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ABSTRACT 

We study the interplay of supersymmetry and certain non-compact invariance 

groups in extended supergravity theories (ESGTs). We use the N = 4 ESGT - . 
to demonstrate that these symmetries do not commute and exhibit the infinite 

dimensional superinvariance algebra generated by them in the rigid limit. Using 

this result, we look for unitary representations of the full algebra. We discuss 

the implications of our results in the context of attempts to derive a relativistic 

effective gauge theory of elementary particles interpreted as bound states of the 

N = 8 ESGT. 
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1. Introduction 

At the present time extended supergravity theories (ESGTs) are the most 

promising candidates for unifying gravitation with the other fundamental par- 

ticle interactions. Even if attempting such an ultimate unification is probably 

still premature, it is clear that the ESGTs are sufficiently stimulating for the 

elucidation of their structure to be worthwhile. One may gain insights which 

will prove valuable in the construction of the ultimate theory. With this aim in 

view, we continue in this paper mathematical investigations of the symmetries 

of ESGTs. 

In their important work on the N = 8 ESGT, Cremmer and Julia have shown 

that the extended supergravity theories for N = 5,!, 8 each have an invariance 

of the equations of motion under a non-compact gr0up.l The first non-compact 

internal symmetry group of this kind was discovered in the N = 4 ESGT by 

- Cremmer, Ferrara and Scherk.2 The largest on-shell invariance; of these theories 

have the form G,l x Hl,, where the local invariance group Hl,,, is isomorphic to 

the maximal compact subgroup Hgr of the non-compact global invariance group 

G,l. Under the action of the non-compact group H,l the vector field strengths 

are transformed into their duals and together they form a linear representation of 

G,l. The scalar fields are valued on the coset space G/H. In a manifestly gauge 

invariant formultion they transform linearly under both G,l and Hloc, whereas 

the spinor fields (8 = l/2, s = 3/2) are all inert under G,l and transform like 

some non-trivial linear representations of Hloe.1~3 In the gauges in which only 

physical scalar degrees of freedom appear, scalar and spinors transform non- 

linearly under G,I, which is the only manifest symmetry in this gauge. The 

potential problem with ghosts due to the non-compactness of G is avoided by 
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the gauging of its maximal compact subgroup. The “gauge fields” associated 

with the invariance under Hl,, of these theories are composites of the scalar 

fields as in the two dimensional CPN models4 

Cremmer and Julia suggested that the composite gauge fields of Hloc may 

become dynamical on the quantum level. 1 Their suggestion was motivated by 

analogy with the CPN models in two dimensions,4J5 whose study in t.he large N 

limit shows that the composite gauge fields develop a pole at p2 = 0 in their prop- 

agators and become dynamical on the quantum level.4 Nissimov and Pacheva6j7 

have extended this analysis to the three dimensional (2 + 1) supersymmetric gen- 

eralized non-linear a-models and shown that in the large N limit these theories 

have a phase in which the composite gauge fields and their superpartners develop 

poles at p2 = 0 and become propagating,6p7 with supersymmetry remaining un- 

broken. 

It is well-known that the fundamental fields that enter the largest ESGT 

(N = 8) in four dimensions do not have a rich enough structure to accommodate 

the basic fields of a realistic gauge theory of strong, weak and electromagnetic 

interactions.8 Thus it was thought that some of the fields entering such a theory 

might have to be made composites of the fundamental fields of N = 8 ESGT 

in order to make contact with elementary particle physics.gp10 The suggestion 

of Cremmer and Julia’ that the composite gauge fields of SU(8)1,, in N = 8 

ESGT may become dynamical on the quantum level was an important step in 

this direction. 

Another step in this direction was taken by Maiani and three of the present 

authorsll (EGMZ) who postulated that in addition to massless gauge fields other 

massless bound states (fermionic and bosonic) may form. The low energy effec- 
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tive theory could then be a grand unified theory based on SU(5) with three 

generations of quarks and leptons.12 Since the dynamics of these theories is, as 

yet, unknown there is still a lot of arbitrariness in such attempts. Subsequent 

work has discussed various alternatives and possible improvements on the origi- 

nal EGMZ approach.12-l8 

In the four dimensional ESGTs one has the option of introducing additional 

couplings to turn the elementary vector fields into non-Abelian gauge fields while 

preserving supersymmetry. For the case of N = 8 ESGT this has been done 

recently by DeWit and Nicolai.lg This gauging of the vector fields breaks the 

non-compact global invariance group. For example, the gauged N = 8 ESGT has 

w%&3w8) loC invariance as opposed to the ~!?7(7)@SU(8)~~~ invariance of the 

ungauged theory. Note, however, that in the special a(8) gauge containing only 

physical degrees of freedom, only SO(8) remains an invariance of the explicitly 

gauged theory. The relevance of the gauged theory is not yet-clear and we will 

restrict ourselves to the ungauged theory. 

EGMZ chose the zero mass shell supergauge multiplet of bound states from 

which to construct a realistic GUT. In addition to the particles needed for a realis- 

tic GUT this supergauge multiplet contains many unwanted helicity states.11j12$20 

These unwanted helicity states cannot be made supermassive in a phenomenolog- 

ically acceptable way21 without introducing a large and possibly infinite number 

of additional supermultiplets of bound states.13p15 Thus the question of what 

kind of bound states’ can be formed in ESGTs is important for attempts at 

extracting an effective low energy GUT from them. 

There are theoretical arguments indicating that in ESGTs the spectrum of 

bound states may be infinitely rich.13p15r22 One these arguments is the analogy 
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with two and three dimensional generalized a-models. In the phase of these 

theories in which the composite gauge fields become dynamical the bound states 

form linear representations of the global invariance grou~.~p~~ This result in two 

dimensional theories may be related to Coleman’s theorem.24 However, this linear 

realization of a global symmetry on the bound states, even though it is realized 

non-linearly on the basic fields of a (2 + 1) three-dimensional Lagrangian,7 is 

perhaps a hint that the same phenomenon may occur in four dimensional theories. 

If this is the case then in ESGTs with non-compact global invariance groups the 

bound states must come in infinite towers since all the unitary representation of 

non-compact groups are infinite dimensional.13~15~22~25 

Indications for this possibility come from the study of other twodimensional 

theories. Makhankov and Pashaev in their study of the non-linear Schrodinger 

equation with a non-compact SU( 1,l) invariance find that the spectrum of soliton 

solutions is far richer than in the compact case and suggest--that this may be 

understood in the language of unitary realizations of the non-compact invariance 

group. 26 Studies of a-models with a non-compact global invariance gr0up~9~~ 

indicate that gauge bosons are not generated dynamically in 2 or 3 dimensions, 

for reasons related to the absence of a dynamically generated mass gap. However, 

no such mass gap is necessary for the gauge fields to become dynamical in 4 

dimensions. Another difficulty is that these studies suggest that the non-compact 

global symmetry is spontaneously broken. We do not regard these arguments as 

conclusive, and recall the French adage, “Ce n’est que les optimistes qui fassent 

quelque chose dans ce monde.” 

There are other suggestions that the physical spectra of ESGTs may contain 

an infinite number of states. For example, Grisaru and Schnitzer have argued 
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that the scattering amplitudes in ESGTs Reggeize.2g Furthermore, Green and 

Schwarz” have been able to obtain the N = 8 ESGT from a 10 dimensional 

superstring theory by dimensional reduction in the limit where the radii of the 

compactified dimensions and the Regge slope parameter approach zero. If the 

N = 8 ESGT and the dimensionally reduced superstring theory coincide in a cer- 

tain limit this would be compatible with the existence of an infinite set of bound 

states. In perturbation theory such a coincidence has been established in a limit 

with zero Regge slope for the superstring theory.30 However, this theory seems 

to give a different infinite spectrum from that of Grisaru and SchnitzerB when 

the superstring Regge slope parameter is non-zero. Since the only dimensionful 

parameter in ESGTs is the Planck mass A4p1, if they Reggeize as suggested by 

the work of Grisaru and Schnitzer2g then the slopes of the Regge trajectories 

2 would have to be proportional to l/MH. In this case the spectrum of massive 

states would have to start around the Planck mass. 

From the point of view of the unitary realizations of the non-compact sym- 

metry groups of ESGTs the representations which naturally suggest themselves 

are those that can be constructed in terms of the basic fields in the respective 

theories. Oscillatorlike unitary representations of these groups have already been 

constructed using bosonic operators transforming like the vector field 25~22j31 in 

ESGTs. Remarkably enough the unitary representations that can be constructed 

over the Hilbert spaces of analytic functions of the scalar fields of the ESGTs 

are unitarily equivalent to the oscillatorlike unitary representations.32 Fermionic 

operators which transform non-linearly, as do the fermionic fields of ESGTs, 

suggest in a rather straightforward way the construction of induced represen- 

tations in terms of composite operators constructed from fermions and scalars. 
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However, a suitable bound state spectrum must form a countable set of normal- 

ized states on which the full superinvariance algebra can be realized. The latter 

realization cannot be achieved trivially in terms of arbitrary representations of 

the non-compact groups. 

Our aim in this article is to study the larger superinvariance algebras gener- 

ated by supersymmetry and non-compact symmetry generators in ESGTs with 

special emphasis on their unitary realizations. To minimize algebraic complica- 

tions we consider the simplest case of N = 4 ESGT with SU(4) X SU(1, l),i @I 

U(4)loC invariance. After summarizing the salient features of this theory we stress 

the fact that the action of the non-compact invariance group G in the “special” 

gauge corresponds to a simultaneous action of G,l and induced Hlo, transforma- 

tions. The generators of G do not commute with the supersymmetry generators, 

as has previously been mentioned in Ref. 13. We give here the algebra generated 

- by G and the supersymmetry generators in the global limit. ‘The rigid limit is 

the asymptotic limit of large spatial coordinates 2 in which all fields vanish, ex- 

cept for the scalars which tend to some constants and the vierbein which reduces 

to the Kronecker &function. This rigid algebra has a structure similar to that 

of a Kac-Moody algebra.33 Just as the Kac-Moody algebras can be though of 

as extensions of ordinary Lie algebras by functions on a circle, our algebra can 

be regarded as an extension of an ordinary algebra by functions defined on the 

open unit disc. The open unit disc enters the picture because it is the domain 

on which the scalar fields of the theory take their values. We then argue that 

this infinite dimensional superinvariance algebra may have a unitary realization 

on the bound states. With this aim in view, we study irreducible unitary rep- 

resentations of SU(1, 1) and investigate how they may be used to represent the 
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full superinvariance algebra. Our discussion can be extended to higher ESGTs 

for N = 5,6,7,8: we comment explicitly on the most interesting case of N = 8. 

2. N = 4 Extended Supergravity Theory 

There are two different formulations of N = 4 ESGT which are referred to 

as the SO(4) formulation34~35~1 and the SU(4) formulation.2 In the SU(4) formu- 

lation, of the six 8 = 1 fields entering the theory three are most naturally defined 

as vectors and the remaining three as axial vectors, while in the SO(4) formu- 

lation they are most naturally all taken to be vectors. The non-compact global 

on-shell invariance group SU(4) X SU(1, 1) of these theories was first discovered 

in the SU(4) f ormulation.2 Below we shall summarize the salient features of the 

SO(4) formulation following references 1 and 34. 
_- 

The fundamental fields entering the SO(4) formulation are the vierbein et(z), 

- s = 3/2 fields $$(z)(i = 1,. . .4), the vector fields AZ(z) = -$ (i,j = 1.. .4), 

s = l/2 fields xi, a scalar field A(Z) and a pseudoscalar field B(s). These two 

real scalar degrees of freedom correspond to the special gauge discussed above. 

The Lagrangian f reads as34 
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where 

a Al- K~(A~ + B2) 

. . . . 
Hi& ~glFf; - g2F;; - g3 k;; - g4 i*‘z”y P-2) 

. . 
G$ =H$, + ?@[(1+ g1)P - g2p* - !.l3p* - 04+]‘J 

CLV 

and the symbol * denotes dual with respect to internal indices 

FG f2 ij ‘e ktFk’ etc. 

whereas - denotes dual with respect to space-time ihdices . 

1 

The Gi are functions of the scalar fields 

1+ 9 
91 - ig4 f 

1-- 
(2.3) 

where z G rc(A + iB). b denotes a supercovariant derivative operation: 
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The purely bosonic part of the above Lagrangian can be written asl: 

L 
1 

bosonic = 
e tP,zg~vt3v 2 -- 4rc2 eR + 2n2 (l-%2)2 

P-6) 

where 

with g W,PX - gcLPg~~ - g~xguP. The largest on-shell invariance of the full La- 

grangian is SU( 4) X SU( 1, l)gl @  U(4)loc. In the special gauge the scalar fields 

are valued on the coset space SU(4) X SU( 1,1)/U(4) % SU( 1, l)/U( 1) and trans- 

form non-linearly under the global group. When restricted to the special gauge, 

the Lagrangian is invariant only under an SU(1, 1) X SU(4) group for which the 

diagonal U( 1) in SU( 1, l)gl and U(4)1,, acts on the dimensionless complex field z 

as 

-. SU(l,l): z=rc(A+iB) -+ ~dt?+~) 
taz+q (2-g) 

with loI - IpI2 = 1. 

The vector field strengths F$ and their duals defined by Gr = (4K2/e) 
. . 

(Sf /bF$) are transformed into one another under SU(1, 1) and together form 
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a 2 dimensional spinor representation. As a consequence SU(l, 1) interchanges 

the Bianchi identities a,( e #“” ’ ‘) = 0 for th e vector fields with their equation of 

mot ion a,( e GfJY) = 0. The vierbein es is a singlet of sU( l,l). 

As for the spinor fields in the theory, they undergo induced local axial U(~)A 

rotations under the action of SU( l,l). To determine the U(~)A rotations consider 

first the part of the Lagrangian containing only s = 0 and s = l/2 fields with 

all the other fields set to zero: 

0: = 8, - iydp where P-9) 

1 Ecvp%--%a,z 
Al,=5 

(I--Ez) - 

The second term in the above Lagrangian is invariant under the SU(1, 1) trans- 

formation (2.8). In the first term the composite gauge field A, undergoes a gauge 

transformation under (2.8). 

SU(l,l): AP+A;=AP+i AP 

4 55 exp 
( 

iu(a, /I, z, E) 
> ( 

(2.10) 
8,exp - ;+, P, z, 2) > 

where 

-. 
exp (-~4~, P, z,z)) = p x + _ cr 

(2.11) 

Thus to make the Lagrangian invariant s = l/2 fields xi must undergo the U( 1)~ 

rotations: 

w(l,l) : xi + exp ( 
i~w(a,8,rZ?)-gj 

> 
xi (2.12) 
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Similarly the part of the Lagrangian involving only s = 3/2 and s = 0 fields 

(2.13) 

will be invariant under SU( 1,l) if the gravitino fields +f undergo an induced 

u( 1)~ rotation 

SU(l, 1) : $f, + $$ = exp 
i 
-~(a, p, z,2)75 
4 

(2.14) 

For the full theory, including vector fields, the SU( 1,1) is an invariance only of 

the equation of motion, however. 

One important feature of this theory, which it shares with the higher N > 

4 ESGTs, is that the scalar fields are constrained to have values on a certain 

botmded homogeneous domain. For the N = 4 theory the z fields satisfy the 

constraint (1 -z 2) > 0, i.e. they take values on the open unit disc A in the com- 

plex z-plane. The group SU(1, 1) under which the field z undergoes a non-linear 

transformation maps the domain A into itself. In the higher supersymmetry 

theories also the non-compact symmetry group acts as the automorphism group 

of the domain on which the scalar fields take their values. This complements 

the theorem3’ connecting N = 1 supersymmetry with Kahler manifolds and the 

connection37 between local N = 2 supersymmetry and quaternionic manifolds. 

3. Supersymmetry and the Non-compact Invariance Group 

One intriguing aspect of ESGTs for 4 5 N 5 8 is the fact that they have 

some non-compact invariance groups whose generators do not in general com- 

mute with the supersymmetry generators. 13J8y22 In this section we will point out 
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the source of this non-commutativity and construct the infinite dimensional su- 

peralgebra generated by supersymmetry and the non-compact group generators 

in the case of the N = 4 ESGT. - . 
We choose the generators of the SU(1, 1) group such that they satisfy the 

commutation relations 

[L-,L+] = s&-j 

[hJ+I = iL+ (3.1) 

[IQ,L-] = -iL- 

where LQ corresponds to the generator of the U(1) subgroup. A general element 

of the SU( 1,l) group can be represented in the form 

0) = exp (w”& .+ wL+ + w_*L-) 

In-a unitary representation the generators must satisfy 

Lt = -L+ t- - Lo=--& 

For the 2-dimensional representation of W(1, 1) we shall choose 

L.+U3 L - = ia- L+ = -ia+ 

where O* = i(01 f iap), and denote 

( 
. 

9 = exp J-w0t.q + iw*o- - iw0+ 
2 > 

-. aP “pa, ( ) Ial2 - l/q2 = 1 - 

Now if we consider the scalar field z(x) as an operator we must demand 
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This implies that 

[Lo, z] = -iz 

[L-, z] = iz2 ~.. (3.4 

[L+, z] = i 
Similarly for the conjugate operator z (x) we find 

[&,E] = iE 

[L-, Z] = -i (3.5) 

[L+,Z] = -iZ2 

Similarly from the transformation properties of the s = l/2 fields xi and s = 

3/2 fields $f: 

and 
_- 

~(g-9x’(x)v(d = exp iiw(u,P, z, z)75 
(. > 

X'(X) W-9 

(3.7) 

we obtain 

[h, x’(x)] = ; r5xi(x) 

[L-,X’(x)] = =.3x)75xi(x) 

b+, x’(z)] = qf 2 (x)r5xi(x) 

and 

[Lo, ““$)I = ;7Sd:(x) 

b-, “:(x)] = - ; z(x)r5$~(x) 

b+, f&x)] = - fr (x)75%$(x) 

15 
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To calculate the commutators of supersymmetry generators Q’ with the 

non-compact symmetry group generators it is simplest to use the action of Qi 

on the vierbein e;(x) or on the scalar fields z(x), Z(X): 

[ 1 Q;, z(x) = ~%cu(x)x;(x) 
[ 1 Q;,%(x) = 0 (3.10) 

[Qi,W] = 0 

[Q&W] = d~~4x)xk(x) 

where a(x) = 1 - z(x) E(X). Using the Jacobi identities one finds 

_- [ 1 &,,Q’ =--fy5Qi 

[ 1 
. 

L+,Q’ =&5&’ (3.11) 

[ 1 L-, Q’ = fzv5Qi 

Comparing these commutation relations with those of the $$ fields (see Eq. (3.9)) 

we see that under a global SU(1, 1) transformation 

u(g-1~Qi4d = exp -&b, P, %, 5)75) Q’ (3.12) 

-. 
The important feature of this SU(1, 1) is that it does not commute with the 

supersymmetric transformations. By multiple commutation of the generators 

L+, L-, & with the supersymmetry generators Qi one generates scalar field de- 

pendent supersymmetry generators of the form z” zrn Q’ or P zrn 75Qi. As sug- 

gested in reference 13 it is simplest to study the algebra generated by L+, L-,& 
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and Qi in the rigid limit, i.e. by going to spatial infinity where all fields vanish 

asymptotically except for the scalar fields and the vierbein e$ which simply be- 

comes the Kronecker &function. In this limit the constant scalar fields which we 

define as the commuting operators 2 and ,? commute with Qi. Interpreting the 

operators P(x) zrn (x)Q’ as “generators” of generalized supersymmetry trans- 

formations may look puzzling since the generators of a symmetry must become 

integrated charges independent of space-time. What we are implicitly assuming 

is that the corresponding integrated charges, which will in general be integrals 

over the basic fields and their canonical momenta, act on the basic fields of the 

theory in the same way as the 2” 2” Q’. In general, however, these generalized 

fermionic charges will not be representable in the form of products of the Q’ 

with scalar field operators. We assume that the algebra of these charges remains 

valid, and look for other representations. Defining 

n,m 
Qi G  ZnZmQi 9 pLnjrn f Z”2”Pp 

we find 

{Q;ym, Q;!“} = 2(jij~Pp~+PJ”+9 

[Q;‘“, PfQ] = 0 

[i?& Q;j”] = i (m - n - ;y5) Q;?” 

[L+, Ql*m] = i,&~-l~m -i(m-~q5)Qn~m+1. 

[L-, QyTrn] = i (n + i 75) Qa+llrn - imQn,m-1 

(3.20) 

(3.21) 
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[IQ, P$jm] = i(m - n)Pi*” 

IL+, qml = inp~-19m _ imp;m+l (3.22) 

[L-, pFprn] = inpi+lprn - imp~~m-l 

The above algebra has the structure of a semi-direct product of the SU(1, 1) al- 

gebra with the algebra of PFjrn and Qnlm. The subalgebra generated by the gen- 

eralized momenta P:‘” and generalized supersymmetry generators Qnjrn looks 

very similar to a Kac-Moody extension of the algebra of ordinary Pp and Q. The 

Kac-Moody extension of a Lie algebra L, whose elements satisfy the commutation 

relations 

where Fiji are the structure constants, has the form 

[Mr, MT] = .fijk"r+" 

modulo some possible Schwinger (or anomaly) terms. One simple realization of 

this algebra is given by the direct product of a representation of the Lie algebra 

L by functions eine (n = integer) on the circle: 

Mi” = Mi @  ein8 -oo<n<oo 

The representation of PFyrn and Q?‘” on the fundamental fields of the N = 4 

ESGT corresponds to the direct product of the algebra of Pp and Qi by polyno- 

mials Zn Z” (n, m integers 2 0) defined inside the unit circle. When one goes to 

the boundary 2 + eiB then Zn 2” -+ ei(n-m)e and the algebra resembles more 

closely the form of a Kac-Moody algebra. 
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The unitary basic representations of the Kac-Moody algebras (or the so- 

called highest weight representations) are constructed in terms of the vertex 

operators of the dual resonance mode1.38 They involve an anomalous Schwinger - . 
term in the commutation relations, but in our case possible c-number terms which 

could arise are restricted by non-trivial Lorentz invariance properties,3g with 

the only possibilities being Lorentz scalars or pseudoscalars in 
{ 

91)” , 
Q > 

TYq . 

Furthermore, when we check the Jacobi identities using (3.21, 3.22) we find that 

even these Lorentz-allowed Schwinger terms must in fact vanish as a consequence 

of the fractional U(1) charge associated with the spinorial charges. 

In Section 1 we have given the arguments as to why we expect the bound 

states to form unitary representations of the non-compact invariance group. The 

supersymmetry transformations extend the Lie algebra of the non-compact group 

SU(1, 1) to the infinite dimensional algebra given by-Eqs. (3.24-3.22) in the case 

of N = 4 ESGT. Thus we expect the bound states (bosonic and fermionic) to 

form a unitary representation of this infinite dimensional algebra. The operators 

PcL men and Qm,n can be considered as the Fourier coefficients of generalized mo- 

mentum and supersymmetry generators that are defined on the open unit disc. 

This is analogous to the Fourier expansion of generalized momenta and position 

operators in the string theories.40 

4. Unitary Representations of SU(1, 1) 

As was pointed out above, one important feature of N = 4 to 8 ESGTs is 

the fact that the scalar fields in these theories are constrained to take values in 
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what is called a bounded homogeneous domain. In the case of the N = 4 theory 

this is the open unit disc A in the complex plane: 

A c {z(x)l(l- ZE) > 0) - - (4.1) 

If the bound states of these theories form linear representations of the non- 

compact invariance group then the relevant unitary representations must be 

those that can be constructed from the elementary fields appearing in the theo- 

ries. With this aim a class of unitary representations of the non-compact groups 

of ESGTs (n = 4 to 8) has been constructed in terms of boson operator trans- 

forming like the vector fields. 25~22~31 In this section we shall study the construc- 

tion of unitary representations of SU(1, 1) using the scalar fields z(x). This 

construction of unitary representations of SU(1, 1) on functions defined over the 

open unit disc was first given by Bargmann41 and corresponds to some of the 

oldest known unitary representations of a non-compact group--Our eventual aim 

will be to attempt to realize the full algebra on these functions. 

As pointed out in Ref. 39, we can represent the full superalgebra if we can 

represent the operators L+, L-, Lo, Z, and Z where Z E lim,,a Z(x) is con- 

strained as in (4.1). One would expect to be able to do this by constructing 

functions of Z and Z which are representations of the SU(1, 1) algebra. More 

generally, we can construct induced representations of SU( 1,l) by forming func- 

tions of Z and Z which multiply a state transforming under SU(1, 1) similarly 

to the fermions of ESGTs, namely 

L+lq > = -i+qq > 

L-lq > = -iqZlq > 

r;olll > = iqlq > 
(4.2) 
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Then if we construct a state 

(4.3) w,w? > 

-- the operators L* and b will be represented by 

-iL+ 
a =-- 

dZ 
22 t3 n-qz 

1 z--e -i4 
2 [ 

(l-p2)aap-i(l+pp2) $-2pq] 

-iL- = -&+z2&z (4.4 

-’ ‘+ (l-p2)a+i z--.--e 
2 [ 

(1+p2) a 
3i-J 

p *+2pq 1 
-i& = &-&+q2+q - 

as follows from Eqs. (3.4) and (3.5), where we have made a change of variables 

Z = ei+p. We look for a state Im, u, V.I > which satisfies the ei&nvalue equations 

-d&n, u, q >= (m + r7)lm, 4 tl > (4.5) 

Kim, v, q >= -u(u - l)lm, U, q > (4-6) 

where 

K - -L+L- + L-L+ 
2 +Li (4.7) 

-. is the SU(1, 1) Casimir invariant which takes real values for unitary representa- 

tions. We write states in the form 

Im,u > = exp (--im4) dmb - P2Yurn v &)ltl > , , 
(4.8) 

f eXP (-if@) fm,v,tlb)lt7 > 
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Considering the case m > 0, we find that Um,v,pI must be a solution of the 

hypergeometric equation 

p(l-p)$+[7-(a+8+l)p]$+@p=0 (4-Q) 

with 

7 =l+m cw=v+q+m P r) =v- (4.10) 

The solutions are the hypergeometric series um,v,l = F(cr, p; 7; p2) which con- 

verge for 0 5 p2 < 1. Since the operator 

Lt_L- = -L+L- = -i{L+, L-} -f[L+, L-1 
(4.11) 

=K+&-,-,$$ - 

h&positive eigenvalues: 

qe - 1) - v(v - l)=(&-v)(t.+v-I), 
(4.12) 

4?=m+q 

the eigenvalues of the Casimir K are restricted41 to three classes: * 

1. The principal series: v = 4 + iA; A, e arbitrary. 

2. The supplementary series: 0 < v < f ,4! = n + qu, with n integer and 

O<qo<vorl-u<qo<l. 

3. The discrete or bounded series v > 0, e > v or C 5 -v. 

Matrix elements which satisfy the hermiticity requirement 

< m + 1, v, qlL+lm, u, q >= - < m, v, qlL-[m + 1, v, q > (4.13) 

*There are further restrictions 41 if one wishes to represent the group and not 
just the algebra. 
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are defined by integration over the invariant measure 

ddPdP 
(1 - P2J2 (4.14) 

For v 5 i, as is the case for the principal and supplementary series, this integral 

is divergent for p + 1. In addition the hypergeometric series F(cw, p; 7; p2) is 

divergent at p = 1 unless one of the following conditions is fulfilled 

(4 

Re(a + P - 7) < 0 , 

which cannot be achieved in our case for which 

(4.15) 

(4.16) 

(b) Either Q or p is a non-positive integer: 

a or P=-~850, (4.17) 

in which case F(cr, p; 7; p2) is a polynomial of finite degree. From Eq. 

(4.10) we see that (4.17) is achieved by: 

V =q-n . (4.18) 

(c) Either (Y = p or ,J = 7, in which case 

F(a, p; 0; p2) = (1 - p2)@ 

This is achieved by either 

v-l-q=1 
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or 

V =q+l+m . (4.20) 
- . 

The case (4.20) is not useful since it does not allow the required spectrum of Lu 

eigenvalues for fixed v and 9. The same is true of (4.18) for n # 0. Equation 

(4.18) for n = 0 and Eq. (4.19) give, respectively 

e=v+m (4.21~) 

t=l-v+m (4.21b) 

Equat,ions (4.18, 4.21a) necessarily correspond to the discrete series since e differs 

from v by a positive integer. For the case (4.19, 4.2ib) we obtain 

fm,v,q(P) = Pm(l - P2)*+’ = (1 7 P2)f-v (4.22) 

which again is not square integrable over the measure (4.14) for v > 0. 

It is nevertheless possible42 to define state normalization for the principal 

series, by forming “wave packets” of solutions in terms of the continuous pa- 

rameters X. The orthonormalization condition is expressed in terms of a Dirac 

b-function: 

< e, k + iAl@, f - iX >= 6&Q - P) (4.23) 

Such a continuous spectrum of states is not appropriate for the problem at hand, 

namely a countable spectrum of states which might be identified with the bound 

states of N = 4 supergravity. It was shown, 3g however, by algebraic construction 

without explicit reference to the functional form (4.8) that the principal series 
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can be used to represent the full supersymmetry and SU(1, 1) algebra with a 

countable set of states of finite normalization. It was further pointed out that an 

SU( 1,l) singlet cannot be introduced as a discrete state if one wishes to represent - . 
the full superalgebra, but an SU(1, 1) singlet can be obtained as the limit v -+ 0 

of the supplementary series. It may be that if the full algebra can be represented 

at all on this series, it can be done so only in terms of a continuous spectrum. 

Since such solutions are uninteresting for the discussion of bound states we shall 

not pursue them further. 

Let us now examine the discrete series which have a finite normalization for 

v > $ when expressed in terms of functions of Z. If for example we take n = 0 

in (4.18) we get p = 0, F((Y, 0; 7; p) = 1, and 

- f m,u,rl = .fm,u = (I- P2juPm ; m 2 0 . (4.24) 

These are the functions which are conventionally used to represent the discrete 

series in the literature.* It is clear that we cannot represent the operators Z 

and Z by simple multiplication on these functions. Functions corresponding to 

the same value of m but different values of v are not orthogonal because they 

are eigenfunctions of different differential operators K(v) corresponding to the 

choice of q = v in Eqs. (4.5). The orthonormality conditions 

< @, 20, v > = 4ybti 
(4.25) 

le,v >r Im =e-v,v,q=~> = exp(--im4)pm(l - p2)vlti > 

* Sometimes the eigenfunctions of K are taken41j43 to be the monomials pm, 
with the factor (1 - p)” being absorbed into the definition of the invariant 
measure (4.14). This requires a corresponding redefinition of the differential 
operators (4.5). 
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are achieved by imposing 

-. 

< lfyv >= &,I 
- . 

while integration over 4 gives S,, 1. Thus while we may write 

ZIe,v >= la+ 1,v > 

(4.26) 

(4.27) 

we also have 

zle, v > = exp (-i(m- l)~)pm+1(l-p2)u)~v > 
(4.28) 

= It - 1, v > +exp(-i(m - I)$) fm-l,v+l(V > , 

and we cannot identify the last term in (4.28) with the state (e, v-t 1 >. Solutions 

of (4.9) with common Q and m but different values of v, are eigenfunctions of 

the same differential operator K(q) but with different eigenvalues -v(v+ l), and 

thusnecessarily orthogonal, and one might be able to represent the operators Z 

and Z by simple multiplication on such functions. However there do not seem to 

be any solutions other than (4.24) which are both square integrable and possess 

the required spectrum of J!& eigenvalues. 

We are therefore led to look for representations of the full algebra by meth- 

ods of algebraic construction which do not directly exploit the functional forms 

of eigenfunctions of the differential operators (4.4). As mentioned above one such 

solution has been found3’ by making the ansatz44 that the actions of the oper- 

ators L+ and L- can be expressed as functions of the actions of the operators 

L.u, Z and Z which are at most linear in I& Explicitly, we look for solutions I > 

with 

-iL+I > = 2 [A(Z z)& + B(Z Z)] 1 > 
(4.29) 

-iL-1 > = [A*(Z ,?)b + B*(Z Z)] Zl > 
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The solution to the algebra defined in (3.1), (3.4) and (3.5) together with 

[Z, 21 = 0 (4.30) 

gives 

with 

Al >= --I > BI >= (-f- iA)I > (4.31) 

z21>=1> . (4.32) 

Using these results to construct the Casimir operator (4.7) gives 

KJ >=(:+A)(+:-iA)1 >=(i+A2)\ > (4.33) 

which means that the ansatz (4.29) restricts the Hilbert space to that correspond- 

ing to the principal series of sU(1, 1) representations, as well as restricting the 

operators Z and 2 to the unit circle, Eq. (4.32). We may now represent the 

algebra by states le, X >, where we choose some countable set of parameters X 

and impose 

< e’, Pie, X > = b.eflhxt 

-qe, x > = ele, x > , 

Zle,x > = le+i,x > , 

zle,x > = le- 1,x > 
-. Using 

-iL+I > = -2 &+i+ix)l> 
( 

-iL-I>=--z Lo-;- 
( ix I> > 

(4.34) 

(4.35) 
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as follows from (4.29-4.32) we then obtain 

L+le,x > = -(e+~+ix)le+i,A > 
(4.36) 

L-le,x > = -(,-+-i+L,L 

It is clear that the ansatz (4.29) is a sufficient condition for representing Z, 2, 

LA, and h on the same Hilbert space. It may not be a necessary one. However, 

any solution other than the one given above necessarily involves a spectrum which 

has degenerate U( 1) eigenvalues. To see this let us assume that we can represent 

the algebra on a set of non-degenerate states je >, e = v + n with 0 < v 5 1 

and n an integer. Since the operator Z carries one unit of e, we necessarily have 

zle >= Celt+l > (4.37) 

Hermiticity requires 

< e + 112 le >=< elzle + 1 >* 

or 

zle >= c;-,le- i > . 

Commutativity, Eq. (UO), requires 

z2le >= 2zle > 

or 

ICeI = ICr_112 S ICI2 (4.39) 
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Thus lC’[j is independent oft. Since operation by 2 2 reduces to multiplication by 

a constant, this operator commutes with L* and it follows from the commutation 

relations (3.4) and (3.5) that ICI = 1; i.e. the unit circle is the only SU(1, 1) 

invariant circle for the variable 2. We may choose a phase convention such that 

We now define 

and from (3.5) 

we obtain 

which implies 

c, = 1 

-iL-le >= dele > 

4-Z le >= 42L-Ie > -le > 

(4.40) 

(4.41) 

(4.42) 

de =d-e (4.43) 

Since we have assumed a non-degenerate U(1) spectrum, the states I! > either 

belong to an irreducible representation of SU(1, 1) of the discrete, principal or 

supplementary series, or a superpositon of irreducible representations of the dis- 

Crete series which have no common e-values. Then equating the values of the 

matrix element 

< el - L+L-le >= Id - e12 = e(e - 1) - + - 1) (4.44) 
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as obtained from (4.12) and from (4.43) we find 

Red=; , d=2 ‘+iX IdI = ; + x2 = (I - u)u (4.45) 

which correspond to the principal series: u = $ + A. _ _ 

Thus, while we have not shown that the representation (4.34) of the algebra 

(3.1) (3.4) (3.5) and (4.30) is unique, it appears to be a minimal one in the sense 

that it is irreducible under SU( 1,l) (except for X = 0 in (4.45) in which case it 

splits into the two discrete representations e 2 i and e < -$), while any other 

representation will necessarily be reducible under SU(1, 1). 

5. Unitary Realizations of the Superinvariance Algebra 

Once we have obtained a realization. of the algebra defined in Eqs. (3.1) 

(3.4) (3.5) and (4.31) the full superinvariance algebra is defined by Eqs. (3.1) 

and (3.20-3.22). If le, u, X > is a state of U( 1) eigenvalue e, Casimir -v( v - 1) 

and helicity X, we represent the operators defined in Eq. (3.20) by: 

ptlnqe,+ > =P&!+m--n,v,A > 
(5.1) 

Q”~“lt, u, X > = &It + m - n, v, X > 
Note that because Z is restricted to the unit circle, the doubly infinite set of 

operators (n, m = 0, 1,2, . . . , 00) is reduced to a simply infinite set 

P/y --) P; 
a=m-n = 0, fl, f2,. . . f 00 

Q n,m --+ &a 

These representations will be characterized by infinite series of supermultiplets 

characterized by a fixed value of Xmaz and U(1) eigenvalues 

e,(x) +2(Xma,) + xmai - A 
tn(Xmaz) =to(Xmaz) + n ; n = 0, fl, . . . f 00 

0 < eO(Xrnaz) I 1 

(5.2) 
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The representation relevant to attempts”-l8 to connect supergravity with con- 

ventional gauge theories is a superposition of the two representations which con- 

tain the zero-mass-shell projection of the supercurrent multiplet, namely 

(5.3) - 
x 3 . maz = - 2 9 eo(ha,) = -i 

x ma2 =o ; eo(h2,) = --I 

We cannot conclude that there may not be other, possibly more interesting 

representations, for example with an infinite spectrum of helicities. However, as 

emphasized in Ref. 39, the operators Piyrn can be represented if and only if Z 

and Z can be represented, in which case representations of both Pi’” and Qnym 

of the above structure follow immediately. 

- 6. Extension to Higher Extended Supergravity Theories 

From the point of view of the non-compact symmetry and its compatibility 

with supersymmetry the higher supergravity theories (N = 5,6,8) have essen- 

tially the same structure as the N = 4 theory. In these higher theories the scalar 

fields transform non-linearly under the non-compact global invariance group like 

cosets SU(5,l)/U( 5), SO( 12)*/( U(6) and E&SU(8), respectively. One can 

choose a gauge in which the scalar fields parameterizing these coset spaces are 

represented by some matrix fields z satisfying a constraint of the form 

(I - z+z) > 0 

This implies that, as in the N = 4 theory, the scalar fields Y take their values 

in a bounded homogeneous domain and they undergo a generalized linear fra,c- 

tional transformation under the non-compact invariance group that maps the 
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domain into itself. This non-compact “automorphism” group of the domain cor- 

responds to a combined G,l and an induced Hloc transformation just as in the 

N = 4 case. In the case N = 5 and N = 6 the corresponding domains have 
- . 

a complex structure and it is well-known that the holomorphic discrete series 

unitary representations of the non-compact groups SU(5,l) and SO(12)* can be 

constructed over the Hilbert spaces of analytic functions of the complex vari- 

ables (scalar fields) which take values on the respective domains.31p32*45r46 In the 

N = 8 case the corresponding domain does not have a complex structure, which 

is a reflection of the fact that E7(7)/SU(8) is not a hermitian symmetric space.47 

Therefore the extension of the above construction to this case may involve some 

novel features. 

A systematic study of possible representations of the N = 8 superinvari- 

ante algebra in terms of general classes of irreducible representations of E7(7) 

- has not yet been done, even to the limited, and not-entirely conclusive, extent 

of the analysis of the N = 4 case presented in this paper. Similarly to the 

N = 4 case, we can construct oscillator-like representations and/or induced 

representations in the 70-dimensional space of the physical scalars z of the the- 

ory. The oscillator-like representations are equivalent32j46 to those obtainable 

from the Hilbert spaces of analytic functions of the z;. In References 32 and 

49 it was shown how to construct the oscillator-like unitary representations of 

the superinvariance algebras of all ESGTs (N = 4 - 8) using the oscillator-like 

unitary representations of the corresponding non-compact groupsin a coherent 

state basis labelled by the scalar fields. The coherent state representations of 

the non-compact groups SO(12)* and ET(T) of the N = 6 and 8 ESGTs are 

reducible.31 Thus in the unitary realization of the superinvariance algebra of the 
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N = 8 ESGT the representations of ET(v) that occur for a given helicity are 

always reducible.32j4g 

An alternative technique was used in Ref. 39 where it was shown that it is - . 

possible to construct a class of representations of the superinvariance algebra for 

the most interesting case of N = 8 by making an ansatz44 similar to (4.29) relat- 

ing the non-compact generators Yi and the operators Zi as an operator equation 

valid on the Hilbert space of those representations. Their structure is similar to 

those of the SU(l,l) representations displayed in Section 5. The non-compact 

generators Yi can be represented as before by differential operators whose precise 

form depends on the SU(8) transformation properties of the inducing represen- 

tation, similarly to the q-dependence in Eqs. (4.4). Representations constructed 

in this way are generally not irreducible udder q(7). For the special class of rep- 

resentations constructed in Ref. 39, this is reflected in the fact that states which 

transform according to irreducible representations of SU(8) are not eigenstates 

of the E7c7) Casimir operator, except for SU(8) singlets which have eigenvalues 

of the form: 

K = Nu(69 - u) ; N=& (6.1) 

When the Casimir operator is represented as a differential operator in the 79 

dimensional space of the asymptotic scalar field operators Zi, one finds solutions 

to the eigenvalue equations which are SU(8) invariant and whose functional form 

is again a hypergeometric function multiplied by a monomial. The behavior of the 

monomial on the invariant surface C Zf = N which bounds the 79-dimensional 

volume over which the scalar field variables are defined3’ is again dictated by 
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the value of the Casimir: 

(1 -$Z,2)” 

When square integrated over the invariant metric 

(6.2) 

the functions corresponding to the eigenvalues (6.1) have divergence properties 

similar to those for the principal series of SU(1, l), indicating that solutions 

obtained using the ansatz of the type in Eqs. (4.30) have particular properties 

which are independent of the choice of group. 

The representations found using the above technique are in fact of the type 

conjectured in Ref. 13 where it was shown that such representations allow un- 

wanted particles to acquire group invariant masses once the SU(8) invariance is 

broken to an invariance under a subgroup no larger than SU(6) (with possibly 

a simple supersymmetry surviving as an additional invariance of the theory). 

Unfortunately these group theoretic considerations are insufficient to determine 

what, if any, set of bound states should remain massless, which is relevant to the 

more important question of whether the bound state spectrum conjectured11-18 

as arising from N = 8 supergravity can indeed lead to a realistic effective gauge 

theory of present energy interactions. 

Induced representations which are irreducible under E7(7) can be constructed 

on spaces smaller than the 70-dimensional one of the scalar fields.@ We have ex- 

amined briefly examples of such representations and found that if each helicity 

state of a given supermultiplet is assigned to an irreducible representation of 

E7t7) the states generated by operating successively with the Yi do not fall into 
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supermultiplets. This may indicate that we cannot represent the full algebra 

using irreducible representations of this type, although one might be able to 

find50 some set of such irreducible h(7) representations which would be able - . 
to represent the algebra, possibly involving an infinite spectrum of spins. In 

addition the Z; can be represented in this case only if they satisfy additional 

constraints which restrict them to the appropriate smaller dimensional space. 

This implies constraints among the generalized P’s and Q’s which would have to 

be consistent with the N = 8 superinvariance algebra. Such a realization would 

further mean that the 8 ordinary supersymmetry generators do not transform 

linearly under 5’U(8) but only under some subgroup of SU(8). A full investigation 

of these questions clearly requires some new mathematical techniques for studying 

infinite algebras of the type extracted from the invariance groups of extended 

supergravity theories. 
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