 
be programmed to avoid such contention. The clear bit in the PAX control register 
will reset all processors on the bus and clear the conflict condition. 

Each Greyhound has three lemo outputs with the following positive true TTL 
signals: 

- 

CSR P 
I 

CSR/PC MUX 

1 
Clock 

. 

Address 
Multiplexer HbD-+ 

Interrupts 

> / _ 
‘18 -a-- 

Greyhound I Greyhound 
Bus Cable Data Bus Cable 

Port I Multiplexer Port 2 

> <- 

l 

Fig. 6. Greyhound interface block diagram. 

14 



Table 4. Greyhound Status/Control Register 

Name Bit 

0 START R/W 

1 FLAG0 R/W 
2 MPU R/W 

3 INTENB R/W 

‘l HALT R/- 
5 RUN R/- 

6 RESET -/w 

7 SPY R/W 

8 HEREIAII R/- 

Definition 
- 

Setting this bit enables the clock 
generator and starts the 168/E. When 
the clock starts this bit is cleared. 
A PAX Seq-Internal can set this bit. 

Reserved for software use. 
When set the 168/E has control over 
it’s own memories. If clear the 
interface may have memory access. 

True enables a 168/E halt to set the 
front panel TTL status signals and 
the ‘OR’ halt on the Greyhound bus. 

True when CPU halted. 
True between START and HALT. 

Setting this bit generates an interface 
reset which also resets itself. 

If set the interface will spy on and 
duplicate al-l write operations from 
PAX1 irrespective of their destination. 

This bit is always 1 when the PAX is 
reading the CSR from a real processor. 
A non-existant processor returns zero. 

._ 
9 CONFLICT R/- Set if interface receives simultaneous 

tries to preset from both ports. This 
is potentially fatal since it is not 
clear which PAX had mastership. The bii 
is only cleared by a reset function. 

10 PlOPS R/W True means PAX1 has preset the 168/E 
and it will now obey PAXl. If ‘SPY’ i! 
not set then it is cleared when PAX1 
presets another 168/E. It is always se’ 
to zero if PAX2 selects the processor 
or if an external START is received. 

11 PLOPS R/W True means PAX2 has preset the 168/E 
and it will now obey PAXZ. If ‘SPY’ i! 
not set then it is cleared when PAX2 
presets another 168/E. It is always se 
to zero if PAX1 selects the processor 
or if an external START is received. 

12 FLAG1 R/W Reserved for software use. 
13 FLAG2 R/W Reserved for software use. 
14 PC17 R/- Program counter bittl7. 
15 PC18 R/- Program counter bit 18. 



Lemo 1 = CPU Halted 

Lemo2 = CPU Halt . AND . DhilO 

Lemo3 = CPU Halt. AND. DMl 

CSR bit 4 true enables these levels when the processor halts and clearing this bit resets 
the lemo outputs. Lemo outputs 2-3 can be used as trigger flags set by an algorithm 
write to Data Memory immediately before the program halts. An additional lemo 
output provides a TTL “RUN” signal which is the envelope between processor start 
and halt. 

2.3 A MODIFIED RWD 

The PAX can generate external CAMAC cycles of 0.5 or 1.0 ps with control register 
bit 19 set to 1 or 0. A 0.5 ps cycle allows PAX to access each of the five UAl branches 
every 2.5 ps which is the average Remus data rate at the LSS5 control room. In this 
preferred mode of operation the CAMAC Sr pulse is 200 ns and there is no S2 generated 
by the PAX. The RWBD Remus branch drivers9 used with the PAX can operate with 
either CAMAC cycle selected by a hardware switch at the rear of the module. For a 
0.5 ps cycle each RWBD generates its own S2 internally. In this non-CAMAC standard 
mode of operation the Seq-Branch “wait cycle” can be used to guarantee that successive 
accesses to the same RWBD do not exceed Remus specifications. 

The PAX sequencer can issue the “Prepare and Go” command to initiate branch 
read-out but Remus specifications require a minimum delay of 9 ps before the first 
RWBD read instruction. The host computer must meet this requirement or the se- 
quencer can be programmed to provide the minimum delay with wait cycles. All 
RWBD’s used with the PAX generate an “End LAM” defined as LAM = 1 at the end 
of a transfer. If a SeqExternal read is followed by Seq-Branch with “test on Q,” the 
two instructions must be separated by 1 (2) NOP’s for a cycle of 0.5 (1.0) p.s. The 
NOP (an unconditional branch to next sequencer instruction) allows sufficient time 
for the RWBD to respond and set Q on the CAMAC bus. A Seq-Branch immediately 
after a Seq-External is executed before the external Sr. There have been no problems 
for RWBD operation with the 0.5 ps PAX-CAMAC cycle. 

16 



2.4 I~~/EMEMORY 

The 168/~ processors at UAl use a memory board developed at DPBE, Saclay” 
which allows each processor to be loaded with a complete event. Each 168/~ has 8 
boards with a full data memory space of 512K bytes. - Program memory is loaded 
on two of the 8 boards so 168/~ ‘s at UAl have the original design limit of 32K 
micro-instructions - sufficient for a practical real-time algorithm. Expanding data 
memory by a factor of four required 2 more bits in memory address logic on the l68/~ 
integer CPU board. The data memory address adder was increased from 16 to 18 bits 
demanding a second level in the carry look-ahead, but with the 55 ns access time of 
the INMOS JAR31400 this was accomplished without difficulty. 

The original l68/~ memory test developed at SLAC checked for unsatisfactory 
address transitions between every pair of addresses in the memory test interval. This 
is a strong test but execution time taN2 where N is the number of test words and 
with 64K byte memory boards a single card. takes 2 hours and a full processor ml28 
hours. A Random MEMory test (RMEMYG) was developed using a simple algorithm 
to se&t random addresses and check a contiguous region as follows: 

(a) write complement of a fullword pattern to a random-test address, 

(b) write exclusive OR of pattern and address to memory above and below the 
test address, 

(c) read entire test interval using non-zero displacements to exercise address 
calculation. 

RMEMV6 also has a burst write test for worst case conditions in successive memory 
accesses. This diagnostic was essential in tracing an early problem with the INMOS IC. 
Before installation at LSS5 each processor was required to pass all CPU and memory 
tests at 4.8-5.2 volts and execute the random memory test for x15 hours. After 
installation the only memory failure observed was a hard error on a single INMOS IC 
- an error easily detected by less sophisticated diagnostics. 

17 



3. NORD DAS WITH THE lt38/~ 

The CAMAC and Greyhound configuration for the multi-processor system with 
PAX interface to NORD-A is shown in Fig. 7. The original system in Fig. 2 has been 
modified to include an additional set of Remus routers to a CAMAC crate with five 
RWBD’s and PAX-A. The original RWBD’s remain in the primary NORD-A system 
crate with PAX-B allowing DAS to bypass 168/~ processors. The PAX-A crate resides 
on a branch from a second system crate which can be accessed by both NORD-A and 
NORD-B. For DAS using 168/~‘s the routers are configured with RWBD’s in the PAX- 
A crate as masters. The host computer transfers a new event to a preselected l68/,7 
by executing a sequence in PAX-A. An accepted event is read from 168/~ memory 
using PAX-B and recorded on tape by ZREAD, the main DAS task. The transition 

BRANCH I- 5 

A 
0 

2-i ” 
> 16B/E#l 

E 
-2 

E 
A 

> 168/E#2 
B> 

\L \I/ 
DMO DMI 

P AcipG c t 

GEC 
A E 
x x 
B Halt 

DAS-A 
(ZREAD) 

3- 83 
.1*.*5 

Fig. 7. NORD configuration with PAX and l68/~. 

18 



between data acquisition without and with 168/~‘s is accomplished in software from 
menus available at the NORD-A console. 

For DAS without 168/~‘s the only related CAMAC interrupt to NORD-A is the 
lst/2nd level trigger. To operate a 3rd level trigger the system must also handle 
interrupts generated by PAX sequencer and 168/~ halts. The system responds to 
these three interrupts as follows: 

1. Hardware trigger 

l disable hardware trigger and find next free 168/~ , 

0 start PAX-A executing a small RWBD “Prepare and Go” sequence, 

l preselect target 168/~, set PC=0 and set CSR with halt interrupt enabled, 

l set PAX-A control register for write-data-memory, 

a enable PAX-A LAM, 

l start main PAX-A sequence reading branches l-5. 

2. PAX-A Halt 

l disable PAX-A LAM, 

l check PAX-A status register for an abnormal sequencer condition, 

l read 168/E CSR and check for Greyhound conflict, 

o enable hardware trigger if another processor is free. 

3. 168/E Halt 

l read CAMAC status register to determine which CPU halted, 

l read CAMAC status register with accept/reject flag, 

l ignore rejected events and add 168/~ to list of free processors, 

l instruct ZREAD to record accepted events on tape. - 

If PAX control register has bit 9 set to enable time-out, sequencer execution stops 
after an elapsed time of about 500 ms. Similarly, with the overflow bit set the sequencer 
stops if a 168/~ address CA(N) overflows when incremented after reading station N. If 
the PAX continued to read station N under this condition it would overwrite algorithm 
local constants. Either of these conditions can produce a CAhMC interrupt. A direct 

19 



task called GEPAX running at NORD level 6 was developed to handle all interrupts 
associated with DAS using PAX-A (interrupt response time ~160 ~3). In the case of 
an abnormal PAX termination or Greyhound conflict, GEPAX was coded to ignore 
the event, update a run summary table and continue after resetting the PAX and/or 
168/~ for another trigger. After a 168/~ halt, GEPAX reads CAMAC status registers 
which provide the CPU# and algorithm accept/reject flag. Note that this information 
is available whenever a processor halts even if both PAX modules are busy. The 
most recent version of GEPAX ignored events rejected by the filter algorithm. The 
processors provide a 3rd level trigger but the host computer can still make the final 
decision concerning which events are recorded on tape. For example, DAS could easily 
be programmed to record a random sample of rejected events for off-line analysis. 

For accepted events GEPAX generates an interrupt to direct task ZREAD running 
at level 8. ZREAD uses PAX-B to read a small algorithm summary, PAX-A address 
file data written to 168/~ memory and input from the five Remus branches. Since 
PAX-B is in a NORD system crate, this transfer proceeds at the maximum CAMAC 
rate of 1.7 p.s per M-bit word for DMA. All control operations performed by GEPAX 
are done with programmed I/O since the number of PAX-A instructions required is -_ 
small. The sequencer in PAX-B is not used in this configuration but the modules are 
identical. 

The host computer loads PAX-A sequencer memory and address file once at run 
initialization. The host must also maintain a table with the status of each processor 
and a free 168/~ is found by searching this table. In Fig. 7 all the processors are 
functionally equal. If a 168/~ failed DAS could disable the processor in the status 
table and continue acquisition with the remaining pair of processors. This equality 
can be a powerful diagnostic tool for checks on algorithm plus data validity. PAX- 
Greyhound design allows simultaneous transfer of the same event to any pair of 
processors. The host computer can then read and compare algorithm results checking 
for consistency or against some standard. 

20 



4. 168/33 ALGORITHMS 

A FORTRAN algorithm can access data from any of the Remus branches using 
labelled common blocks defined in Table 5. Arrays for each branch are dimensioned - 
somewhat larger than the maximum branch size for normal operation. The 168/,7 data 
memory addresses in Table 5 locate Remus input common blocks in high memory and 
algorithm local constants and commons in low memory. This protects the algorithm 
against a Remus data transfer error since PAX addresses increment for each word 
transferred and the sequencer halts if an address overflows. Absolute addresses for all 
algorithm common blocks are fixed by “locate” data cards provided to the translator 
program. Clearly the PAX address file must be loaded with the same Remus branch 
target addresses as used for algorithm translation to 168/~ microcode. However, the 
support task for accepted events need only know the address of COMMON /RESULT/ 
in Table 5. 

Table 5. Algorithm Data Memory 
- 

&&(bvtes) C0MM0~ Contents 

0 FORTRAN algorithm local 
constants and common blocks. 

20000 YRESULTIHW(2048) PAX address file and algorithm 
results. 

21000 /DPRINC/FW(4096) FORTRAN debug print buffer. 
25000 not used 

ZAOOO /BRl/HW(12288) Branch 1 = calorimeter + muon 
30000 /BR2/HW(1638'+) Branch 2 = forward detector 
38000 /BR3/HW(49152) Branch 3 = central detector 
50000 /BRQ/HW(49152) Branch 4 = central detector 
68000 /BRS/HW(49152) Branch 5 = central detector 

HW => Half Word; FW => Full Word 

21 



The main routine in a UAl algorithm has the following basic structure: 

COM~ON/RESULT/IABC~2,5~,IBERR,IRYES,IALG~lO6~,IPBC~2,5~ 
INTEGERS2 IBERR,IRYES,IALG 

C 
C IABC = BA and CA for branches 13 loaded by algoriihm, 
C IBERR = algorithm branch data error flag, 
C IRYES = algorithm accept/reject flag, 
C IALG = algorithm results, 
c IPBC = BA and CA for branches l-5 loaded by PAX. 
C 

CALL EVPROC 
CALL ALG 
IF(IRYES.EQ.11 I=1 
IF(IRYES.E.Q.0) I=2 
IF(IBERR.NE. 1) I=3 
IAtlS = I 
STOP 
END 

While addresses in array IPBC are 32-bit words, only the least significant 18 bits are 
defined by the PAX. Subroutine EVPROC masks off the upper 14 bits of each address, 
copies them to array IABC and sets flag IBERR if there is an obvious transfer error, - 
e.g. BA > CA or overlapping data windows. The algorithm and/or NORD-A also 
check integrity of Remus branch structure for each event. If there are no errors in 
address data, the filter algorithm is executed and a short summary of results for output 
to tape is saved in array IALG. 

Immediately before it halts the algorithm executes an instruction (IANS=I) which 
accesses 168/~ data memory and sets bits O-1 as follows: 

or;1 pz Definition 
0 0 Undefined => fault, 
0 1 Event accepted, 
1 0 Event rejected, 
11 Error in Remus data. 

For accepted events NORD-A reads COMMON /RESULT/ to obtain 168/~ addresses 
for each Remus buffer and algorithm results for output to tape. Branch commons 
must be read from PAX-B in five Dh4A transfers since sections with data from the 
last event are not contiguous. Ordinarily the 168/~ Remus commons are not cleared 
between successive events since this would take about 80 ms for this block of 352K 
bytes. 

22 



A UAl filter algorithm is developed and tested off-line, translated to 168/~ mi- 
crocode, transferred over CERNET to disk at LSS5 control room and downloaded to 
each processor at the start of a run sequence. After a program is loaded the host 
computer always reads back 168/~ memory and compares with the disk file - no er- 
rors were observed during Fall 1982 runs. The user developing an IBM FORTRAN 
algorithm need only adhere to the basic structure described above for input data and 
results. Absolute addresses in Table 5 are seldom changed and the translation step is 
a standard procedure requiring very little user input for this type of program. 

The first algorithm tested at LSS5 searched for high momentum charged track 
candidates near 90° to the beam axis in the vertical (bending) plane. The algorithm 
searches four CD drift volumes above and four below the horizontal beam plane. The 
search is limited to a single drift volume at a time, selecting eight wires in each volume 
with a uniform 6 cm separation. An essential feature of this and any algorithm using 
CD data is fast selective decoding of a few. wires with minimal unpacking - in this 
case only the drift time. Execution time for accepted and rejected events is shown in 
Fig. 8a-b. An event is accepted as soon as a track candidate is found in any of the 8 
volumes. Consequently rejected events are more time consuming which seems to be a 
-general characteristic of 168/~ trigger algorithms. Comparison with the same events 
run on IBM shows the 168/~ is 2.6 times slower than a 370/168 for this programs. 

Another FORTRAN algorithm searches for muon track candidates using a proce- 
dure logically equivalent to that of the 2nd level trigger which is written in M68000 
assembly language. l1 This subroutine searches all 20 muon modules on the top, front 
and sides of the UAl detector and the 10 bottom modules. Each projection of each 
module is searched as follows: 

(a) prepare a table of cone candidates from hits in the two planes closest to 
the beam line, 

(b) prepare a table of drift times - raw data is not sorted, 

(c) for each plane use lookup tables to construct the logical OR of patterns 
consistent with a cone from the interaction region, 

(d) require a track candidate to have at least 3 hits in the 4 planes intersecting 
the cone. 

23 



Equivalent 168/~ execution time measured on IBM is shown in Fig. 8~. The distribu- 
tion for all events peaks at 2 ms and most events above 5 ms have one or more tracks. 
About 50% of this execution time is required to prepare tables of cone candidates and 
drift times for each module to be searched. 

An algorithm using a more refined estimate of energy deposited in the central 
electromagnetic calorimeter (Gondolas) has also been tested. A muon or calorimeter 
algorithm could be executed first to define dynamically a region of the central detector 
to be searched. During December 1982 the PAX-168/~ system was used with a variety 
of test algorithms recording 28K events on tape. An additional 8400 events were 
accumulated using a prototype physics algorithm (muon + CD + calorimeter) with 
results included on tape. From this sample 6000 events were later checked and found 
to be in complete agreement with the same algorithm run on IBM. 

_. 

(a) Central Detector 

Rejected Events - 

0 10 20 30 40 50 60 

(c) Muon Detector 

a Tracks Found 

0 5 IO 15 
3-83 - 
4484A6 168/E EXECUTION TIME (ms) 

Fig. 8. 168/E algorithm execution time. 

24 



The end of the 1982 collider schedule was followed by a few days of central detector 
calibration runs using cosmic ray data. In only a few hours a very simple algorithm 
was coded, tested on IBM and transferred to the 168/~. In addition to requesting a 
minimum energy deposit in the forward and backward sections of the calorimeter, it 
required a minimum signal in the central detector. Without the PAX-l68/~ trigger 
it would not have been possible to make such correlations between data from parallel 
Remus branches. 

5. NEW DEVELOPMENTS 

As discussed in the Introduction, it takes several milliseconds to complete the CD 
read-out and a 2nd level muon trigger is available during this time. After CD data 
is transferred to Remus buffer memories, a single event cannot be cleared. However, 
the Read-Out Processor (ROP) in each CD crate has a 1K 16bit buffer and it takes 
about 8 ms to fill this buffer. Data from a CD selective read-out could be transferred 
to a 168/~ providing another 2nd level trigger. For example, reading only drift time 
after zero suppression for two wires in each CTD module (12 wires per module) should 
yield about IK bytes per event. Although the quantity- of CD data and transfer time 
to 168/~ is small for this scenario, a CD algorithm would probably still require access 
to muon or calorimeter results to scan a selected region of the central detector in this 
2nd level time interval. 

A major improvement to the 3rd level trigger system is already in progress and 
expected to be operational at the start of the next collider cycle. The layout in Fig. 
7 has been modified to include two more processors, a 3rd PAX, color graphics and 
Super CAvLAR.12 As shown in Fig. 9, the Super CAVIAR labelled DACQ runs the 
“GEPAX” task supervising read-out by PAX-A and controlling processors l-4. This 
reduces the number of interrupts which must be processed by NORD-A. A sample 
of events are transferred simultaneously to 168/~ #0 and one of- the four trigger 
processors. Using PAX-C, the Super CAVIAR labelled DISP can display algorithm 
results on the MATROX or transfer a full event from processor 0 to NORD-B for 
analysis by monitoring programs (previously NORD-B could only spy on one branch). 

When an event display algorithm runs on 168/~ #O, the processor prepares a 
buffer with pixel coordinates and color for each image, e.g. CD tracks or points. The 

25 



buffer is transferred by PAX-C in block mode via a CAMAC module to the MATROX 
512*512 color display. Optionally the same results can go to NORD-B. The display 
algorithm also maintains statistics which may be output to the MATROX display or 
NORD-B. The DACQ CAVIAR monitors the complete acquisition system with color 
displays showing status of PAX and 168/~ activity, algorithm results, data errors, 
PAX read-out and 168/~ processing time, etc. 

5 Remus 
Branches 

from 
MEC 

i”l MATROX I/F 

Fig. 9. PAX-l68/~ with Super CAVIAR. 

26 



Super CAVIAR firmware has been extended to include resident routines that per- 
form the following tasks: 

(a) load and verify a l68/~ program from any CAvlAR peripheral, 

(b) read-writedisplay 168/~ program and data memory in several formats in- 
cluding a transparent two way conversion between IBM and CAVIAR float- 
ing point representation, 

(c) control loading and execution of PAX sequences, and 

(d) test-debug a complete PAX-l68/~ system. 

In addition an interactive monitor has been developed which allows 168/~data memory 
to be described in terms of symbols representing variables or arrays of any type, e.g. a 
FORTRAN program COMMON statement. The 168/~ memory can be set/displayed 
via these symbols. A simple protocol for 168/~subroutine call with parameter passing 
has also been implemented, and the parameters may be modified, routines executed, 
and results retrieved via the CAVIAR. This development could be used for CPU bound 
problems with limited data I/O, e.g. vector rotation and function minimization. 

6. CONCLUSION 

The 168/~ processors have been integrated into the UAl data acquisition system 
with an interface supporting optimum Remus event transfer rates. The PAX sequencer 
and Greyhound dual port structure are reliable and versatile. Sophisticated algorithms 
with access to a complete event can now be written in a high level language, giving 
the possibility of triggers which correlate data from parallel branches and improve 
effective luminosity by a significant factor. At the same time, the event monitoring 
and display capabilities of the system have been improved. 

7. ACKNOWLEDGEMENTS 

The design of the final system emerged only after many discussions, and we would 
like to thank D. Lord, D. Jacobs, and P. Kunz for their contributions. We are indebted 
to J. Prevost and G. Seite, not only for their design, but also for providing many of 
the 64K 168/~ memory boards, and to L. McCulloch for the modified version of 

27 



the Remus branch driver. C. Bertuzzi participated in designing of the PAX module 
and made the initial implementation. Responsibility for construction and testing of 
the l68/~ processors was taken by N. Bosco, R. Hinton and M. Kudla. Finally we 
gratefully acknowledge the continued support and encouragement of Prof. C.Rubbia 
and the UAl collaboration. 

REFERENCES 

1. A. Astbury et al., “A 4?r Solid-Angle Detector for the SPS Used as a pp Collider 
at c.m. Energy of 540 GeV,” CERN/SPSC/7&06 (1978). 

2. P. J. Ponting, “A Guide to Romulus/Remus Data Acquisition Systems,” CERN 
EP-Electronics Note 80-01 (1980). 

3. S. Cittolin, “The UAl Data-Acquisition System,” International Conference on 
Instrumentation for Colliding Beam Physics, Stanford (1982); CERN DD/80/03 
(1982). 

4. L. 0. Hertzberger et al., “The Fast Amsterdam Multiprocessor (FAMP) System 
Hardware,” Proceedings of the EPS Conference on Computing in High Energy 
and Nuclear Physics, Bologna (1980). 

5. P. F. Kunz et al., “The LASS Hardware Processor,” Proceedings of the 11th 
Annual Microprogramming Workshop, SIGMICRO Newsletter 9, 25 (1978). 

6. D. Lord et al., “The 168/~ at CERN and the MARK II: An improved processor 
design,” Proceedings of Topical Conference on the Application of Microproces- 
sors to High-Energy Physics Exp., Geneve, CERN 81-07 (1980). 

7. J. T. Carroll et al., “On-Line Experience with the 168/~ ,” Proceedings of Top- 
ical Conference on the Application of Microprocessors to High-Energy Physics 
Exp., Geneve, CERN 81-07 (1980). 

8. J. T. Carroll et al., “On-Line Use of 168/~for UAl,” UAl Technical Note TN 
82/08 (1982). 

9. C. Jacobs and L. McCulloch, “CAMAC Read Only Branch Driver Type 243,” 
CERN CAMAC Note 63-00 (1976); Remus Development Note 30.5.79. 

10. Private communication, J. Prevost and G. Seite, DPHE, Saclay. 

28 



11. D. J. Holthuizen and D. Samyn, “FAMP-UAl/Sof&ware,” CERN FAMP/82-10 
(1982). 

12. S. Cittolin and B. G. Taylor, “SUPER CAM: Memory mapping the general- 
purpose microcomputer,n Proceedings of Topical Conference on the Applica- 
tion of Microprocessors to High-Energy Physics Exp., Geneve, CERN 81-07 
(1980). 

29 


