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Over the past few years, as our understanding of weakly coupled supersym- 

metric theories has steadily increased, t,he dynamics of strongly coupled super- _ - 
symmetric Ya,ng-Mills theory has come to appear more and more mysterious. 

Initially, it was tempting t,o regard these theories as having qualitatively the 

same behavior as ordinary gauge theories of fermions. Using this hypothesis, 

Dine, Fischler, and Srednicki’ and Dimopoulos and Raby2 argued that these 

theories should show spontaneous supersymmetry brealking. This conclusion, 

however, was appa,rently contradicted when Witten derived a striking constraint 

on dynamical supersymmetry breaking. 3 This contradiction has left workers in 

this field more than a little puzzled and has led to a consensus that the pattern 

of chiral symmetry breaking in supersymmetric Yang-Mills theory must be an 

unusual one. However, it need not be so. In this lecture, I will demonstrate 

this by exhibiting an effective Lagrangian describing the spontaneous breaking 

of chiral symmetry in supersymmetric Yang-Mills theory which is consistent both 

with the physical picture of Dine, Fischler, Srednicki, Dimopoulos and Raby and 

with the constraints proved by \Titten. This conclusion differs from that of a re- 

e4 cent paper by Taylor, Veneziano, and Yankielowicz, I will clarify the difference 

between my analysis and theirs as I proceed. 

I will restrict my attention in this lecture to theories in which a gauge super- 

multiplet (A,, X, Dj couples to matter fields which belong to a real representation 

of the gauge group. For most of the analysis of this paper, I will take this repre- 

sentation to comprise n copies each of a complex representation f and its complex 

conjugate P. The matter supermultiplets are, then, of the form: 

where i = I,. . . , n. $J denotes a left-handed fermion; the other fields are complex 
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bosons. These models are essentially supersymmetric versions of QCD with n 

-e-U flavors; I will refer to them as SSQCD. They are the models to which Witten’s _ - 
theorem’applies most directly. 

At the classical level, for zero mass matter fields, SSQCD has the global 

symmetry U(n j X U( tl j X U( 1 j, where the last U( 1 j corresponds to R-invariance. 

In the quantum theory, one U(1) symmetry is destroyed by anomalies; the full 

global symmetry is, then, U(n) X U(n j. 0 ne can give mass to the matter fields 

by adding to the Lagrangian a superpotential of the form: 

W(A) = 2 m 4&i (21 
i=l 

This potential breaks U(n) x U(n) explicitly to (vectorial) U(n). In ordinary 

&CD, the formation of fermion pair condensates causes a spontaneous breaking of 

the chiral symmetry of the zero-mass theory; I see no good reason why this same 

physics should not appear also in the supersymmetric theory. Such fermion-pair 

condensates would give rise in SSQCD to the pattern of spontaneous symmetry- 

breaking: 

U(n) x U(n) --) U(n) * (3) 

I will argue that the symmetry-breaking pattern (3) is consistent with the 

constraints of supersymmetry by exhibiting a supersymmetric effective Lagra,n- 

gian which gives a low-energy phenomenological description of this symmetry 

breaking. This Lagrangian should be the appropriate generalization to SSQCD 

of the description of the low-energy dynamics of QCD by a nonlinear sigma 

model.5 More specifically, this La,grangian has the following properties: First, it 

obeys a number of requirements which follow from exact properties of SSQCD: 
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1. The Lagrangian has the form 
-- 

L=Lo+trmh ~- - - (4 

where Lo is invariant to U(n) X U(n) a.nd A , which represents the matter- 

field mass term, transforms as an (fi , n) under U(n) X U(n). 

2. The Lagrangian is ma.nifestly supersymmetric. 

3. Supersymmetry is not spontaneously broken for any value of na # 0. 

Requirement (3) follows from Witten’s theorem.3 Secondly, the Lagrangian is 

consistent with a number of intuitive requirements of the physical picture of 

chiral symmetry breaking by fermion pair condensates: 

4. The pattern of spontaneous symmetry breaking is 

U(n) x U(n) + U(n) ; 

the associated Goldstone bosons appear as elementary fields of the phe- 

nomenological Lagrangian. 

5. The gluino is heavy and irrelevant to low-energy physics; the gluino field 

does not appear in the Lagrangian. 

6. The Lagangian implies that < $+$p ># 0 by insuring that, in the 

presence of the symmetry-breaking perturbation tr mA, the Goldstone 

bosons receive (n~ass)~ propertional to m. 

7. The bosonic variables of the model live on a compact space. 

8. The Lagrangian satisfies decoupling: sending one eigenvalues of m to in- 

finity reduces the U( n j X U( n version of theLagrangian to the U(n-1) x ) 

U(n - 1 j version. 



Since the requirements (6) and (7) are not completely obvious, and since they 

will play a crucial role in my analysis, I comment on them briefly. The authors of _ - 
Refs. 1 &id 2 argue that my assumption (6) already implies that supersymmetry 

is spontaneously broken. Their argument makes use of the Ward identity, valid 

if supersymmetry is manifest: 

If one eliminates F using the equations of motion, one finds 

-f < $r4P >= m < IA-l2 > (5) 

If < lAl2 > is regular as m + 0, supersymmetry implies < $++p >= 0. But 

such regularity is not necessary, or even to be expect,ed. In ordinary QCD one 

can cast < $ II, > into the form 

<$$>=m 1 
-02 + m2 + $upVFpV (6) 

where the expectation value is to be taken over configurations of the gauge field.6 

The object inside the trace is formally quite similar to the A, propagator. If the 

right-hand side of (6) can remain nonzero as m ---* 0, why should the right-hand 

side of (5) not also show this behavior? * I feel that the assumption (6) does not 

unduly prejudice the theory I will construct toward spontaneous supersymmetry 

breaking. 

My assumption (7) would not be a strong assumption in ordinary field theories 

with global symmetries. However, in supersymmetric theories it is a very strong 

assumption, because supersymmetric nonliner sigma models with variables on 

* I thank Giorgio Parisi for this observation. 



compact spaces are not obtainable as limits of linear sigma models7y8 I will simply 

assume that the nonperturbative dynamics of SSQCD gives rise to a compact _ - 
manifold of possible vacuum states. It is here that my analysis differs from that 

of Taylor, Veneziano, and Yankielowicz 4; those authors chose a set of dynamical 

variables which could be obtained from a supersymmetric linear sigma model. 

The formulation of a supersymmetric nonlinear sigma model with the sym- 

metry-breaking pattern (3) appears at first sight problematical, for the follow- 

ing reason: Nonlinear sigma models describing the spontaneous breakdown of a 

symmetry group G to 11 normally have variables which live on the coset space 

G/H. Such a model can be made sypersymmetric only if this space is a Ktihler 

manifold.g However, the space suggest’ed by (3) is 

G -= 
H 

U(n) x w4 ~ qnj 
w4 

(7) 

which is not even a complex manifold, and therefore is not Kahler. I choose 

to interpret this difficulty as a requirement from supersymmetry that there be 

additional light bosons in the theory beyond the required Goldstone bosons. The 

spectrum of these particles should be determined by embedding (7) in a larger 

space which is a Kahler manifold. 8 The smallest such homogeneous space with 

(7) as a-subspace is 

U( 2n) 
U(n) x U(n) - (8) 

There are many embeddings of (7) into (8); for the purpose of this lecture, I will 

choose one a,nd work out its implications. Let me, then, label the U(n) x U(n) 

subgroup of U(2n) appearing in (8) as [U(n) X U(n)]o and the isomorphic group 

a.ppearing in (7) as [U(n) x U(n)]pJ. If I ta.ke U(2n) in (8) to be generated by 
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arbitrary Hermitian 2n X 2n matrices, I can represent an embedding of (7) into (8) 

by identifying as the generators of the various subgroups of this U(2n) matrices 

of the following forms:” 

[U(z) X U(n)]o : t1 O 
(i) 0 t2 

[U(n) x U(+‘: v t1 O v-’ 
(-I-) 0 t2 

U(n) : t1 ‘- 
(I) 0 h 

where tl, t2 are n X n Hermitian matrices and 

1 1 v = 5 -l 
0 

1 I? &w(2) 

(91 

(10) 

lw4 x w4lD and Iw4 x Wliv coincide precisely on the U(n) subgroup 

generated by the last line of (9); this group will play t,he role of the conserved 

vector U(n) of SSQCD. 

The manifold (8) has 2n2 dimensions, so the number of light bosons in the 

model is doubled from the number of Goldstone bosons associated with the 

symmetry-breaking (3). The 2n2 coordinates form two adjoint representations of 

the vectorial U(n). The particle spectrum of this model may be given a plausible 

physical interpretation as follows: Since the theory with fermionic matter fields 

alone must contain Goldstone bosons composed of two fermions and the theory 

with bosonic matter fields only should contain Goldstone bosons composed of 

two bosons, the full SSQCD should contain two light pseudoscalar mesons, both 

of which supersymmetry could well require to be massless. These mesons, with 



the quantum numbers of 

do form two adjoint representations of U(n). 

The most genera.1 U(2n)-invariant Lagrangian with coordinates in (8) has 

been constructed some time ago by Zumino8 and Aoyamall ; it may be written: 

L=/ dOfn2 trlog(l+Aii) (12) 

where A is an n X n complex matrix. Under an infinitesimal U(2n) transformation 

A transforms according to 

&4=i(At2-tlA)+t+AtA. (14 

In principle, one could add terms to (12) to break its symmetry explicitly to 

lW4 x w4lN; h owever, I will study only the simplest kinetic energy term (12) 

here. 

Equation (12) describes a theory with manifest supersymmetry and 2n2 mass- 

less boson-fermion pairs. However, this theory is not yet an acceptable one, be- 

cause it does not satisfy the requirement (6) a b ove. One might try to give masses 

to the particles of this theory by adding to (12) a symmetry-breaking F term of 

the form 

/ 
d”6 tr(mA(a)) . (15) 



I -. 

However, this term produces (mass)2 for the Goldstone bosons proportional to 

m2, a signal that < & . t+!~r >= 0. This problem can only be remedied by _ - 
adding to (12) an F term of zeroth order in m. There is no such term invariant 

under all of U(b), but one can find an F term invariant to [U(n) x U(n)],. The 

generators of this subgroup can be rewritten from (9) in the form 

(16) 

where ta and tb are Hermitian. For these generators, (14) specializes to 

&I = i[A, ta] -t tb + AtpI . (17) 

There is a unique F term constructed from A which is invariant to (17): 

/ 
d26 hfn . tr (tan-‘A) (18) 

where h is a constant. In addition, there is a unique structure which transforms 

linearly as an (A, n) under [U(n) X U(~)]N: 

/ 
d20 fT tr m(i,) . 

The bosonic part of (18) plus (19) has the following form: 

MY -Y( &p+ &p&J W 

where F is the auxiliary field associated with A and the XY span a complete set 

of n X n matrices. 

Let us first study the Lagrangian (12) plus (18) with m = 0. Eliminating F 

yields the potential energy: 

V(A) = h2 tr 
1 

(1 +A2) Cl +AA) 
1 

(1 +A2) 
(21) 
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If A is Hermitian, this V(A) = h2; this choice gives the minimum of (21). That 

faet poses a severe problem for the theory: Supersymmetry is spontaneously 

broken. The minimum, though, does have some redeeming features. First, the 

space of minima of V(A) is isomorphic to U(n), so the vacuum degeneracy is that 

expected from (3). Secondly, if one attempts to give the Goldstone bosons mass 

by adding the mass term (19) and treating it only as a first-order perturbation 

of this theory, one finds a correction to the potential (for Hermitian A) 

AV= tr (mA2) (22) 

which, properly, gives the Goldstone bosons (mass)2 proportional to m. 

The problem I have noted is, however, neatly resolved by a more careful 

examination of the full theory. If one takes m # 0, in (20), one 

at which the coefficient of F in this term vanishes by setting 

h 1 1 (-J=---- ___ 
l+A2 l-iA m l-iA 

Thus, by setting 

1 =- -- 
> l-iA 

A= -i(:,;;;) 

can find a point 

(23) 

(24 

one finds a supersymmetric vacuum state. Note that if m is a matrix with one 

large eigenvalue, the corresponding eigenvalue of A is drawn to the value (24); 

this verifies the decoupling requirement (8) above. 

This supersymmetric vacuum states exists for any m # 0, but as m -+ 0 it is 

separated from the set of states with -4 Hermitian by a potential energy barrier 

whose height grows as m-l. If we speak in terms of the index of Witten3, 
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the model I have constructed has index equal to 1 for any nonzero value of m 

- but a zero index at m = 0. This discontinuous change in the index at m = _ - 
0, or, equivalently, the inaccessibility of the supersymmetric state as m + 0, 

violates an explicit assumption made by Witten in extending his proof the absence 

of spontaneous sypersymmetry breaking in SSQCD to the massless case.3 This 

method of evading Witten’s conclusion was suggested earlier by Srednicki;12 I 

thought at the time that it could never be realized in an explicit model of SSQCD. 

I have, then, presented an eflective Lagrangian which describes the low-energy 

of dynamics of supersymmetric Yang-Mills theory with matter fields in complex- 

conjugate-pair representations, assuming that the pattern of chiral symmetry 

breaking is that observed in the familiar strong interactions. This Lagrangian has 

a supersymmetric vacuum state for any nonzero value of the matter field mass, 

but it has spontaneously broken supersymmetry for matter fields of precisely 

zero mass. 

One can straightforwardly extend the analysis of this paper to more general 

forms of the non-linear sigma model action and to the case of matter fields in real 

representations. In all cases, the physics of the generalized models is qualitatively 

the same as that described here.13 

I am grateful to Chong-Leong Ong, Giorgio Parisi, Gabriele Veneziano, Ed- 

ward Witten, and Shimon Ya.nkielowicz, for discussions of the properties of 

SSQCD, to I. M. Singer for va.luable advice on geometry, and, especially, to 

Joe Polchinski, for asking all the right questions. I thank Glennys Farrar and 

Frank Henyey for organizing this stimulating conference. 
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