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ABSTRACT 

We study the vacuum structure of lattice group theories with Wilson fermions in 

the strong-coupling limit, using the Hamiltonian formalism and an alternating-site mean 

field ansate for the ground state. For all values of the hopping parameter, we find a 

unique vacuum which is not chirally invariant. This contrasts with the vacuum degen- 

eracy of a theory with a dynamically broken chiral symmetry. Thus the Wilson theory 

has no chirally invariant critical point at strong coupling. However, for small values of 

hopping parameter the mean field vacuum of the Wilson theory coincides with that of 

the chiral theory with a small quark mass term added. 
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1. Introduction 

This paper is concerned with the properties of lattice gauge theories with Wilson 

fermions. Our question is how closely the Wilson theory1 reproduces the physics of 

chiral or softly broken chiral theories. Chiral here refers to any theory possessing an 

explicit continuous chiral invariance, such as the SLAC lattice theory,2 or the so-called 

“naive” Dirac lattice theory’. As is well known, Wilson’s action breaks chiral symmetry 

explicitly, for all values of the quark mass. This is the price paid for eliminating, in this 

theory, the unwanted replication of fermion species associated with t~he “naiven fermion 

lattice action’. However, Wilson’s action contains two chiral symmetry breaking terms, 

with relative magnitude determined by Wilson’s “hopping” parameter K. The belief’ 

is that there exists a critical value of the hopping parameter, Kc, for which the chiral 

symmetry breaking effects of these two terms cancel, on distance scales very much 

greater that the lattice spacing, leading to a chirally symmetric continuum limit. In 

general the value of Kc will depend on the coupling, g. Thus one hopes for a critical 

path in the (K, g) plane along which the Wilson theory has a chiral invariance which is, 

however, broken dynamically. The quark mass is defined to vanish along this path, and 

one expect the dynamical breaking of chiral invariance to give rise to a massless pion. 

These properties can be demonstrated explicitly for the case of the free Wilson theory.’ 

For the lull Wilson theory, many conjectures are required, as has been discussed by 

Kawamoto.3 . 

We will here study the vacuum structure of the Wilson theory in the strong-coupling 

limit, using an alternating-site mean field ansatz for the ground state. A dynamically 

broken chiral invariance would be signalled by the existence of a degeneracy of distinct 

possible vacuum states, related by chiral transformations. The addition of a small 

quark mass term merely serves to pick out one of this degenerate set of vacua. For the 
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the Wilson theory we find the mean field vacuum to be unique for all values of the 

hopping parameter, indicating the absence of a chirally-invariant critical point at strong 
- 

coupling. However, in the region of small hopping parameter this vacuum is the same 

as the mean field vacuum of the chiral theory with a small added mass term. We thus 

conclude that the Wilson theory probably reproduces well the physics of softly broken 

chiral theories, but for the case of chiral theories the suitability of the Wilson action is 

less apparent, since there is never a chiral invariance in the strong-coupling region. 

Our analysis employs the Hamiltonian formulation of lattice gauge theories4 In 

the strong-coupling limit, the low-lying states are those with no flux excitations. Act- 

ing within this sector, the Hamiltonian is equivalent to an effective Hamiltonian which 

describes a generalized antiferromagnet. Such effective Hamiltonians were first stud- 

ied by Svetitsky, Drell, Quinn and Weinstein’ (hereafter referred to as SDQW), who 

considered the case of the SLAC lattice theory at strong coupling. The effective Hamil- 

tonian for the Wilson theory has subsequently been derived by Smit.5 In the work of 

SDQW, block spin and variational techniques were used to study the realization of chiral 

symmetry in the SLAC theory. The physics of their analysis was subsequently repro- 

duced by Greensite and Primack,’ using a simple alternating-site mean field ansatz for 

the ground state. We therefore employ a similar mean field ansatz, for its simplicity. 

Though-cruder than the methods of SDQW, we do expect it to correctly describe the 

physics of chiral symmetry. 

For simplicity we consider only the single flavour theory. Introducing more flavours 

does not change the general physical picture. Colour enters the effective Hamiltonian 

in an essentially trivial fashion, so we initially consider an abelian theory. Within the 

context of our mean field ansatz, we find the vacuum to be unique for all values of the 

hopping parameter. 



We generalise this result to an arbitrary number of colours, N, by first making the 

simplifying assumption that the vacuum does not break the lattice rotational invariance, _ - 

as was found to be the case for the N = 1 theory. We are thus able to compare our 

results with those of Smit5 who has studied the large N limit of our effective Hamiltonian 

using a generalisation of the approximate spin-wave methods developed by Anderson’ 

for the SU(2) an i t f erromagnet. In contrast to our result, Smit doea find a critical value 

of the hopping parameter, signalled by the vanishing of the pion mass at infinite N. In 

fact this result is not inconsistent with our result that the mean field vacuum is unique. 

This is possible due to the special nature of the large N limit. Thus the existence of 

Smits critical point is intrinsically a property of the large N limit and so we doubt 

whether it has much relevance to the theory of physical interest, N = 3 for &CD. For 

any finite N the pion mass-squared is of order l/N at the critical point, and this may 

well not be small for N = 3. 

The rest of this paper is organised as follows. In Section 2 we derive the effective 

Hamiltonian of the Wilson theory for strong coupling, using the approach of SDQW. 

The result has been presented previously by Smit’, but we include a derivation here for 

completeness. In Section 3 we describe the construction of our trial, mean field ground 

state. Our analysis follows closely that of Drell, Gupta and Quinn8 for the SLAC lattice 

theory generalised to arbitrary fermion content. In Section 4 we determine the ground 

state structure, by minimising the expectation value of the effective Hamiltonian in the 

trial vacuum state. In Section 5 we compare our results with those of Smit for the large 

N limit5 and show that they are compatible. Section 6 presents our conclusions. 



2. Effective Wilson Hamiltonian for Strong Coupling 

Our starting point is the generalised Wilson HamiLtonian, _&lU for a-single fermion 

flavour. This is defined in the 4 = 0 gauge by1j3 

a&b-, K 64 = C +i+a70$ja 
j,a 

+g c (EJy2 
j,k,a ' 

-$ijE(Tr U+ + h.c.) 
P 

Here a denotes the lattice spacing, g the coupling strength, and K Wilson’s hopping 

parameter. $y denotes a fermion field acting on the site j with colour cr. Uj k denotes 9 

the gauge field, and Ej i the electric field both acting on the link running from the site 
, 

j to the site j + i. We take the gauge group to be SU(N). U+ denotes the ordered 

product of gauge fields over the links bordering the plaquette p. crh is the Dirac matrix 

r@yk. The fields have been scaled so that the only dimensionful quantity is the lattice 

space, a. 

The parameter r, which ranges from zero to one, measures the strength of Wilson’s 

chiral symmetry breaking kinetic term, relative to the chirally symmetric piece. At 

r = 0 one has the “naive” Dirac Hamiltonian, which suffers from fermion doubling, 

describing sixteen degenerate fermion species for each original fermion flavour.’ The 

value r = 1 defines the Wilson Hamiltonian, in which the unwanted fermions do not 

propagate. At intermediate values of r, analysis of the naive continuum limit shows 

that the unwanted species acquire very large masses, proportional to the inverse latt.ice 

spacing, so decouple from the continuum spectrum5. It has thus been argued’ that the 



value of r is irrelevant to continuum physics, as long as it is non-zero. We will work 

with general r. _ - 

Hw possesses explicit chiral symmetry only in the limit of infinite hopping param- 

eter, together with r = 0, when the massless Dirac Hamiltonian is recovered. This 

latter Hamiltonian is actually invariant under a very much larger symmetry group, first 

identified by SDQW. This group is SU( 1) X SU(~NJ), for Nf fermion flavours. We 

note here the generators of this symmetry for the single flavour case, for later use. These 

are most simply constructed in terms of the redefined fermion fields 

where 6, d+ are two component spinors. The U(1) ’ g IS enerated by the baryon number 

operator, 

QB=xQjB . 

Q$ = -@jtabja - dTad;) = c ($Ta $7) - 2N . 
a a 

The SU[4) generators are given by 

Q”=cQi” , 
j 

Q; =~$farv$~ 
a 

(2.3) 

(2.4 

where the I’q are the fifteen Dirac matrices, the unit matrix being disallowed. 

We now proceed with the derivation of the effective Wilson Hamiltonian for strong 

coupling, following the approach of SDQW. In this limit, states containing colour electric 

flux excitations are highly energetic, since they have energy of order g2. As our interest 



is in the vacuum structure of the theory, we limit our attention to the low-lying, flux 

free sector of states. The physical states are those satisfying the non-abelian equivalent _ - 

of Gauss’ law, which is not an equation of motion in the & = 0 gauge. In the flux-free 

sector, this requires gauge invariant fermionic structure at every site. To zeroth order 

in 1/g2, these states are all degenerate. At higher orders in 1/g2, the Hamiltonian acts 

to lift this degeneracy by introducing mixing with intermediate states of non-zero flux. 

Second order degenerate perturbation theory in the sector of flux-free states thus leads 

to the effective Hamiltonian, 

Heff = HM + Ht2) , 

(2.5) 
where Cg(F) is the quadratic Casimir for the fundamental representation of SU(N), 

and we have used the relation 

Ua~U,+6 = $ba&p + non - singlet piece . 

Following SDQW, we rewrite Ht2) using a Fierz transformation, obtaining 

H(2) = K2 

2a!J2C2(F)N 
- icr~)P(r70 + icrk)$f 

(2.6) 
x 5 q~p~;+i ( 1 - 4N C $T”( I+ r2 + 2ir7,)11igJ 

a 

where the I’q are the sixteen Dirac matrices, in a hermitian basis. 



It is now straightforward to express He!1 entirely in terms of the generators of the 

SU(4) x U(l) Y s mmetry defined by Eq. (2.2-4). To simplify the Dirac matrix structure _ - 

we define the signs s(t,r, k), t(q, k) by 

akrbk = s(~, i)rq 
7krf17k = t(q, ip (2.7) 

in terms of which 

(r-70 - iak)P(r70 + ~CQ) = ~(47, i) x ((I- r2t(r], R))rq + {r-q, irk)) . (2.8) 
We now introduce the redefined fermion fields $j (see Eq. (2.2), which eliminates the 

overall sign factor S( q, k) in Eq. (2.8). Finally the Dirac matrix algebra is used to 

simplify the anticommutator term. We thus find 

+gc 4 
(1 +r2) . ^ 

j,i ( 
Ajk+@ 

- r2) (2.9) 

t 4 
B j+i+k'jk 7 

J 

where we have defined 

A j,ii = c 
a,+d)=-1 

B j+i = c Qj”Q;+, 9 
v,+&=+l 

‘j,, = ‘-““((Q$“$ - QiT5ro~$ - cikrn~~~;ik) + (j e, j + Q) . 

(2.10) 

and 

h;= 
K2 

2w2cz(f-) 
(2.11) 

a 



In this form the SU(4) X U(1) symmetry of the r = 0, K -+ 00 limit is explicit. 

At r = 0 HerI is a generalised antiferromagnet with the charges fz,“,-Qy replacing 

the SU(2) spins of a simple antiferromagnet, and the mass term acting as a symmetry 

breaking magnetic field. Here it breaks the m(4) symmetry to the 5’U(2) X S’U(2) X 

U(1) subgroup generated by the charges which commute with &TO. The r-dependent 

Wilson term, however, is invariant only under the U(1) subgroup of sU(4) generated 

by Qi7570. Thus the SU(4) is completely broken by the full HeIf. The U( 1) of baryon 

number of course remains a good symmetry. 

Note that the structure of 11cff is essentially unchanged if we generalise to Nf 

fermion flavours. The charges Qv are replaced by the generators of SU(INf), which 

have an additional flavour degree of freedom, but this enters He/f in a trivial fashion 

apart from introducing a more general mass term. Thus we expect the physics to be 

independent of the number of fermion flavours, and so consider only the single flavour 

case. 

3. Mean Field Analysis of He/f 

In this section we will study the chiral properties of our effective Hamiltonian, which 

takes the form of a generalised antiferromagnet. We investigate the vacuum structure 

using thealternating-site mean field ansatz of Greensite and Primack.’ They have shown 

this simple ansatz to reproduce correctly the chiral physics revealed by the more sophis- 

ticated analysis of SDQW for similar generalised antiferromagnets. 

The alternating-site mean field ansatz assumes a ground state of the form 

iz+j~+j2 
odd 

(3.1) 

Thus we have two intersecting sub-lattices, each with its own single-site mean field. The 



-. 

structure of l’$c >, I$0 > is to be determined by minimizing < $IHeff Ilc, >, which 
~- 

takes the form - 

< Heff > = < ?4Heff If4 > 
Ne NC =;(< Q:O > - < Q$’ >) 

+g ~Cv(r)<Q~><Q~> 
I( rl 

(3.2) 

r2 
+ “: )<Qf><&:>) 7 

where 

< QB >=j< $elQ~l$e >j 9 < Q," >=j< $olQ~l$o >j , 

and the CT(r) are given in Table 1. Ne is the number of links in the lattice. We see 

here the a&ferromagnetic nature of the ground state, in the tendency for < Qz >, 

< Qz > to take opposite signs. 

It is convenient to classify the single-site states according to their SU(4) X U(1) 

representation content. This has been done by Drell, Gupta and Quinn’ for theories 

with more general fermion content. In brief, the states of definite representation content 

are constructed as follows: 

(a) Define the trivial “vacuum” 10 >, which satisfies b:lO >= d:fO >= 0. 

(b) Define the state of minimal baryon number, 

nd;alO> . 
%9 

This is an SU(4) singlet, with baryon number B = -2N. 

(c) Generate st,ates of higher baryon number by acting on the singlet state with 

the baryon creation operator, n!?=, bri, antisymmetrised with respect to colour and 
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symmetrised with respect to spin indices. This operator has B = N, and belongs to the 

-- representation of SU(4) specified by the Young diagram shown in Fig. 1. This result is - 

obtained by noting that the fermion field belongs to the fundamental representation of 

SU(4). 

The single-site states are thus classified according to B = (l! - 2)N for SU(4) 

content given by the Young diagram of Fig. 2, with e not greater than four. Note 

that the representations of baryon number B, -B are conjugate, with the B = 0 

representation self-conjugate. 

We now choose the representation content of the trial state. Let us assign I$JO > 

to the SU(4) p re resentation of baryon number B. Then since the ground state must 

have net baryon number zero, l$~c > must have baryon number -B. Since these 

representation are conjugate, we can further impose the condition 

<Qz>=-<Q;> (3.3) 

which minimises < Heff > for a given I?+!Jo >, realising the antiferromagnetic nature 

of Her,. Henceforth we discard the odd and even labels. I$J > will refer to I$0 > 

To proceed further, recall that our aim is to investigate the existence of a critical 

value of-the hopping parameter, for which the Wilson theory is chirally invariant. In 

the region of such a critical point, the two SU(4) breaking terms are at least partially 

cancelled. It is therefore reasonable to treat the SU(4) as an approximate symmetry of 

the full effective Hamiltonian. So, following Drell, Gupta and Quinn8, we first examine 

the SU(4) symmetric part of the mean field expectation value: 

<H@=--$ <QB>2+x<Qq>2 
-( 

. 
rl 

(34 
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Within a given representation, this is maximised by choosing I$J > to be one of the 

maximal weight states, which are defined by 

< &x > = maximal, for any one X, 
< Q" > =o, q#X. (3.5) 

Due to the m(4) y s mmet,ry, all fifteen of these states are degenerate. Returning now 

to the full Wilson expectation value the two SU(4) breaking terms lift this degeneracy, 

introducing preferred directions in SU(4) space. Treating the SU(4) breaking as a small 

perturbation, we hrst analyse < Her, > in terms of the maximal weight states. This 

will enable us to determine the preferred baryon number and representat,ion content for 

I $ > . We will subsequently allow I T/J > to take up more general group orientations, 

within the preferred representation. We thus have to minimise 

<H,jj>=-<Qro> - 
NL 3 

<QB>2+cC9(r)<Qf)>2 
tl 

(3.6) 

with the Cq(r) g iven in Table 1. We see immediately a competition between the two 

SU(4) breaking t erms, the mass term wanting to point the maximal weight in the 70 

direction, and Wilson’s t term favouring the i7570 direction, since this has maximum 

Cq(r). These states are related by chiral transformations. Which state has the lower 

energy depends on the value of the hopping parameter. The degeneracy of such states 

is the signal for chiral symmetry restorat,ion to the Wilson theory. 

To find the preferred representation for I$ > we explicitly evaluate < H,,,f > 

for I$ > oriented in the 70 and i7570 directions, and for each representation we find 

that in the 70 direction the B = 0 representation would be favoured. However, in the 

i7570 direction there is a degeneracy amongst representations. A similar degeneracy 
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was found by Drell, Gupta and Quinn in their analysis of the SLAC lattice Theory.8 

They note that such a degeneracy is largely an artefact of the mean field ansatz for - 

the ground state. In a more general ground state, one expects the SU(4) symmetric 

part of < HeIf > to depend on < &,,(Q”‘)2 >, rather than XII < Qq >2, which 

will tend to favour the B = 0 representation. This has been verified by SDQW for 

the SLAC lattice theory, using more accurate block-spin techniques.2 We will thus treat 

this degeneracy as spurious, and henceforth take 111, > to lie in the B = 0, meson 

representation, with the Young diagram as in Fig. 2, e taking the value 2. 

It remains to find the preferred orientation of IT/J > within this representation, 

allowing for states more general than the maximal weight states. This will be the 

subject of the next section. 

4. Minimisstion of < Herr > 

Since colour does not appear explicitly in H,ff, but merely serves to determine the 

SU(4) representat,ion content of the single-site states, we expect the physics of Her, to 

be independent of the number of colours N. We therefore hrst consider the simplest 

case, the N = 1, Abelian theory, and allow the mean field state to take up arbitrary 

orientations within the B = 0 representation. We subsequently generalise this result to 

arbitrary N, introducing the additional assumption, justified by the N = 1 case, that 

only Lorentz invariant group orientations are allowed. 

(a) Abelian Theory For N = 1 the zero baryon number, mean field state lies in the 

5 of SU(4). I n erms of creation operators, these states are given by t 

11 > = bpqj0 > 

(4.la) 
l2>=$ (1+ 6i’bpp~) 10 > 
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13 > = 6pp > - 

14 > = bi+dilO > 
(4.lb) 

IS > = b;‘diIO > 

where the 1, 1 labels refer to spin components. We find it convenient to work in a basis 

with 70 diagonal. 

As discussed by Greensite and Primack’, these states group into two SU( 2) triplets, 

one SU(2) generated by chiral transformations, and the other by spin. Here the hrst 

three states form the chiral triplet, and the latter three the spin triplet. The chiral 

states are spin singlets, and vice versa for the spin states. All other SU(4) operators 

act between the two triplets. 

In the 70 diagonal basis the state 11 > is the “spin’ up state of the chiral triplet, 

corresponding to maximal < Q 70 >. Thus, recalling the discussion of the previous 

section, we expect this to be the preferred direction of the mean field in the limit of small 

hopping parameter, when the mass term is dominant. For large hopping parameter, we 

expect the mean field to maximise < Q i7s7e >. Whether in the intermediate region 

there is a degeneracy amongst the chiral triplet stat,es, which would be indicative of 

broken chiral symmetry, is the question we now investigate. 

We thus define the trial, single-site mean field state 

I$ >= 2 U;li > , C jail2 = 1 . (4.2) 
i=l i 

The ai’s are complex, variational parameters, constrained only by the normalisation 

condition. We use the overall arbitrariness of phase to fix al, the coefficient of the 
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chiral “up” state to be real. Now the only part of < Hell > which is sensitive to 

~- the sign of < g7s > is the mass term, which is diagonal and so phase independent. - 

We therefore fix the coefficient of the chiral “down” state, ag, to be real also. We then 

minimise < Hell > with respect to the remaining variational parameters, subject to 

the normalisation constraint. 

For r # 0, k finite, we find two distinct regions of solution, the changeover occur- 

ring at the value of hopping parameter ko = 1/6r2. The solutions are 

rz < Ko -I___ 

Ilc, > = I1 > I 

<&To > =2 Y 

< HejJ > = +(I-r2) , 

,$I > =;{(I+$ > +(I-?)/3 > ++-@,l)lz >} 

Ko 
<Q70’=2F ’ 

<Q G570 > = 2 

l&J - 
<H >efJ =-37;;-K(l+r2) . 

(4.3) 
With all other < Qq >= 0. 

Thus, as expected, the mass term determines the ground state structure in the small 

k region, and the vacuum here is the same as that of the chiral t,heory with a small 
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mass term added. Above the value I?o, the Wilson kinetic term has some effect. For all 

values of I? the vacuum breaks chiral invariance but not Lorentz invariance. Note t,hat - 

the vacuum is unique for every value of the hopping parameter. There is no degeneracy 

amongst the chiral triplet states, indicating that t,he underlying theory has no chiral 

symmetry, for any value of the hopping parameter. The only exception is in the chirally 

symmetric limit r = 0, r7r + 00, when the full SU(4) symmetry is restored, together 

with fermion doubling. Then the maximal weight states (Eq. (3.5)) form a degenerate 

set of possible vacuum states. 

(b) Non-Abelian Theory We now generalise this result to an arbitrary number of 

colours, N. The single site mean field state now belongs to the representation spec- 

ified by the Young diagram shown in Fig. 2, with e taking the value 2. We make the 

simplifying assumption that the ground state does not break the invariance of the lat- 

tice under 90’ rotations about the 2, y or z axis as was the case for N = 1. Thus 

< Qq >= 0 for all but the chiral generators &To, 975 and Qi75r0. In terms of the 

states, this implies a restriction to the (2N + I)-plet of state which forms a representa- 

tion-of the SU(2) g enerated by the chiral operators. 

Within this multiplet we parametrise the non-vanishing expectation values of the 

trial, single-site state according to 

< Q7O > = 2Nk co@ 

< Q75 > = 2Nk sinqh cod 0 < k 5 1 (4.4 

<Q i7570 > = 2Nk sin+ sine . 

SubstituGon into < He!/ > (Eq. (3.21)) gives 

< H,fl >= -;Nkeost,h-l?Nk2(I - r2(cos2(b + sin2qb cos28)) (4.5) 
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which is minimised for k = 1, ~0~24 = -1, independently of E. Minimising with 

respect to CJZ~ we find again that the mean field begins to turn away from its large k - 

value at the point Ko = 1/6r2. The minimum is given by 

co&$ = 1 ) r7- < I?() 

KO costi = r;: ) k 2 ko 
V-6) 

which leads to expectation vlues exactly as for the Abelian theory, up to an overall 

normalisation factor. Thus in the non-Abelian case also, there is no degeneracy amongst 

the chiral states, indicating that the Wilson theory is not chirally invariant at strong- 

coupling, for any value of hopping parameter. 

5. Discussion of the Large-N Limit 

We have found, assuming an alternating-site mean field vacuum structure, that 

the strongly coupled Wilson theory does not show the vacuum degeneracy associated 

with a broken chiral invariance for any value of the hopping parameter. This result is 

independent of the number of colours, N. However, the large N limit of this theory has 

been previously analysed by Smit,5 using a generalisation of the approximate spin-wave 

techniques developed by Anderson for the m(2) antiferromagnet.’ These methods allow 

a computation of the pion mass as a function of hopping parameter. In contrast to our 

result, Smit finds a critical value of the hopping parameter at which the pion mass 

vanishes, to leading order in N, indicating a broken chiral invariance at infinite N. 

The results of our mean field calculation strongly suggest the existence of this critical 

point to be a very special property of the large N limit. A brief consideration of Smits 

approach clarifies this point, and also shows why his result is not inconsistent with ours. 
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Smit assumes an alternating-site mean field ground state with the mean field point- 

ing in the 70 direction, as we found that it did for small enough I? (see Eq. (4.6)). - 

Thus 

< Qro = 2N 
(5.1) 

<Qa>=O, a#70 

The crux of Smits analysis is the assumption that the low-lying excitations of the mean 

field ground state involve only those states for which the Q70 eigenvalue remains of 

order 2N. Acting amongst these states the SU(4) generators satisfy 

Qy - 2N - O(1) 

Q; - O(n) for [Qa,Qrol # 0 (5.2) 

Qs - O(1) otherwise, 

where we have introduced site labels since these states are not in general mean field 

states. Thus at infinite N the SU(4) orientation of these states is indistinguishable 

from that of the mean field ground state, and any degeneracy amongst these states 

would not be apparent in our mean field calculation. With the above assumptions the 

effective Hamiltonian reduces to a sum of independent harmonic oscillators, and the pion 

identified with the oscillation generated by the axial charge. Its mass, WIT, satisfies 

2 
m7r - o(1) x (Kc -R)+0($ I?,=$ (5.3) 

Thus there is a critical point at infinite N. Note that the critical value of hopping 

parameter, kc, coincides with the point Ko, found in our mean field calculation, above 

which the mean field vacuum is turned away from the 70 direction (see Eq. (4.6)). Thus 

the tachyonic nature of Smit’s pion for values of K greater than the critical value is 

consistent with the instability of Smit’s vacuum in that region. 
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We conclude that the existence of Smit’s large-N critical point is not inconsistent 

with a unique mean field vacuum. However for any finite N we find that the pion mass - 

is always finite for any value of K. The fact that the correct mean field vacuum is not 

Smit’s assumed vacuum for k > Kc means that it is not possible simply to choose 

I? > kc in Smit’s formula for the mass to achieve zero mass at finite N. 

6. Conclusion 

We have studied the Wilson lattice gauge theory in the limit of strong-coupling for 

a single fermion flavour and both Abelian and non-Abelian gauge groups. Using an 

alternating-site mean-field ansatz for the ground state, we have found the vacuum to 

be unique and exhibit no broken chiraf invariance for all value of the Wrlson hopping 

parameter. Thus the physics of the Wilson theory at strong-coupling is never that of a 

theory with an underlying chiral invariance. Whether there exists a chiral continuum 

limit is, of course, an open question. Thus there is some doubt as to the suitability of 

Wilson’s lattice action for the study of chiral theories such as massless &CD. However, for 

the study of softly broken chiral theories, with a small fermion mass term, our results 

indicate that the Wilson theory with small hopping parameter is probably adequate, 

since the two theories have the same mean field vacuum at strong coupling. 

It should be mentioned here that the pion mass has been computed for the continuum 

limit of the Wrlson theory by Shigemitsu,’ using strong-coupling perturbation theory 

followed by Pa& extrapolation to the zero coupling continuum point. She finds that it 

is indeed possible to set the continuum pion mass to zero by a suitable choice of hopping 

parameter. However, this choice is not obviously related to any restoration of chiral 

symmetry to t,he underlying theory. 
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FIGURE CAPTIONS 

1. Young diagram for the SU(4) re p resentation content of the baryon creation op _ - 

erator. 

2. Young diagram for the SU(4) p re resentation of the single-site state of baryon 

number B = (! - 2)N. 
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Fig. 1 
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Fig. 2 


