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ABSTRACT 

The known operator solution of the massless Schwinger model is used to calculate 

exactly, in three operator product expansions, the coefficient functions of the first 

few operators of low dimension which contribute when vacuum matrix elements are 

to be taken. A comparison of the results provides a test of the procedure used by 

Shifman, Vainshtein, and Zakharov in their study of &CD. It is found that the shift 

in vacua does not affect the calculation of coefficient functions. The vacuum insertion 

approximation yields somewhat misleading estimates of vacuum expectation values of 

some composite operators; however, the standard method used to estimate the errors 

of vacuum insertion indicates that the approximation is unreliable in this model. 
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1. INTRODUCTION 

The operator product expansion (OPE) [l] has proven to-be-a useful theoretical 

tool in a wide variety of circumstances. Of particular note, Shifman, Vainshtein, and 

Zakharov (SVZ) [z] initiated a semi-phenomenological program of the study of reso- 

nance physics in charmonium spectroscopy and e+e- annihilation at lower Q2, while 

others subsequently have applied their methodology to additional areas of hadronic 

structure [3]. 

Only matters which can be related to the vacuum expectation value (vev) of an op- 

erator product are potentially amenable to treatment by the SVZ prescription. Their 

analysis employs the OPE in its conventional form including terms of twist-4, and often 

twist-6. It is assumed that nonperturbative effects do not spoil the factorization ex- 

hibited by the OPE until terms of yet higher twist, or modify the coefficient functions 

of the low twist operators from the perturbative results. However, the nonperturba- 

tive features of QCD are presumed to give nonzero vev’s to the local, perturbatively 

renormalized and normal-ordered operators in the expansion. 

Typically, the operators which play a role are 1, : $4 :, : F2 :, 

: i rpx3 3 r&4 * ‘Y and : 3 XF+ypy54 4 XFy,y54 :, although other operators are impor- 

tant occasionally. [Hereafter, ]a) will denote the physical vacuum, as opposed to the 

perturbative vacuum, IO).] The quantity, (01 : $4 : ]St), can be estimated from results 

in current algebra, provided that the quark masses are known. In the view of SVZ 

it would be ideal if the other nontrivial operator vev’s could be estimated in terms 

of this one. In practice, (n] : F2 : IfI) is extracted from the analysis of charmonium 

spectroscopy, and the vev’s of the other fermionic operators are evaluated in terms of 

(n]:&:]n)by t re aining the vacuum as the sole intermediate state, i.e. (see [2]): 

(f-q : fjr1(b$r2+ : It-l) = $21 Tr rl Tr I+2 - Tt(rlr2)] (nl : $4.: ltJ2 . (1.1) 
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In this manner a number of fundamental, nonperturbative quantities can be studied 
--~- 

in &CD. _ - 

It is of interest to establish, though, whether or not the effect of nonperturbative 

elements on the structure of the OPE is in fact as assumed. The first treatment [4] of 

this matter was in a four-dimensional scalar field theory. The present paper addresses 

this issue in the context of massless QED in two dimensions [5]. 

The massless Schwinger model is an appropriate testing ground for a number of 

reasons. It is exactly soluble in Lorentz gauge with an explicit operator solution [6]. 

Cluster decomposition is violated when working in the perturbative vacuum, and one 

must shift vacua in order to restore it; the concomitant change in the operator solution 

on the physical subspace is known as well (61. The failure of cluster decomposition 

reflects the confinement of electric charge in this model; similarly, the confinement of 

color electric charge in &CD is known to be related to the breakdown of cluster [7]. 

Schwinger’s original solution for the Green’s functions could be found, presumably, 

though the summation of the perturbative expansion to all orders. It is possible, then, 

given the complete operator solution, to compare the exact expression for the OPE of 

any two operators obtained through a full calculation on the physical subspace about 

the perturbative vacuum, with that obtained about the true vacuum of the confined 

gauge theory. 

Of course, the only divergences which appear can be removed by normal ordering. 

Furthermore, the operators requiring subtractions do not acquire vacuum expectation 

values. Because of this, the issue of whether or not the subtractions required to 

normal order or renormalize perturbatively an operator are modified by non-trivial 

structure in the vacuum cannot be addressed here. The model is not asymptotically 

free (see however [8]); consequently, the problem of the convergence of the perturbative 

expansion of &CD, which poses an additional difficulty for the SVZ prescription, cannot 
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be examined here realistically either. These matters, among others, have been studied 

recently in a different two-dimensional model [9].- 

There are just two topics which will be addressed here. The first is the question 

of whether or not the SVZ prescription correctly arrives at the coefficient functions 

in operator product expansions. Secondly, the calculation of physical vev’s of fermion 

operators using the vacuum insertion procedure [see Eq. (Ll)] will be examined. 

Section 2 contains a review of the operator solution both on the indefinite met- 

ric ‘Hilbert’ space and physical subspace following [6]. A number of gauge invariant 

composite operators are constructed in Section 3 on the physical subspace. Then, in 

Section 4 three different OPE’s are computed using the operator solution, assuming 

that the final result is to be sandwiched between the vacuum state. Comparison are 

made among the various expansions before conclusions are given. 

2. REVIEW OF THE OPERATOR SOLUTION 

. For completeness the operator solution of the Schwinger model will be reviewed in 

this section following [6]. The conventions and notation of [S] and [lo] will be adhered 

to as closely as possible. 

Scbwinger originally used functional methods to arrive at expressions for Green’s 

functions in Lorentz gauge. The standard perturbative expansion of the Green’s func- 

tions could be generated from his initial formulation by usual techniques. His solution 

then must correspond to the summation of the perturbative expansion. The vacuum 

state in this treatment will be called therefore the ‘perturbative’ vacuum, for want of 

a better terminology. As will be reviewed below some Green’s functions calculated in 

the perturbative vacuum fail to cluster, and it will be necessary to shift vacua to the 

‘physical’ vacuum. 
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I -- 

Of particular interest are Green’s functions of fermion fields alone. (Ill] contains 

an explicit calculation of them.) A fermion Green’s function is expressible in terms _ - 

of exponentials of differences of free massive and massless scalar Green’s functions, 

multiplying the appropriate Green’s function of a free massless fermion. Lowenstein 

and Swieca [6] identified an ‘operator fit’ to the ‘renormalized’ Wightman functions. 

The renormalization was a finite resealing of the unrenormalized, interacting fermion 

field, 4, to form the field, 4. It will prove to be convenient here to work with the more 

standard field, 3. 

The operator fit of [6] which reproduces the unrenormalized fermion Wightman 

functions is 

fj (2) = exp [gw] 9w =exP [gw] =P (i fi T5 [i+ (4 + c+ k-l]} 1cl(4 

X ezp {ifi r5[ij-(2)+fT(2)]} , 
(24 

where $J is a free zero mass fermion field; 2 = c+ + c- is a free scalar field with mass 

m .= e/ fi: 

(01 c(x) ti (y)lO) = -iA-@ - y) , (2.2) 

5 IO) = 0 , (2.3) 

see [12] for the evaluation and asymptotics of A-(Z); and ii = G+ + G- is a zero mass 

field quantized with indefinite metric: 

(01 ;i (2) ;i (Y)lO) = iD-(z - Y) - (24 

D--(x) = ; / d2p s(p2) o(~o) [e+*’ - ~(lc - PO)] 

= -& en (-p2z2 - irz”) 



is the infrared regularized two-point function of ii, with /.L -II K exp [-I”(l)], [lo]. 

B(x) = in [A-(Z) --II-(+ - - P-6) 

B&4 
m2z2 

+‘&-- 4 + O(z2) . (2.7) 

Any physical quantity must be independent of p, the arbitrary infrared cutoff. 

From the Dirac equation, 

AC”(x) = - A cclv &, [g(x) + ij (x)] . m P-8) 

By substitution from (2.1) 

4 (2) at (Y) =ew [B(O) - 7: 7: B(x - dl 

: exp [i dg {7,5[fi (4 + C WI - 73t7 (Y) + 2 W 11 : f&4 ++(?A 
The properly defined current is 

j’“(x)=- lii Tr 70rP 
[ 1 

i(x)~+(x+~)-(0~~(x)~+(x+t)~0) 
$20 

x [l - ie ?AJx)]}] = i,“(x) -$ P’ d, k(x) 

(2.10) 

where - 

j,“(z) G : $(x) 7p $(z) : -+ PV a, ij(x) 

(2.11) 

j!(z) creates zero norm states from the vacuum, satisfies the wave equation, and 

Maxwell’s equations are violated by a term proportional to it, 

~3~F~‘(x) = -e[jp(x) -j:(x)] . (2.12) 
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It is appropriate, then, in analogy with the Gupta-Bleuler formalism, to specify the 

physical subspace, &hY8, by the condition _ - 

(2.13) 

The task of extracting the Wightman function on the physical subspace from 

Schwinger’s original solution is formidable. It is more convenient to construct operators 

which identically satisfy Maxwell’s equations, and then to construct their Wightman 

functions. Lowenstein and Swieca found a one parameter family of such solutions. For 

the purposes of this article it is sufficient to use only the solution specified by Q = J?r. 

The interacting field is 

@(x) = ezp rg (Q + 0) + ix+(z)] e(z) exp [ix-(x)] (2.14) 

with 

x*(x) = J;;jf(x) + 75 [J;;j* (2) + l/a* (x,] (2.15) 

where j,(j), is the potential (pseudopotential), of the free current with an infrared 

cutoff ([6] and [lo]), e.g. 

(2.16) 

The motivation for (2.14) is the following. The physical subspace can be constructed by 

applying Wightman polynomials of Fp”(z), j,“(z), and ezp[ifi q+(z)]$(z) 

ezp[i ,/F q-(z)], with F&~(z) = Spq(z), as these commute with j:(z). In the 

quotient space ~PhYs/#(), where #u is the space of all null vectors in M&s, $ vanishes 

or rl(4 = j(z) and ;i (2) = 3 (z). The expression for ~$fi( z) follows accordingly, up 

to the Klein transformation, the phase ezp[(h/2)(& + e)]. The introduction of it will 

prove to be convenient a little later. The Dirac equation for #fi gives 

(2.17) 
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The Wightman functions of 4fi are 

(Ol4fi(q). .4fi(~~)+~fi(yl). . . 4tfi(~n)10) = exp[iG(x, i)] d$(x, y) , (2.18) 

where 

7$7f,a-(zj-'~)+7~~7~~'-(~~-~~)] 

(2.19) 
- C T?~j7~~AB(Xj - Yk) - ’ g j,k 2k=l k (‘Y:r - ‘Y&+1-k 

and WY A are the Wightman functions of the Thirring model with CY = ,!3 = fi, in 

the notation of [lo]. WA (n) are in fact just constants (see [lo]): 

n 

c ( k 
k=l 

rB, -7in+1--L )I w$$x, Y) = (&)” - 
The Klein transformation cancelled certain phases in Wfi. 

According to Eqs. (2.18)-(2.20) one can write 

q+(x) = exp [i fi 7’C+ (x)] (-f-)1’20(x)exp[i fi r5 C- (x)] , 

where 

a(x) = \i { 2” exp 
P 

g (Q + 6) + i fi [j+(x) + r5 3’+ (x)]} $(x) 

X exp{iJ;;[j-(x) +75j-(x)]) 

must satisfy 

1449 4Y)l = [w,~+(Y)l = 0 ? (2.24) 
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(2.21) 

(2.22) 

(2.23) 



and all other Wightman functions of Q vanish. Effectively a(x) is independent of x. 

Equation (2.23) demonstrates the failure of cluster decomposition in the perturbative _ - 
vacuum. It can be restored by shifting to the physical vacuum 

lW2) =& E ei(n181+n*e*)(ul)nl (g2)n*l()) . (2.25) 
n1,n*=-00 

Here 07’ = u!. On the perturbative vacuum crlcrf = t72a2 ’ = 1; while on the 

physical vacuum more generally ai is a c-number, ai = exp(--idi). a(x) was the natural 

candidate for an operator which would create a charged state. The confinement of 

electric charge appears, in the physical subspace, as the transformation of a(x) from 

an operator to a c-number on the physical vacuum. 

In the next section the primary concern will be the construction of gauge-invariant 

composite operators. For that purpose it is convenient to define, in the physical sub- 

space, the bilocal gauge-invariant operator corresponding to the formal expression 

f(x,y) N ~(x)exp[ie[A~(t)dtP]~‘(y) . (2.26) 

The nonformal definition, analogous to Eq. (2.9), is 

?‘(x, y) = exp [B(O) - 7,57iB(x - Y)] exp [iK+(x, $1 Ilr(+b+(Y)exP W-(X, Y)l P-27) 

where 

I 

Wx, Y) = e / ~,WP + x(4 - X(Y) (2.28) 
x 

and x(x) is given by Eq. (2.15). p(x, y) differs from T(x, y) as defined in [6] by the 

factors involving B. Some rearrangement gives 

Y 
F(x,y) =h(x, y) exp -ifi 

/ 
Pdy ti+ (t)dt, q%&(x) qbtfi(y) 

2 1 
(2.29) Y 

X exp -ifi 
/ 

P’& c- (t)dt, 
2 1 
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where Eq. (2.14) has been used: 
--~- 

ik (x, y) =exp [B(O) - 727,5B(x - Y)] ev{ -ir[ Of 7ZrySP-7x - Y) 
- 727;A-(2 - Y)+(725+$)b-(x-Y)-; (75791) - (2.30) 

Substituting Eq. (2.21) into Eq. (2.29) and making further simplifications gives 

P(x,y) =& u u* lv(x,y) 

(2.31) 
: 

where 

3(x, y) =exp [B(O) - 7:7iB(x - Y)] exp(--is[(l + 7:7@-(x - Y) 

+(r,S+ryS)r(x-Y)-; (7$7$]} - 

(2.32) 

In this form, the shift of vacua can easily be taken into account. 

In summary, Eqs. (2.17) and (2.31) provide a succinct statement of the operator 

solution on the physical subspace. The shift from the perturbative to the physical 

vacuum is accomplished by changing 0 in eq. (2.31)from an operator to a c-number. 

3. COMPOSITE OPERATORS 

The principle used to construct composite operators will be Zimmerman’s definition 

of normal product operators applied beyond the context of perturbative theory. A 

Green’s function with the normal product composite operator N[O(x)] inserted on it 

is the finite part of the same Green’s function with the operator insertion of O(x) [l3]. 

The operator solution is written in terms of free fields. Often the normal product 

of two operators will be simply the Wick product of the operators as expressed in 
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terms of free fields. However, chirality-changing operators are the exponentials of free 
~-~- 

fields and a little care must be exercised in the definition of normal products of such _ - 

operators. 

The composite operators which are easiest to treat are those which are constructed 

out of Fpv alone. Those of interest are *F and F 2. *F requires no subtractions and 

is simply defined as 

*w = 2tpviIpAf(x)= 2mC(x) (3.1) 

F2(x) does require a c-number subtraction in order that all Green’s functions with it 

as an insertion are finite. 

N[F2(x)] = -2m2 : c2(x) : . (34 

Gauge-invariant composite operators with fermion fields are readily constructed 

from 9(x, y) on the physical subspace, using either eq. (2.27) or (2.31) as appropriate. 

Consider first the chirality-preserving operators. From Eq. (2.31) 

470 rc( f-(x, Y)] = & exp [B(O) - B(x - Y)l 

Tr[7’ rcl exp{- i27+r(x- y)+75K(x - YII} 

+7’@(x) - 2(y)) :] . 

Using results from [lo], 

exp{--i2n[D-(0 + 75fi-(i3]} = -i ,25!Eo . 

(3.3) 

(3.4) 
As in [6] one can define the current on the physical subspace about the shifted vacuum 

to be 

P(x) = - iii Tr{7°7p[f'(x+ c,x)-(01 f(x + ~,x)lO)]} 
r2#0 

(3.5) 
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Note that the unphysical, longitudinal part of the current, j;, has disappeared. Using 

eq. (2.27) the vector current has the same form on the physical subspace about the _ - 

unshifted vacuum as well. 

Equations. (3.2) and (3.5) indicate that there are curious relations among operators 

in the exact solution. Consider for example 

N[ P(x)Jp(x)] = -i : 8” c(x) 3, c(x) : = & N[F2(x)] (34 

where a total derivative operator has been dropped, and the equation of motion for 

2 has been used. Because of such identites there is some essentially inconsequential 

arbitrariness in the expressions of OPE’s. 

Digressing a bit, there is a natural definition of the stress-energy tensor in the 

physical subspace. Written in terms of the interacting fields, the symmetric stress 

energy tensor in the indefinite metric Hilbert space is 

tPV = tg + t!y 

where 

pv = 7 
-J+ f’,v + gpu 4F2 t 

tg = ~{$t707p(5v - ieA’) 4 - [(z” + ieA’) “‘1 r”7p 4) + (p t) v) . 

In two dimensions 

tw = - ! 
7 4g w F2 . 

Based on the correspondence seen in Eq. (2.26), 

[ 
$7O7q av - ieAv) 4 (x) * - 

I p! % Tr [70rp p(x,-Y)] , 
(wP#o 

(3.7) 

(3.8) 

(3.9) 

(3.11) 
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-- 

where the symbol, =+, denotes equality on the physical subspace. The normal-ordered 

stress energy tensor on the physical subspace can then be written as 

Tl”“(x) = f 
. 

m2gpv : C2 (2) : - t I@ 
(Z--yy)2;0 

(% - q 

X Tr ho?‘ IF (x9 Y) - (01 p (x, Y)IO)II + (y * 14 I . 

Definet=x- y. On the physical vacuum, 

lili ~3: Tr {7’rP [i?(x, y) - (01 f’(x, y)lO)]} = lili exp’“(~~~ B(S)1 
Pfo P#o 

(3.12) 

x exp i,/? ~“‘~~~(t)dt~-7~(~(x)-~((y)) : . 
I] 

Note that the nontrivial dependence on B dropped out after using Eqs. (2.7) and (3.7). 

The singularity of order l/E2 has been removed by the subtraction of the vacuum 

expectation value. After frequent use of the identity 

one finds that the terms of order l/f cancel, as do the direction-dependent terms 

proportional to c”c”/c2. The result is 

Fz 3: Tr b”rp I% Y) - PI @G Y)IO)II 
P#o 

(3.15) 

=t * : [(P c)(a” C) - f gyap cpp e,] (2) : ) 
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a direction-independent, covariant result. Finally, 
--.- 

.TpV(x) =: {(P %)(a” C) - f gpv [(a, c)(ap 2) -na2 CSI) (2) : . (3.16) 

This is just the stress energy tensor of a free, massive scalar field, and exhibits explicitly 

the known physical spectrum [14]. 

The simplest chirality-changing operators are given by 

D*(X) = - lim Tr 7’ $;o [ (%+J)] ’ (3.17) 

or 

D+(X) = exp[2B(O)](&)m& : exp[i2& c(x)] : , (3.18) 

D-(x) = exp[2B(O)] (f-)qt$ : exp [-i2 fi IQ(x)] : . (3.19) 

The difference between p(x, y) and T(x, y), as defined in [6], resulted in the factor of 

exp[2B(O)] h’ h w IC makes these operators independent of JL 

4. OPE’S AND VACUUM INSERTION 

The three OPE’s to be examined are those for a pair of vector currents, and two 

combinations of chirality-changing operators defined in the previous section. In each 

case, the OPE will be calculated on the physical subspace about both the perturbative 

and physical vacua. Then the vacuum insertion procedure will be criticized. 

The clearest perspective to adopt when calculating the OPE of 0,(x)02(0) is to 

imagine inserting 0,(x)02(0) ’ t m o a Green’s function, taking x -+ 0. Note that on 

the physical subspace all operators can be written in terms of o and E(x). In the 

end it is to be understood that the OPE’s will be sandwiched between vacuum states. 

Consequently, only spin-0 operators will be kept, and all total derivative operators will 

be dropped. 
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Consider first the OPE of a pair of vector currents. Prom eq. (3.5) and the 
~-~- 

discussion thereafter _ - 

(4.1) 

The calculation on the physical subspace is quite easy and obviously independent of 

the choice of vacuum. 

P(z) P(o) = ;(-g% + @W’) A-(z) + N[Jc”(z) J”(o)] (4.2) 

where 

N[P(z) J”(O)] =+ P : a,qZ) a,c(O) : . (4.3) 

The bilocal normal product can be expanded to give 

N[P(s) J”(O)] = N[P(z) J”(O)] + ;z,z, N[(dP aa JP(0))JU(O)] (4.4) 
The local normal products actually have the interpretation indicated by the notation. 

The spin-0 components of the operators on the right hand side of (4.4) can be projected 

out as usual. 

N[P(x) J”(O)] =fgp” N[P(O) &(O)] 

m2 -x(3 gp” x2 -2 a? dyv[J”(O)o Jcy(O)] + . . . 

In fact, from the exact solution 

(4.5) 

N[P(O) 0 Jo(O)] = -m2 N[P(O) Ja(0)] (4.6) _ 

though this is not particularly important. 

The OPE’s of chirality-breaking operators contain a little more structure. The 

important point to realize when working about the perturbative vacuum is that there 
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are no short-distance singularities in the product of two or more b’s, as eq. (2.23) indi- 
--~- 

cates. Therefore, the only contributions to coefficient functions arise from reordering _ - 

exponentials of the C field when necessary to form finite operators. This fact guaran- 

tees that the OPE’s calculated about the perturbative and physical vacua will agree 

completely. Explicitly, 

m2 ‘ho 
D+(x) Wo) = sz e 

e-4rriA-(z) : ei2&qz)-qo)j . . 

m2 
=s 

e270 e -4niA-(z) (4.7) 

:V am, g(O):]+ . . . 

From eq. (3.5) 

: a’l qop, c : = -7r N[P(x) J,(O)] =4 7r N[D+(O) D-(O)] , (4.8) 

where the last equality follows by a Fierz transformation. Equation (4.7) becomes 

m2x2 
D+(x)D-(0) = -- e270 e -47riA-(z) 

4 

{ 

1 
-4R222+i@ 

’ fi m *F(O) + N[D+(O)D-(O)] + . . . } 

In this-form one can easily check that the free-field expansion is recovered as m or e 

vanishes. 

The final expansion examined is 

m2 D+(x) o+(O) = (0; c2)2 ~16R2 e270 : e2JjTi2(‘) : : e2J;rQo) : (4.10) - 

It is tempting to Wick-order the two exponentials; however, the product is not singular 

in the limit x + 0 because e 4niA-(zl is not. The correct way to express the product 

of exponentials in terms of local normal-product operators is simply to Taylor expand 
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the first exponential about x = 0. Note that the first two terms in the expansion 

vanish when multiplied by : e’fi”(‘) : For example, _ - 

27ri : e2J;;ic(o) 8, 2 (0) : : e2JjTiQo) : 
= tTo a, 

{ 
e4niA-(z) : e2J?Fi[e(z)+k(o)] : 

> 
=o . 

(4.11) 

This is a reflection of Fermi statistics; the fermion field has only two-components so 

that 3 (1 + 75)4 4 (1 + 75)9(O) and 3 (1 + 75)4 dp $ (1 + 75)4(O) must vanish. The 

remaining terms in the expansion are simply interpreted. 

D+(x) D+(O) = 2 p v lx 2 N[D+(O)PiYD+(O)] + . . . (4.12) 

The shift in vacua did not affect the three OPE’s examined above. The estimation 

of the vev of the operator N[J,(O)Jp(O)] = -4N[D+(O)D-(0)] by vacuum insertion is 

not precisely correct, however. In the exact solution this operator’s vev is zero, while 

vacuum insertion estimates 

(4.13) 

Following SVZ [2] one may try to estimate the corrections to the vacuum insertion 

procedure by calculating the contribution from a single particle intermediate state. 

For simplicity, consider the vacuum with 81- 82 = 0. Including the correction, 

FvIJpJ~ll~) = -(ill $#l)2 1+ 2(1+ e-27o 
[ )ib- 

dp +. . . , 
p2+m2 1 (4.14) 

where a cutoff has been introduced to regulate the logarithmic ultraviolet divergence. 

SVZ encounter a similar divergence in the corresponding calculation in QCD and 

choose a cutoff of approximately 1 GeV, the scale at which precocious scaling sets in. 

The criterion in the case at hand is somewhat arbitrary, but one expects that $ x 1. 
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Then, the correction is as large as the first term and approximation would not be 

expected to work. _ - 

5. CONCLUSION 

The operator product expansions were unchanged by vacuum shift. Vacuum in- 

sertion is not particularly accurate; however, the procedure used by SVZ to estimate 

the errors would have indicated that the approximation could not be trusted in this 

instance. The underlying assumptions of the SVZ program prove to be justified in this 

model, though it may well be too simple a model to provide a serious testing ground. 
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