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ABSTRACT 

We consider the idea of describing quarks and leptons, and their interactions, in 

terms of gauged supersymmetric generalized nonlinear sigma models. It is found that 

the best model is the one based on the Kahler manifold E7/sU(4) X U(1)4, with an 

atipropriate complex structure. The isotropy representation of the manifold is sufficient 

for embedding three families of quarks and leptons. We as10 discass the problem of the 

ABJ-anomaly which so frequently occurs in such models. 
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(1) The observed spectrum of quarks and leptons has expanded significantly during 
--~- 

the last ten years. According to their interactions, the fermions may be grouped into - 

three identical families, with two predicted members, Z+ and t-quark, yet to be contimed 

by further experiments. In m(3)c X mu X U( 1) unified gauge theory, each fermion 

family has the representation content (3,s) + 2(3* , 1) + (I, 2) + (I, I), omitting the 

U( 1) charges. In W(5) grand unified gauge theory, each family is described as 5* + 10. 

And in SO(l0) gr an d unified gauge theory, it is embedded in the 16 representation. 

An explanation for the repetition of the family structure is, however, still unavailable. 

Proceeding to conventional unified gauge theories with bigger gauge groups does not 

provide a satisfactory answer.’ 

(2) It is reasonable that the idea of compositeness may be useful somehow for explain- 

ing the quark-lepton spectrum. A main theoretical challenge here is that of reconciling 

the relatively small masses (and in some instances, possibly vanishing masses) of quarks 

and leptons with the large mass scale2 characterizing the extra strong interactions of the 

preons (the hypothetical constituents of quarks and leptons). The only analogous situa- 

tion known in particle physics is that of pions. They are composite and have relatively 

small masses; the masses are small because of pions’ role as Goldstone particles. 

Preon models in which massless composite fermions might be produced because of 

an unbroken chiral symmetry were, and are still, vigorously searched for after ‘t Hooft 

proposed the anomaly matching condition.’ Disappointingly, a commonly acceptable 

model of this sort has yet to be found. Another interesting proposal4 is to identify quarks 

and leptons as composite Goldstone fermions resulting from broken supersymmetries. 

This approach has the advantage of avoiding questions concerning the nature of preons 

and their interactions. It requires, however, too many supersymmetries, one for each 

two-component fermion. 
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(3) In this paper we shall consider gauged supersymmetric generalized nonlinear 

sigma models5P6 (henceforth to be referred to simply as GSGN a-models) for quarks and _ - 

leptons: Accordingly, quarks and leptons may be identified either as supersymmetric 

partners of the scalar fields of the a-models (henceforth to be referred to as a-fermions7), 

or as gauge fermions; or as some combination of the two. Since the scalar fields may be 

thought of as Goldstone bosons, like pions, the a-fermions may in this sense be regarded 

as composite. 

In 3+ 1 dimensional space-time, N=l supersymmetric generalized nonlinear u- 

models8 exist only for cases where the scalar fields take values on Kahlerian complex 

manifolds.g We shall focus our attention only on homogeneous Kahler manifolds ex- 

pressible as G/H, where G is a compact, connected, simple Lie group and H a closed 

subgroup. In order for G/H to be Kahlerian, it is necessary and sufficient” that H be 

the centralizer of a torus of G. The hermitean symmetric spaces considered in Ref. 5 are 

cases of a l-dimensional torus. H is the isotropy group of the manifold G/H. The scalar 

fields form a linear representation, usually reducible, of H, but a nonlinear realization of 

G. The a-fermions possess the same isotropy representation content. Indeed the fields 

of a-fermions span the fibres of the fibre bundle of which the Kahler manifold is the 

base.8 In cases where the choice of G and H results in a reducible isotropy representa- 

tion, inequivalent complex manifolds may be constructed.” The models are invariant 

with respect to transformations belonging to the group G. 

When gauging supersymmetric generalized nonlinear a-models based on the Kahler 

manifold G/H, one may choose to gauge the group G completely, or simply gauge any 

subgroup S C G. According to an argument5 based on counting of degrees of freedom, 

the supersymmetry will be spontaneously broken if S is not completely contained in H. 

The same condition also enforces the breaking of gauge group S to the subgroup S fl H. 
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Both supersymmetry and gauge symmetry would remain intact if S C H. If we denote 

the scalar boson fields and a-fermion fields as 4’ and X* respectively, and the gauge _ - 

boson Gelds and gauge fermion fields as Ap (4 and A(“) respectively, then the Lagrangian 

density can be expressed in the general form’ 

1 
- - igij* xj a“ Dp xi + i Ri~*j~(xixj)(~k X’) 

2 

+ e & gij*( V(“)’ xj ita) + v*Wj xi A(“)) 

where gij* and Rik*jC l are respectively the metric tensor and curvature tensor of the 

Kahler manifold G/H, V(“)’ are the Killing vectors, D(s) are real functions defined on 

the manifold such that 

iID gij, v*Wj = i ~ 
&is ’ 

and the covariant derivatives are 

D,, 4’ = a,, 4’ - eAl0) VtaIi 

Dp xi = a, xi + g’( - 
* * agje* 

wk 
Dp qP* xk - eAp 

(a) W(“” ,j 

-i&c- 

Dp A(“) = 8, h(U) + efa*c A!) A(“) 

Fj$ = a,, A$?) - a, At) + efabc At) At) . 

Of course the gauge coupling constant e may take a different value for each factor of S 

when S is a product of simple Lie groups and/or U(l).- 
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(4) Let us now estimate the lower bound on the dimension of group G such that a 

GSGN o-model based on Kahler manifold G/H may contain all the quarks and leptons, 

and unbroken color and electromagnetism gauge symmetries. We are convinced that 

there are at least three families of quarks and leptons, which amount to 3 X (5 + 

10) = 45 two-component Weyl spinors. In the context of supersymmetric generalized 

nonlinear b-model, each two-component Weyl spinors has a complex scalar boson field as 

its supersymmetric partner. Each of the complex scalar fields is regarded as a complex 

coordinate on the Kahler manifold G/H and thus corresponds to two generators of 

G. On the other hand, there is an unbroken gauge group which includes at least the 

SU(3)c x U(l) cm of chromodynamics and electromagnetism, which amounts to 8+1 

= 9 unbroken group generators. In summary, the dimension of G should be greater 

than (2 X 45 + 9) = 99. More specificaliy we have the following results: (i) For G = 

SU(n), dim G = n2 - 1, rank G = IZ - 1. The number of off-diagonal generators is 

(n2 - 1) - (n - 1)>99-2-1 = 96, therefore n 2 11. S?J(ll) has dimension 

120 and rank 10. (ii) For G = S0(2n), dim G = n(2n - l), rank G = n. One 

obtains n > 8. SO(16) h as d imension 120 and rank 8. (iii) For G = SO(2n + I), dim 

G = n(2n + l), rank G = n. One obtains n 2 7. SO(15) has dimension 105 and 

rank 7. (iv) For G = Sp(2n), dim G = n(2n + l), rank G = n. One obtains n 2 7. 

Sp( 14) has dimension 105 and rank 7. (v) E7 and Es are the only two exceptional Lie 

groups with dimension greater than 99. E7 has dimension 133 and rank 7. Es has 

dimension 248 and rank 8. 

(5) We shall now show that amongst the lowest rank candidates for G, namely, 

SO( 15) SP(I4), and &, only E7 leads to a Kahler manifold G/H with the desired 

isotropy representation content. The method to be employed is one of analyzing the 

representation content, with respect to a SU(5) subgroup of G, of the positive root 



systems of the Lie algebras. Relevant mathematical theorems concerning positive root 

systems and their connection to complex structures on the manifold G/H can be found _ - 

in Ref.. 11. 

The root system’:! of SO( 15) Lie algebra consists of fei, and fei f ej with 1 2 

i # j < 7. The ei’s are the basis vectors of the Euclidean space containing the roots. 

With respect to the ordering el > e2 > . . . > e7 > 0, the positive roots are ei, and 

ei f ej with 1 5 i < j 5 7. The roots ei - ej with 1 5 i < j 5 5 form the 

positive root system for a SU(5). Th e remaining ones have the following representation 

content with respect to the w(5), namely, {ei, 1 < i 5 5} * 5, {es} ++ I;, (e7) c-) 

1, {ei + ej, 1 5 i < j 5 5) * 10, {ei f e&l 5 i 5 5) * 5, {ei f e7,l < 

i < 5) t+ 5, and {es f e7) ++ 1. Obviously this list does not fit the known pattern, 

namely, 3 X (5* + LO), for quarks and leptons. Choosing a different ordering may only 

change some 5’s to 5*‘s, and/or 10 to lJ*, and therefore does not help. 

The root system of Sp(14) L ie algebra consists of f2ei, and fei f ej with 1 5 

i # j 5 7. Again take the roots ei - ej, with 1 5 i < j 5 5, as the positive 

root system for a SU(5). Th e remaining positive roots have the representation content 

(4 X I+ 4 X 5 + l5) with respect to the m(5) according to the ordering el > ep > 

. . . > e7 > 0. 

The root system of fi Lie algebra consists of fei f ej with 1 5 i # j 5 

6, f & e7, and (1/2)(fel f e2 f . . . f efj) f (I/ &)e7 with even number of plus 

signs in the bracket. With respect to the ordering (-es) > e7 > el > e2 > . . . > 

es > 0, the positive roots are ei f ej with 1 5 i < j 5 5, -f?6 f ei with 1 5 i 5 

5, c/2 e7, and -(1/2)egf(l/ d2)e7+(1/2)(fel fez f.. .&es) with even number of 

plus signs in the bracket. The roots ei -ej with 1 5 i < j 5 5 form the positive root 

system for a SU(5). Th e remaining ones have the representation content r = 3 X (A+ 



5* + IO) + 5 with respect to the SU( 5). Group theoretically this representation content 
--~- 

is sufficient for the observed leptons and quarks. The Kahler manifold with such an _ - 

isotropy representation is E7/SU(5) X U( 1)3 with a complex structure corresponding 

to the above choice of positive root system. However the representation is not ABJ- 

anomaly13 free with respect to the unbroken gauge group SU(3)c X U( l)em, assuming 

the standard embedding SU(3)c X U(1) C SU(4) C SU(5). In order to avoid this 

problem we are led to a bigger Kahler manifold, namely E7/SU(4) X U( 1)4 with positive 

root system chosen according to the ordering (-ecj) > e7 > eg > el > e2 > eg > 

eq > 0. [The positive roots of the SU(4) are identified as ei-ej with 1 6 i < j < 4.1 

The isotropy representation is I’ + 4*. 

(6) Similar analysis rules out the cases where the group G = SU(n), S0(2n), 

SO(2n + I), or Sp(2n), f or any n. Since Es > E7, there is no problem in finding a 

Kahler manifold of the form Es/H such that the isotropy representation can accom- 

modate the 3 X (5* + IO) of quarks and leptons, e.g., that of H = SU(4) X U(1)5. 

The dimension of Eg is, however, almost twice that of E7. Thus we conclude that 

E&U(4) x U( 1)4 with isotropy representation I’ + 4* is the best Kahler manifold for 

constructing a GSGN a-model for quarks and leptons. 

(7) What subgroup S C G shall we gauge. 7 We have to confine ourselves to an S 

which should include at least the SU(3)c X U(l), gauge group if the weak interac- 

tions are not regarded as mediated by sum gauge bosons of Weinberg-Salam-Glashow 

model, and to an S including at least SU(3)c X sum X U( 1) otherwise. In the ex- 

treme case where S = SU(3)c X U( l)cm, the gauge group S and the isotropy group H 

will align themselves such that S C H, so the gauge symmetry and supersymmetry are 

not broken. More specifically one may choose the embedding S = SU(3)c X U( l)em C 

SU(4) c H = SU(4) x U(1)4, with the standard fractional electric charges for quarks 
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and the charged lepton being regarded as the fourth color. This GSGN g-model, with 

--~- Kahler manifold &/SU(4) X U( 1)4 and gauge group sU(3)c X U( l)em, is free of _ - 
ABJ-anomaly. It consists of massless m(3)c X U( 1) gauge bosons and gauge fermions, 

and massless complex scalar bosons and a-fermions with representation content I’ + A*. 

On the other extreme, one may choose the gauge group S = G = E7. Then 

supersymmetry is inevitably broken while the gauge group E7 breaks into SU(4) X 

U( 1)4. All the scalar bosons are absorbed by the gauge fields associated with the broken 

generators of E7 and the o-fermions combines with appropriate gauge fermions to form 

massive four-component fermions with representation content I’ + 4*. The remaining, 

massless particles are the sU(4) X U(1)4 g au e g b osons and gauge fermions, and the left 

over two-component gauge fermions of the representation content I? + A*. The massless 

fermions give a nonvanishing contribution to ABJ-anomaly with respect to the U(1)4 

gauge group. 

In between the two extremes, the one with which we are most concerned is S = 

SU(3)c x sum x U(1). Th e a i 1 g nment between S and H is such that S n H = 

SU(3)c X U(l),, X U(l)z, where the U(l)z is the U(1) corresponding to the Z- 

boson of Weinberg-Salam-Glashaw model. Supersymmetry is broken while the gauge 

group SU(3)c X SU(2),5 X U( 1) breaks d own to sV(3)c X U(l),, X U( 1)~. The 

massive particles include two vector bosons, namely the usual IV:, and one fermion. 

The massless sector consists of w(3)c X U(l), X U(l)z gauge bosons and gauge 

fermions, one lefeover gauge fermion with charges identical to that of a left-handed 

electron, and scalar bosons and 6-fermions with representation content r + 3*. The 

model has a nonvanishing ABJ-anomaly with respect to the unbroken U(l)z gauge 

group. 
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(8) It is clear from the above analysis that it is difficult to avoid ABJ-anomaly in 

GSGN a-models. This is partly a reflection of the restrictiveness of the models. The _ - 

effect of ABJ-anomaly on GSGN u-models is still to be investigated. In conventional 

unified gauge theories, ABJ-anomaly could cause incompatibility among the require- 

ments of gauge invariance, unitarity, and renormalizability; and is therefore absolutely 

intolerable.14 Nonlinear a-models are well known to be nonrenormalizable; hopefully 

the abdication of renormalizability, together with the additional structures of GSGN 

a-models, would soften the effect of ABJ-anomaly, when present. A reasonable effect we 

would expect is that the corresponding gauge symmetry be broken. Thus, for example, 

the U(l)z gauge group mentioned above may be broken, and the Z-boson may derive 

a mass. 

(9) Another interesting effect is that of radiative corrections to the masses of mass- 

less scalar bosons and fermions. These corrections have to be calculated before any 

precocious attempt to compare the models with phenomenology in a detailed manner. 

(10) The GSGN a-model based on the Kahler manifold E7/SU(4) X U(1)4 runs 

into difficulty wit,h the goal of grand unification of strong, weak, and electromagnetic 

interactions. If we were to gauge, say, an SU(5) group rather than Su(3)c X Sum X 

U(l), the resulting unbroken gauge group would be SU(4) X U( 1). And the Wz bosons 

would be of the same mass scale as the baryon-number-changing gauge boson YP. 

One conceivable way to incorporate the Georgi-Glashow SU(5) grand unified theory 

of strong, weak, and electromagnetic interactions is to return to the Kahler manifold 

E7/SU(5) x u(Q3, and cancel the ABJ-anomaly of the isotropy representation r, dis- 

cussed in (S), by introducing an extra chiral superfield with, say, a 5* representation 

content with respect to the SU(S), and proper U(1) h c ar g es. For this minimally enlarged 

system one can gauge at least the SU(5) subgroup of & without breaking the supersym- 
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metry and the SU(5) gauge group iteself. Alternatively, it may even be possible to gauge 

a bigger subgroup of E7 so that the supersymmetry is broken and the unbroken gauge _ - 

group is SU(5) multiplying a torus; both cases are free of ABJ-anomaly with respect to 

the unbroken gauge groups. Extended GSGN a-models of this type are under further 

study. 
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