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1. INTRODUCTION 

Since the introduction of the 168/E ,le2 emulating processors have been __ 

successful over an amazingly wide range of applications.3 For example, the 168/~ 
has been used for off-line data processing at SLAC,4-5 CERN,6-8 and DESK 

where thousands of lines of FORTRAN are involved and the processing takes 

many seconds per event. The same processor has been used at SLAC as a trigger 

processorlO-ll involving only a few hundred lines of assembly code and taking 

only 100 psecs, and at CERN as a trigger processor involving hundreds of lines 

of FORTRAN and taking tens of milliseconds.12 The processor has even been 

used for Monte Carlo lattice calculations13 involving a few hundred lines of 

FORTRAN and yet taking an hour of processing time. Still more applications 

are planned at Saclay, l4 University of Siegen, l5 University of Toronto,IS I.N.S.- 

Tokyo,17 and at Cornell.18 

The 168/E has its shortcomings, however, which have limited its use. This 

paper will describe a second generation processor, the 3081/E. This new proces- 

sor, which is being developed as a collaboration between SLAC and CERN, goes 

beyond just fixing the obvious faults of the 168/E. Not only will the 3081/E 

have much more memory space, incorporate many more IBM instructions, and 

have full double precision floating point arithmetic, but it will also have faster 

execution times and be much simpler to build, debug, and maintain. The simple 

interface and reasonable cost of the 168/~ will be maintained for the 3081/E. 

The name of this processor needs a little explanation. IBM has recently come 

out with a new series of high performance mainframes which are called the 308x 

series. To the end-user, these machines have the same instruction set as the 

360/370 series of machines. Our new emulating processor takes its name from 

the first mainframe in this series: the 3081. 

2. ARCHITECTURE 

The architecture of the 3081/E is shown in Figure 1. There are four execution 

units interfaced to two 64 bit wide busses, called the ABUS and the BBUS. There 
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is one for integer operations, one for floating point addition and subtraction, one 

for floating point multiplication, and one for division. An arithmetic operation 

is started by a microinstruction that transfers ttio operands ‘siniiiltaneously on 

the AENJS and BBUS busses to the input registers of an execution unit. The 

execution unit then operates on the operands internally. After enough processor 

cycles have elapsed for completion of the operation, the results are presented on 

the BBUS when a microinstruction calls for them. 

ADR 

ABUS 

BBUS 

Figure 1. Block diagram of 3081/E. 

. Also interfaced to these busses are the control and register unit, data memory, 

and the interface. The control and register unit serves three functions: it contains 

the microprogram address counter and conditional branching logic, the data 

memory address logic, and the register files. 

Most IBM arithmetic instructions are of the form: 

BOpA+B 

where ‘B’ is called the first operand and is usually a register, ‘A’ is called the 

second operand and may be either a register or memory, and ‘0~’ is some arith- 

metic operation. About 75% of the instructions encounted in execution are of 

the form where the second operand is memory. For this reason the data memory 

is interfaced to the execution units via the ABUS. If both operands come from 
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registers, then the control and register board supplies the second operand on the 

~- ABUS. In stores to memory, it is memory that behaves like the first operand, 

therefore, stores to memory are done via the BBUS. This structure allows stores 

to memory to be done directly from the output of an execution unit. 

The design philosophy of the 3081/~ processor is simplicity of design and 

efficiency for important instructions. Of the two, the simplicity of design can not 

be over-emphasized. Members of the 3081/~ collaboration, and many others, 

have built and debugged a processor with the complexity of the 168/~. But in 

the environment of a High Energy Physics laboratory, we feel it is undesirable to 

introduce a processor of more complex design. We have noted that production of 

one prototype processor is only a small part of the overall effort and it is the rapid 

production of many processors that makes a real contribution to our respective 

laboratories. 

An important goal of the 3081/Eprocessor project, perhaps the most impor- 

tant goal, is to produce a processor that is simple, reliable, and easy to debug 

and maintain. To meet this goal, the design philosophy of the 3081/E is based 

on the following rules and guidelines: 

Separation of function to individual execution units in order to reduce the 

control logic. 

Use of standard TTL circuits that have ‘second sources’ to ensure supply 

of components in the future. 

Use of published maximum propagation time of every circuit in calculation 

-of cycle time. 

Use of additional circuits, if necessary, rather than using a ‘clever trick,’ 

in order to make the design as straightforward as possible. 

The choice of the architecture helps tremendously to reach these goals. It 

also has many additional benefits. The advantages are: 
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l The control logic for each execution unit is much simpler than it would be 

if, for example, than the control logic if all the operations were done on 

one board. 
- 

l With the reduction in control logic, it is much easier to analyze the circuit 

for its longest propagation delay path. It is therefore easier to design the 

processor to work in a given cycle time and to be sure that it will. 

l Each execution unit can have enough board space to allow a straightfor- 

ward implementation of its function, which not only simplifies the design 

but also allows for a circuit that optimizes the execution speed of its op- 

eration. 

l With the reduction in control logic, each of the floating point execution 

units can have enough board space to easily allow implementation of full 

double precision arithmetic (REAL*8). Full double precision is not needed 

for the accuracy of the results, as been shown with the results of truncated 

double precision of the 168/E, but it is highly desirable in order to compare 

results of the processor with those from an IBM compatible mainframe. 

. l The choice of having 64 bit wide busses allows 8 byte fetches and stores to 

memory in one cycle, which not only improves the double precision perfor- 

mance but also simplifies the control logic and data paths for transferring 

double precision operands to and from the execution units. 

l -The modular structure allows for additional execution units in the future 

as well as installation of improved versions of the current ones. 

The disadvantage of this structure is that it requires more integrated circuits. 

That is, although the number of circuits in the control logic is greatly reduced, 

the number of circuits in the data paths is increased due to duplication of some 

functions. However, it is felt that circuits are not expensive compared to man- 

power effort and most of the manpower effort spent in debugging a processor is 

in areas of the control logic rather than the data paths. 
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3. REGISTERS 

- 

The registers must be tightly coupled to the memory addressing logic and 

the branching logic. For this reason all the general purpose registers are located 

on the control board. The physical implementation of the registers is as 16 dual- 

ported registers, each 64 bits wide using 16 29705 circuits, as shown in Figure 

2. The 16 IBM General Purpose registers (Integer registers) are located in the 

first 8 locations with the least significant bit of the register address field choosing 

the most or least significant 32 bits of the 64 bit register. The 4 IBM floating 

point registers are located in the next 4 locations. Finally, 4 64 bit registers are 

left over for temporary storage. They can be used as some combination of 32 

bit integer registers, 32 bit floating point registers, and/or 64 bit floating point 

registers. 

Figure 2. The 3081/E register file implementation. 
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There are several benefits in this implementation of the register file. 

l To the processor’s microcode, integer and floating registers look the same; _ - 
~- a simplification of the control logic is achieved. 

l Some integer instructions have 64 bit operands. nansfer of an even/odd 

register pair can be done in one cycle with this implementation since all 

registers can be treated as 64 bits wide. Thus, an improvement in execution 

speed, and a simplification of the control logic. 

l The Load Multiple (LM) and Store Multiple (STM) instructions can be done 

2 registers per cycle. These instructions are used for every subroutine call 

and can consume a lot of execution time; even more than some of the 

floating point instructions. 

l The extra registers can be used for decoding some instructions. 

4. MEMORY 

Memory is one of the most important aspects of any computer or processor. 

For experimental high energy physics applications, the memory space of a pro- 

cessor must be large enough to simultaneously hold an event buffer, calibration 

constants, and enough working space for the event reconstruction program to op- 

erate. Modern and future detectors, especially those at colliding beam facilities, 

have tens of thousands of individual channels and their track reconstruction 

algorithms require a large amount of working space. Today, memory space is 

measured in units of MegaBytes, while a few short years ago only large main- 

frame processors had more than 1 MegaByte of real memory. 

It would seem that large memory space could be most easily achieved by using 

the dense dynamic memory circuits that are commonly available. These circuits 

typically have 150 to 200 nsecs access time, 300 to 350 nsec cycle time, come in 

packages of 64K bits, and cost about US $1,000 per MegaByte. However, there 

are some problem areas in using these circuits. For example, it is not prudent to 

have a large memory using them without error correcting code logic. LSI circuits 

are now available for this logic, but the effect of implementing it is the need for 
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more memory chips for the error correcting code to be stored and a slow down 
- of the memory cycle time. 

Large memory space is important but the speed of the memory is equally 

important in High Energy Physics code. This is because even with the best of 

compilers, a processor still obtains one operand (of the two for an arithmetic 

instruction) from memory over 75% of the time. Therefore, the overall speed of 

execution becomes dominated by memory access time as the execution time of 
arithmetic instructions tends to zero. 

The memory of the 3081/E will be implemented using the less dense but 

faster static memory circuits. Today they have typically 55 nsec access and cycle 

time, come in packages of 16K bits, and cost about US $5,000 per Megabyte. 

The 55 nsec access time of the memory circuit leads to a 120 nsec memory 

cycle time for the processor when one adds up the address decoding time, circuit 

access time, propagation time of bus buffer circuits, and minimum setup times 

at the destination. Compared to using the dynamic memory circuits, the use of 

static memory is also much simpler because there is no need for error correcting 

code logic or the refresh timing logic. Also a very rapid access time is achieved 

without resorting to a cache memory buffer as is done in many high performance 

computers. 

The use of more expensive memory can easily be justified in many applica- 

tions. For example, in a multi-processor application, if one used a processor ten 

times slower than the 3081/~ but with memory that was 5 times less expensive, 

then one would need 10 of these processors to equal the throughput of the 3081/~ 
and one would be spending twice the amount of money on memory circuits. 

A 3081/~ memory board will initially contain l/4 MegaByte using 16K static 

memory circuits. The processor can accept a maximum of 14 memory boards 

or 3.5M Bytes. Today, most High Energy Physics programs, including their I/O 

buffers for each tape and disk file, run with less than 3.5M Byte allocation on 

an IBM mainframe. It is expected that 64K statics will be introduced in 1984 

- 
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so by 1985 they will be reasonably priced. Their use will lower the price of the 

processor’s memory and make it possible to have a processor with 14M Bytes. 
- 

5. MEMORY ADDRESS CALCULATION 

The availablity of large memory with fast access times is only half the prob- 

lem. To access it quickly one must also be able to calculate the memory address 

quickly. 

In the 3081/~ the problem is solved in the following way. Each micro- 

instruction that accesses memory has two completely independent fields. The 

first field controls the basic address calculation; i.e. adding the IBM 12 bit dis- 

placement field to the contents of a base register. This is denoted in the examples 

that follow as &(B2) + MAR. The second field controls the execution of an 

instruction. The address calculation will be done one micro-cycle ahead of the 

use of the memory operand. Thus, an isolated Load instruction would take two 

cycles as shown in the example below: 

JBJ Instruction micro-instruction 30811~ 
L 3,328(13) 328( 13)‘MAR 

(M)+R3 

However, two Load instructions in a row would take only three cycles as shown 

below: 

IBM Instruction 
L 3,328(13) 
L 8,808(10) 

micro-instruction 30811~ 
32 8 ( 13)+MAR 
808(10)+NAR (M)-R3 

(Ml-R8 

All the IBM instructions with one operand in memory are handled in the same 

way. Note that this simple addressing pipelining makes the Load instruction 

execution effectively only one cycle of 120 nsecs, which is the same amount of 

time that the Load instruction executes on an IBM 370/168. Stores to memory 

on the 3081/E will take the same amount of time as Loads, but on an IBM 

370/168 they take twice as long because of the cache memory. The execution 

time of these simple instructions is important. For most programs, the execution 

time spent in loads and stores can exceed 30% of the total. 
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The implementation requires that in one cycle one has a read access to one 
- of the General Purpose registers for address calculation while reading or writing 

to another register. This is done by using the same port-of the register file that 

is used to output the contents of a register on the ABUS. 

Instructions with both operands from registers require use of both ports of 

the 29705. However, the pipelining is maintained in the 3081/E by moving the 

address calculation up one cycle as is shown in the following example: 

J&l Instruction micro-instruction 30811~ 
L 3,328(13) 328(13)--+HAR 
LR 4,8 808(10)-vlAR (MI-R3 
L 8,808(10) R8 -R4 

(MI-R8 

There will always be available a ‘slot’ for the address calculation because every 

instruction that uses a memory operand will leave an opening for the next one. 

A small fraction of the memory addressing instructions have a non zero index 

register, thus requiring the addition of 3 numbers to form the memory address. 

Rather than having the complexity of a 3 input adder and the logic to feed it 

with the contents of two registers, the 3081/~ will take two cycles to complete 

the address calculation as is shown below: 

IBM Instruction 3081/E micro-instruction 
L 3, 64(9,101 64(10I+MAR 

MAR( 9)+MAR 
(MI-R3 

Since the frequency of this type of addressing is only about 10% in typical code, 

the time penalty is not important. When it is heavily used in some loops the 

same pair of index and base registers will frequently be used more than once. If 

this condition occurs, the 3081/~ will calculate the sum of the registers once and 

store the results in one of the temporary registers. Memory address calculations 

based on the register pair will then be done using this register, thus requiring 

only one cycle. 

Branching breaks the addressing pipeline. The first instruction that accesses 

memory after a branch has been taken must take two cycles or more to complete. 
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However, the first memory accessing instruction after a branch instruction that 

was not taken may have its address calculation done in the cycle before the 

branch. This is because if the branch is taken, there is no harm iiihaving loaded 

the memory address register with an address that will not be used, and if the 

branch is not taken then the memory accessing instruction can proceed. 

6. FLOATING POINT 

One of the important aspects of a processor for High Energy Physics is its 

floating point performance. However, attempts to vectorize High Energy Physics 

code, in order to make good use of processors with vector instructions (some- 

times called array processors), have not yet proven successful. It seems that the 

nature of most experimental code, as it is usually written, is such that there 

is an equal mix of scalar add/subtracts and multiplies, with a large intermix 

of conditional statements. Also, most event reconstruction codes spend 3040% 

of their execution time in the subroutines SIN, COS, ATAN, and SQRT alone. 

These subroutines use floating point heavily and even double precision arithmetic 

internally. Therefore, for a processor to have good performance, it should have 

fast execution time on individual floating point instructions. 

The following sections describe each of the floating point execution units. 

A. Floating Point Add/Subtract 

Floating point addition and subtraction are fairly complex operations. They 

involve pre-normalization, addition or subtraction, and post-normalization. Since 
it is not possible to perform all of these operations in one processor cycle time, 

the add execution unit does the operation internally in two processor cycles. 

Even internal to the add execution unit there is separation of function and 

circuits. For example, the pre- and post- normalization shifters are separate cir- 

cuits, and the arithmetic units to compare the exponents for pre-normalization 

are separate from those to correct the exponent from post-normalization. Again, 

this implementation choice requires more circuits but greatly simplifies the con- 
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trol logic and therefore the manpower effort. 
- 

B. Floating Point Multiply 
_ - . 

Multiplication is a rather simple operation but takes many circuits for it to 

go fast. The implementation has been optimized for single precision execution 

time which will take two processor cycles to complete. In the first cycle, the 

mantissa of each operand passes through an array of 9 8X8 multiplier circuits 

and the partial products are stored in internal registers. In the second cycle, the 

partial products are summed. Post-normalization and exponent correction are 

accomplished during the cycle that the results are presented to the BBUS. 

To implement double precision multiplication in the same way would take a 

considerable number of circuits, therefore, an iterative technique will be used that 

is reasonablely fast and does not require too many circuits to fit on one board. In 

the first cycle, each byte of one operand is multiplied by the least significant byte 

of the other in an array of 7 8X8 multiplier circuits and the partial products 

stored in internal registers. In the next cycle, the partial products are summed 

and stored in an internal accumulator register, while each byte of one operand 

is multiplied by the second least significant byte of the other. In the next cycle, 

the partial products are summed and added to the accumulator shifted by 8 bits 

and stored, while the next byte is in the multipliers. After 7 multiply cycles plus 

1 accumulation cycle, the results can pass through the post-normalization logic 

and onto the BBUS. 

C. Floating Point Divide 

Division has traditionally been one of the slowest instructions in any processor 

and so it will be with the 3981/~also. It will be done iteratively, 2 bits per cycle. 

7. INTEGER 

The benefits of separate execution units for floating point are also extended 

to the integer instructions. All integer instructions will be done in the integer 
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execution unit. On this board there will be enough space to handle not only the 
---- 4 byte (INTEGERed) and 2 byte (INTEGERd) arithmetic operations, but also 

permit the data multiplexing required for the instructions with ibyte operands 

(LOGICALLY and CHARACTER*n). This is especially important for implemen- 

tation of the instructions required by the FORTRAN ‘77 compilers. 

8. INSTRUCTION PIPELINING 

The separation of execution units, each capable of operating on its operands 

internally, allows for instruction pipelining. The pipelining of memory address 

calculation with memory access has already been discussed, but now one is refer- 

ing to the starting of a new instruction before the previous one is finished, or the 

overlapping of one instruction with another. 

The following example is taken from actual code. The FORTRAN compiler 

frequently generates a sequence of instructions like LE 0,. . .; SE 0,. . .; ME 0,. . . . 
This would be translated into 3081/~ microcode as shown below: 

IBM Instruction micro-instruction 30811~ 
1) LE 0, 316(0,13) 1: 314(13)-MAR 
2) SE 0, 688(0,13) 2: 688(13)-HAR (Ml-F0 LE 

3: (Ml-A2 FO-Al A0 
4: Al 

3) ME 0,1672(0,10) 5:1672(10)-EAR A2 
6: (Ml-M2 AR-Ml MO 
7: MI 
8: Hz 
9: MR-FO 

The Load instruction, l), executes in 2 cycles, 1: and 2:, as has already been 

described in the section on memory addressing. The Subtract instruction, 2) 

has its memory address calculation overlapped with the actual memory access of 

the Load instruction in 3081/~ instruction 2:. The start of the subtract occurs 

in 3081/~ instruction 3: when the second operand is transferred from memory 

to the second operand input of the add/subtract execution unit (A2) and the 

first operand is supplied from register to the first operand input (Al). After the 

two cycles (Al,Az), 3081/~instructions 4: and 5:, the results of the subtract are 

ready. 

13 



The next IBM instruction, 3), uses these results and modifies them. So instead 
- of transfering them back to floating point register 0, they are transferred from 

the output of the add/subtract execution unit (AB) to--the first-operand input 

register of the multiply execution unit (Ml) using the BBUS. During this same 

cycle, 3081/~ instruction 6:, the second operand for the multiply instruction is 

transferred from memory to the second operand input (M2) using the ABUS. 

This is called instruction overlapping and it occurs very often in typical 

High Energy Physics code. Overlapping can occur whenever two sequential IBM 

instructions modify the same register. Measuring some codes show that about 

half of the floating point add/subtracts are followed immediately by a floating 

point multiply to the same register, and vice versa. Thus the design of the 3081/~ 

‘s execution units is such that their output is placed on the BBUS so that it can 

be used immediately as input to the next instruction. 

A sequence such as the one given above is frequently followed by a similar 

sequence, but using a different register. Thus one would translate into 3081/E 

microcode as show below: 

IBM Instruction micro-instruction 30811~ 
1) LE 0, 316(0,13) 1: 316(13)-MAR 
2) SE 0, 688(0,13) 2: 688(13)-MAR (Mb+FO LE 

3: 320(13)-MAR (Ml-A2 FO-Al A0 
4: 692(13)-MAR (NJ-F2 Al LE 

3) NE 0,1672(0,10) 5:1672(10)-MAR (Ml-A2 F2-Al A2 A0 
4) LE 2, 320(0,13) 6: (Ml-M2 AR-Ml MO Al 
5) SE 2, 692(0,13) 7:1676(10)-MAR Ml A2 
6) NE 2,1676(0,10) 8: (Ml-M2 AR-M1 IIt MO 

9: MR-FO M, 
10: M2 

7) AER 2,O 11: FO -A2 RR-Al Ao 
12: Al 

8) STE 2, 144(0,13) 13: 144(13)-MAR A2 
14: AR-F2rCM) 

IBM instruction 4) does not depend on the results from instructions l)-3). There- 

fore, it can be executed at 3081/~instruction 4:, which is only one microinstruc- 

tion after IBM instruction 2) has started. Similarly, IBM instruction 5) can be 

started at 3081/Einstruction 5:, since the add execution is pipelined internally. 

- 
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This is called instruction pipelining. It also happens very often in High 

-- Energy Physics code. The code shown above could have been generated by a line 
_ - 

of FORTRAN like: 

XC = VIX*(XA - XZERO) + VIY*(YB - YZERO) 

It is possible to do instruction pipelining with the 3081/~ because the execution 

units operate independantly of each other. Note also that in 3081/~ instruction 

14:, the results of the add execution unit are stored to register and memory 

in the same cycle, thus effectively reducing the Store execution time to zero. 

Without instruction pipelining, the same sequence would have required 23 3081/~ 

instructions, but with the pipelining it requires only 14. 

When the code uses floating point heavily, the pipelining becomes extensive. 

This is illustrated by adding to the above sequence of instructions one that is 

based on floating point register 4 as is shown below: 

JBJ Instruction 
1) LE 0, 316(0,13) 
21 SE 0, 688(0,13) 

3) ME 0,1672(0,13) 
4) LE 2, 320(0,131 
5) SE 2, 692(0,13) 
6) ME 2,1676(0,10) 

7) AER 2,O 

8) STE 2, 144(0,13) 
91 LE 4, 404(0,13) 

10) AE 4, 668(0,13) 

30811~ micro-instruction 
1: 316(13)+MAR 
2: 688(13)+MAR (Ml-FO LE 
3: 320(13)-MAR (NJ-A2 FO-Al A0 
4: 692(13)-MAR CM)-+F2 A1 LE 
5:1672(10)-HAR (Ml-A2 F2-+Al A2 A0 
6: 404(13)-MAR (M)-M2 AR-Ml MO Al 
7:1676(101-MAR (Ml-F4 Ml A2 LE 
8: (Ml-M2 AR-Ml Hz MO 
9: 688(13)-MAR MR-FO Ml 

10: (Ml-A2 F4-Al M2 A0 
11: FO +A2 RR-Al Ao Al 
12: AI A2 
13: 144(13)-MAR AR-F4 A2 
14: AR-F2,(M) 

IBM instruction 10) starts at 3081/~ instruction 10: and finishes with 3081/E in- 

struction 13:. At 3081/~instruction ll:, however, is the start of IBM instruction 

7) which finishes at 3081/ E instruction 14:. Thus the pipelining is so extensive 

that IBM instructions are being executed in a different order from the way they 

appear in the object code. Without instruction pipelining, this sequence would 

have taken 28 3081/E instructions, but with pipelining it takes only 14. 

15 



8. PERFORMANCE 

To accurately predict the execution speed of the 3081/Eis rather difficult, 

as, in common with many processors, it will depend on the program’s instruc- 

tion mix. The pipelining of instructions makes predictions even more difficult. 

However, three studies have been made to predict the upper and lower bounds 

of the expected performance. 

The lower bound of processor performance can be estimated by assuming 

that instruction pipelining never occurs. With this assumption the execution 

time of each IBM instruction is known. Two different event reconstruction codes 

were traced while in execution to measure the frequency of instructions executed. 

With these numbers, the performance of the 3081/~ processor would be 0.98 to 

1.01 times that of an IBM 370/168. 

An upper limit could be estimated by the assumption that pipelining occurs 

to such an extent that every instruction takes effectively 1 cycle. With the same 
samples of code, this assumption leads to execution time 2.5 times faster than 

an IBM 370/168; a figure that can not be realistically expected. 

A third measure was obtained by translating an inner loop of one of these 

programs. The loop consisted of 82 FORTRAN statements containing 32 IF 

statements. Since IF statements break instruction pipelining, it was important 

to try a loop with a typical number of them. This loop also consisted of several 

divides and memory references with a non-zero index register. The calculated 

execution time for one pass through the loop for the 3081/~ is 47 psecs, while 

for an IBM 370/168 the time would be 71 psecs. Thus the processor would be 

1.5 times faster for this loop. As a check, the execution time was also calculated 

for a 168/E . Its time would be 149 psecs, or 2.1 times slower than a 370/168 

which is in good agreement with execution times measured on the 168/E. 

One can conclude, therefore, that the performance of the 3081/~ will be at 

least that of an IBM 370/168 for typical High Energy Physics event reconstruction 

code, and up to 5070 faster under the condition that most of the execution time 

is spent in floating point loops. The performance of the 3081/E is comparable 
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with a well known array processor. The FPS-164” has a theoretical maximum 

- execution speed of 12 MFLOPS, while the 3081/~ theoretical maximum is 8.3 

MFLOPS. In practice, Lattice gauge programs, implemented in microcode of the 

array processor, achieve about 6 MFLOPS,m while examples of that same code, 

implemented in FORTRAN, would achieve 4 MFLOPS on the 3081/~. 

10. THE MICROCODE AND THE TRANSLATOR 

As with the 168/~, the processor’s instruction set is not that of IBM’s, but 

is its own microcode. This microcode is generated by a software program, called 

the Translator. This program reads JBM object code modules, translates them 

to object microcode, links them together to form an absolute load module for the 

processor. The source of the IBM object code could be the output of a compiler, 

or that of a linkage editor. 

The advantage of using a translator is the elimination of the complex hard- 

ware that decodes IBM instructions into microinstructions. This hardware, called 

the I-unit by IBM engineers, can consume over half the total design effort of the 

computer. A further advantage of using the translator with the 3081/~ is that 

instruction pipelining will be generated automatically. 

The microinstruction format of the 3681/E has only two forms: register 

transfer instructions and conditional branching instructions. The form of the 

register transfer instructions is given below: 
loo 10 12 16 20 311 

I MOP R2 0 
I 

where MOP is a 10 bit micro operation code, RI and R2 are the least significant 

four bits of the register addresses, MBA is the most significant bits of the register 

address, and 02 is the displacement field for memory addressing. The MOP field 

is decoded on each board with a PROM. It controls the source for the ABUS, the 

source for the BBUS, the destination(s), and the length of the operands, 
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The form of conditional branching instructions is shown below: 

100 04 08 311 

1ltttlASK BRANCH ADDRESS - - 
I 

where MASK is the IBM mask field, tt controls the type of branch, and the 

absolute branch address fills the remaining 24 bits of the instruction. 

The structure of separate execution units and the pipelining of instructions 

at execution time has been done in large computers since the 1960’s.21-22 The 

difference between such computers and the 3081/Eprocessor is that in a computer 

the pipeline has to be generated by hardware while for the 3081/E processor 

the pipeline is generated by software of the translator. Hardware generating of 

the pipeline can become very complex and is limited to looking ahead to a few 

instructions. Software generation of the pipeline is considerably easier and has 

no limit in looking ahead. 

The 3081/~ translator will generate the instruction pipelining and overlap 

ping by following a simple algorithm as follows: 

1. Take each IBM instruction one at a time and determine which operands 
are needed for execution of the instruction. 

-2. Starting with the previously translated instruction, scan backwards to 

determine where is the earliest point the execution could start. Two rules 

are followed to determine this point: 

(a) If a register or memory location is to be read, then find the point it 

was stored. 

(b) If a register or memory location is to be written, then find the point 

where it was last read. 

3. Starting from the earliest point where the translation could take place, scan 

forward to the first empty microinstruction and put the microinstruction 

there. 

18 



This algorithm is still a one pass translation, not an optimization which would 

~- be much more difficult to program. Nevertheless, it is felt that the one pass 

translation yields results which are within 70-80% of maximum optimization. 

11. INTERFACE 

The interface to the 3081/~ processor will be of the same style as the 168/E. 

That is, either the CPU or the interface has control of the internal busses. Thus 

when the processor is running, one cannot access the processor’s memory from 

the interface. When the processor is not running, all of the processor’s memory is 

directly addressable through the interface. From the outside, the processor will 

appear to be a simple slave device on a FASTBUS cable segment. The transfer 

rate to or from the processor could be over 64k4 Bytes per second if a 64 bit wide 

data path were used, but FASTBUS is only 32 bits wide. 

There will be some improvements to make it easier to debug the processor: 

l The interface will have registers to allow one to halt the processor when 

certain conditions arise in a way similar to the Program Event Recording 

(PER) registers of IBM mainframes. For example, there will be a stop on a 

Store within an address range, a stop on modification of a certain register, 

etc. 

l The interface will be able to generate any microinstruction. This will 

allow the debugging of any execution unit without having the rest of the 

processor around. 

12. CONCLUSION 

The 3081/E project was formed to prepare a much improved IBM mainframe 

emulator for the future. Compared to the 168/~ the goals for the 3081/E are: 

l Much More Memory Space: The advances in memory technology coming 

from the manufacturers now make it possible to build a 3.5M Byte pro- 

cessor at a cost of only US $5,000 per MegaByte while keeping the fast, 
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yet simple design style of the 168/~ memory. Fast memory is a very im- 

portant factor in a processor’s speed. Large memory is needed for today’s 

large detectors. By 1985, a 14h4 Byte pro&ssor should be possible at half 

the cost per MegaByte. 

l More IBM Instructiona: A more complete set of IBM instructions will be 

implemented thus allowing for use of FORIRAN ‘77. FORTRAN ‘77 is 

heavily used on many computers and has just recently been introduced on 

the IBM. 

l Full Double Precision: REAL*8 will be handled correctly, making compar- 

isons between output from the processor and output of an IBM computer 

bit for bit identical. 

l Faster Ezecution Times: The processor will be at least equal to the execu- 

tion speed of a 370/168; and up to 1.5 times faster for heavy floating point 

code. A single processor will thus be 4 times more powerful than the VAX 

11/780, and 5 processors in a system would equal the performance of the 

IBM 3081K. 

l Less Technical Eflort: The design of the processor will be much simpler 

than the M/E . The design rules will be much more conservative and 

will use only off-the-shelf multiple source TTL components. Every effort is 

being made to reduce the man-power effort to build, debug, and maintain 

the processor. 

l J’ficient Translation to Microcode: The translation of IBM native instruc- 
tions to microcode of the processor will be maintained. It is an important 

element in keeping the hardware simple and fast. With the 3081/E, the 

translator will also automatically produce pipelined floating point opera- 

tions, thus enhancing the performance for heavy floating point code. 

l Reasonable Cost and Eflort: The cost of the CPU has been considered 

as less of a concern than manpower effort. Nevertheless, the cost of the 

processor, power supply, and chassis is expected to be under US $10,000 

excluding the cost of memory. 

- 
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l Simple Interfacing: We will maintain the simple interface of the 168/,y . 

That is to say, the processor will look like a slave on a FASTBUS cable 

segment. _ - 

The project is being carried out as a collaboration between SLAC and CERN 
DD division. At this date we have detailed block diagrams of the entire pro- 

cessor, simulation programs of some parts, an approximate circuit count and 

costs, approximate board layouts, existence proof of the translator’s pipelining 

capabilities, and partial computer based documentation. It is planned during 

the calendar year 1983, that a prototype processor will be built with the work 

being divided equally between SLAC and CERN. Final debugging should occur 

at SLAC early in 1984 with processors being generally available for use by the 

end of 1984. 
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