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ABSTRACT 

Spontaneously broken supergravity might help us to understand 
the puzzle of the mass scales in grand unified models. We describe 
the general mechanism and point out the remaining problems. Some 
new results on local supercolor are presented. 

To begin let us remind you of the specific motivation that led 
to the application of supersymmetry' to grand unified models. It was 
the problem of three mass scales that we did not understand in terms 
of each others. These were the Planck mass Mp k 1Olg GeV which we 
know from the gravitational interactions, the speculative grand 
unification scale MX N 1014-1016 GeV related to proton decay and 
MW w 100 GeV, the breakdown scale of the weak interactions. A first 
inspection of these three scales shows that MW is tiny compared to 
the other scales: Mw z 0. One would like to understand why this is 
the case. An explanation could be a symmetry that.keeps Mw small. 
Since the breakdown of the weak interactions is realized through 
vacuum expectation values of fundamental scalar fields we have only 
one choice for such a symmetry: Supersymmetry. In order to have 
Mw # 0 supersymmetry should be (spontaneously) broken at a scale MS 
that is related to Mw. Once such a relation is established there 
remains the question whether one has gained anything. One has re- 
placed MW by MS and one has now to face the problem to explain MS in 
terms of ME and Mp. There have however been some improvements. The 
first is a technical improvement due to the special behavior of 
supersymmetric field theories. It gives us the possibility that mass 
relations established at the tree graph level remain stable in per- 
turbation theory. Secondly it is possible that MS is much larger 
than Mw. The ratio can be as.big as M /Mw N log as shown in the most 
promising globally supersymmetric mode s.2 s Such a large scale, 
however, leads necessarily to the introduction of supergravity since 
the gravitino mass m3/2 is given by Mg/MP which is now as big as the 
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weak scale. Spontaneously broken local supersymmetry has additional 
desired properties. It admits vanishing vacuum energy in the case 
of broken supersymmetry (which was impossible in the global case). 
Through the superHiggs effect the goldstino is absorbed; and finally 
it admits the Planck scale MP to appear explicitly in the model. 
Maybe the small scale MW 
scales MK and Mp.4 

can only be understood in terms of the two 

One thus is tempted to apply N= 1 supergravity to the models of 
high energy physics.5s6 N=l s upergravity is a nonrenormalizable 
theory and we can at best use it as an effective Lagrangian approach 
with the central assumption that there exists a satisfactory theory 
of gravity (which we do not know yet) for which N=l supergravity is 
a (good) approximation. This final theory should provide us with a 
cutoff for our nonrenormalizable approximation. 

In such a model we assume that the gravitino mass is of the order 
of the weak scale and there are now two questions to be answered: 

(1) How does one obtain a small scale m 3/Z? 
(2) How does the breakdown of local supersymmetry induce the 

breakdown of the weak interactions? 

We restrict ourselves to models where m3i2 is the only small scale 
and where the weak interactions are restored in the limit m3i2 + 0. 
Before we start our discussion we give the necessary formulae 
following the work of Cremmer et al. 5 for a single chiral superfield 
(z,x,h) coupled to supergravity. The model is -characterized by a 
Kshler potential (M=MP) 

(1) 

where g(z) is the superpotential and 

kc- 3M2 log (-$/3) (2) 

represents the choice of kinetic terms. Globally "normal" kinetic 
terms correspond to7 

(3) 

-. 
To discuss the model in supergravity one often makes the simplifying 
assumption of minimal kinetic terms 

9= 

which we will also use throughout this paper. In the presence of 
supergravity the scalar kinetic terms become 

M2 & l$,~1~ = M2 Glzz* I$z~~ . 

(4) 

(5) 
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The potential is given by 

V= -M4exp (-G) 3 + 
[ ~cr~,~] l 

(6) 

- . 

The transformation law for the chiral fermion is 

6x = 2M2 exp (-G/Z) Glz* E + 

l -* s 

(7) 

where the dots denote field dependent terms. Formula (7) is the 
relevant expression to decide whether supersymmetry is broken or not. 

We can now compare the corresponding formulae in the global and 
local case (we use minimal kinetic terms). The potential 

VL 

The order parameter 

FLI 
' _ ti 

M2 1 ; VG = lFG12 . (8) 

ZJ; 

zg ; 

.FG=z-. (9) A& 
F~ aZ+ 

The supersymmetry by breaking scale is given by 

; M; = (FGj = Ecac . (10) 

Observe that the relation MS = Evac is no longer valid in the local 
case. The massless Goldstino is absorbed by the gravitino which has 
a mass 

Mi 
m3/2 

=- . 
J5M 

This concludes our presentation of the notation. 

The most exciting property of N=l supergravity is the possibili- 
ty to induce large mass gaps. A large hierarchy of mass scales can 
appear in which two large masses induce a small mass. This behavior 
has first been observed in a pure Yang Mills gauge theory coupled to 
supergravity,4*a A condensation of the gauginos X at a scale 
<xx> = p3 was shown to break local supers 3 ytry at a scale M z - u3/M 
resulting in a gravitino mass m3/2 w u /M . A scale u as large as 
the grand unification scale MX and the scale M induce a small gravitino 
mass of order of a few TeV. A closer look at the situation showed 
that in this case nothing else could have happened since we know that 
the XX-condensation does not break global supersymmetry.' The break- 
down scale Mg has to be suppressed by l/M to disappear in the global 
limit M -+ a. 
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Meanwhile the general coupling of Yang Mills interactions to 
N=l supergravity has been worked out.6 Consider a pure gauge theory 
and a chiral superfield in supergravity.1° The transformation of the 
chiral fermion now reads as follows -. 

6x = exp (-G/Z)G' + t f'(z) xx E . (11) 

Suppose that G' vanishes at the minimum. A condensation of the gauge 
fermion breaks supersymmetry provided that f'(z) = af(z)/az is nonzero, 
The function f(z) denotes nonminimal kinetic terms for the gauge 
interactions. Such nonminimal kinetic terms are known to exist in 
extended supergravities, whereas in N=l supergravity this function is 
a free parameter. Suppose we choose 

f(z) = 1 + CJ; . (12) 

The condensate <XA> = u3 then leads to a breakdown of supersymmetry 
at the scale 

and a gravitino mass _- 
3 

m3/2 = 4;M2 
. 

(13) 

(14) 

This is true for general f as long as the vacuum expectation values 
of the scalar fields are not much larger than the Planck scale. 

The condensate will in general lead to a cosmological constant 
as can be seen from the general form of the potential 

2 
v= - 3exp (-G) + exp (-G/Z) G' + $ f' XX . (15) 

This cosmological constant can however be cancelled by the scalar 
sector at the cost of one fine tuning of parameters. This will be 
seen later in special examples. 

The most important result is Eq. (14), m3i2 - ou3/M2. In 
principle one could imagine such a relation to occur in models with 
only chiral superfields. Suppose one has a superpotential-g(z) with 
an intrinsic scale p. In general one would then expect to have at 
the minimum go = Au3 where X is a coupling constant. If global 
supersymmetry would be broken this would lead to Mg w Xv2 not much 
different from the scale u. Suppose now however that we have broken 
supergravity with vanishing vacuum energy. Formulae (8) and (10) then 
lead to 
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comparable to (13). Unfortunately nobody was able up to now to find 
a  superpotential that leads to (16) where vanishing vacuum energy is 
achieved for the absolute m inimum of the potential. The only known 
superpotential that has broken supersymmetry and Evac=O at the 
absolute m inimum is5 - . 

g(z) = m ’(z+B) (17) 

with B = t(2 - fi)M. The supersymmetry breakdown is of order m  and 
one has to choose m  w 10 l1 GeV to obtain a  gravitino mass in the TeV 
range. In the dynamical case CEq. (14)l the scale p  could, however, 
be  as large as the grand unification scale to obtain m3 j2 N O(Mw). 

G iven now a  scale m3/2 N O(Mw) we are confronted with the 
question how to apply the supersymmetry breaking11a20 to mode ls of 
quarks, leptons and Higgs particles. The supersymmetry breakdown has 
to appear in general in a  distant (hidden) sector in order to keep 
the splittings in the observable particle spectrum as small as "312. 
This can be achieved of the hidden sector couples only gravitationally 
to the observable sector. The superpotential is split into two 
pieces, e.g. 

glzPLi) = g(‘> + g(Li) (18) 
_- 

where z denotes the hidden fields and Li the observable fields. W e  
now want to discuss the question under which circumstances the break- 
down of supergravity can induce the breakdown of the weak interactions 
and thus provide a  link between m312 and Mw. W e  will split this 
discussion into two parts and first discuss the SU(3) x SU(2) xU(1) 
mode l in the TeV-region and later on  include grand unified mode ls. 

In the first case the Li in (18) denote light fields; quarks, 
leptons, etc. According to our motivation we demand the naturalness 
condit ion15 that g(Li) be  scale invariant. Superpotentials that 
violate this condition necessarily contain explicit small mass 
parameters (-100 GeV) for which we do not understand why they are 
small. This condition gives 

(19) 

-. The low energy theory contains besides the quark and lepton superfield 
Higgses in the 2+2 representation of SU(2). This is however not 
enough if the naturalness condition is imposed since g(Li) would then 
consist only of the Yukawa couplings and have a  Peccei Qu inn symmetry 
under which H and 3  have the same charge. The simplest extension is 
the inclusion of a  singlet Y with YHfi+Y3 couplings.15 

To  discuss the low energy potential it is convenient to go  to 
the flat lim it M+m, m312 fixed.13 One then arrives at a  softly 
broken globally supersymmetric theory. The soft breaking term include 
gaugino masses, scalar masses and scalar trilinear couplings. If one 
restricts oneself to a  pure scalar hidden sector with m inimal kinetic 
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terms and imposes (19) the low energy potential turns out to be15 

v LE 
+ All13/2(g+g*) + mi/2 lLi12 ’ (20) 

More general forms13s20 can occur if one does not impose (19). A is 
a pure number and depends on the hidden sector. The sppearance of 
this terms breaks all R-symmetries that might have been present in 
the model. In the case under consideration the coefficient of the 
last term is universal. We will see later on that this need not be 
the case in general. Gaugino masses are generally expected6 of order 
m3j2, but could be smaller. Radiative corrections2in connection with 
this masses break the universality of the m2 3/2ILil terms, such that 
even negative mass' for the Higgses might occur.4914 But let us first 
discuss the tree graph level situation. Since g(Li) is scale invari- 
ant we know that V -0 at the point where all fields have vanishing 
vacuum expectationLtalues . To induce a breakdown of SU(2) xU(1) VLE 
must admit solutions at negative energies. The trilinear term is the 
only term that can give negative contributions. For A=3 one obtains 
from (20) using (19) 

'LE = lgli + m3/2 L:12 1 0 . (21) 

This shows that A 2 3 is a necessary condition to induce an 
SU(2) xU(1) breakdown at the tree graph level,.and this result is 
still independent of the special form of g(Li). A depends on the 
hidden sector. For g = m2(z+ S) one obtains A = 3 - fi. Even of one 
allows more scalars in the hidden sector one usually obtains this 
value as long as one uses (18). A model with A= 3 has been found16 
by replacing (18) by 

g(z,Li) = m'(z+B) exp . (22) 

This model has the nice property that A does not receive quadratic 
divergencies in one loop gravity corrections.21 Generalizations of 
(22) have led to models with A > 3. 

If one includes a strongly interacting Yang Mills theory in the 
hidden sector the situation becomes more general. The low energy 
potential readslo 

V = lgli12 + h3,2(g+g*) + Bm~,21Li12 (23) 

with 
A=- +‘?! (z,/M) 

and 
B = -2 + M21G;12 + $ G' f'XX 

4m3/2 

(24) 

(25) 

The main difference is now that B can vary. Weak interaction break- 
down at the tree level requires now either A 2 3fi or B I 0. 
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The cosmological constant induced by the condensate has to be 
cancelled by the scalar sector. 

= m'(z+S) to do this. 
Let us use the superpotential 

g We have explicitly computed two cases S =0 
and 6=2M. In both cases one is able to cancel the cosmological 
constant by adjusting m2 to special values." fk the case !3=0 we 
obtain 

for B=ZM 

A = - 1.33 ; B = 1.59 (26) 

A=& ; B = -2 (27) 

It is evident that we can reach all values 1.59 2 B 2 -2 by varying 
$ in the range 0 I B < 2M. One thus can obtain models where B is 
close to zero. B remained still universal and this might cause pro- 
blems as has been pointed out by Frsre, Jones and Raby.'* They showed 
that in models with A 2 3fi the absolute minimum usually corresponds 
to broken electric charge, due to the small Yukawa coupling that is 
responsible for the electron mass. This is a serious problem but it 
could perhaps be cured with cosmological arguments - the absolute 
minimum is separated by a high barier.22 

This problem exists strictly because of the universality of B. 
This universality, however, is broken by radiative corrections which 

_ enhances the B values for quarks and leptons and reduces those for 
the Higgses of the model has a top quark mass larger than 20 GeV.23 

_ A model with A close to 3 and B, close to one would not suffer from 
this problem. It might even be that B is changed to negative values 
by radiative corrections. Starting with B=l this however requires 
a large lower bound mt N 60 GeV on the top quark mass.24 It might 
therefore be useful to consider models with potential like (23) which 
have a small B.l",lg 

It is thus possible to construct models in which the gravitino 
mass induces the breakdown of the weak interactions, and which con- 
tain no small mass parameters. The breakdown of SU(2) xU(1) is solely 
induced by supergravity which can be read off from (23); in the limit 
"312 -+ 0 SU(2) xU(1) is restored. 

The next step is to include grand unification. The super- 
potential g(Li) now contains also heavy fields. For these heavy 
fields we allow explicit mass parameters p of the order of the grand 
unification scale. -. For the light fields we however still impose 
condition (19). This discussion is still relevant here since there 
is a hidden way12s2o to break this condition in grand unified models, 
which usually leads to a breakdown of SU(2) xU(1) through a fine 
tuning. Let us take a simple example to explain this 

g =,XAz4H5i$ + mH5HT . (28) 

In this model one has to fine tune to keep the Higgs doublets massless. 
One solves the equations lglil =0 and determines the vacuum expecta- 
tion value of A24. One then adjusts m in such a way that the Higgs 

. 
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doublets remain massless. This is the right way to fine tune in a 
globally supersymmetric model. In local supersymmetry one has to 
fine tune differently. The vev of A24 is determined from 
lgli+ (L2/M2>gI =O and differs from the one in the global theory 
slightly by an amount of order rn3i2: If one now fine tunes in the 
global limit one induces a small mHH mass parameter in the local 
theory. This leads sometimes to a breakdown of SU(2) xLJ(l), but this 
is not a breakdown induced by supergravity. It can be removed by a 
slightly different choice of the fine tuning procedure. Models that 
avoid the fine tuning through group theoretical reasons25 (like models 
with 75, 50 and 50 representations) immediately rule out this possi- 
bility. As a result, the low energy effective potential remains 
unchanged. 

To discuss grand unified models we use a toy model with one 
light (L) and one heavy field (B) and a superpotential 

g = uB2 + AlB3 + h2B2L + X3L3 + X4BL2 . (29) 

In the limit M-+=J and 1-1, m 3,2 fixed this leads to the following 
potential 

V = 12uB + 3XlH2 + 2X2BL + A4L212 

2 
+ Ix~B' + 3X3~' + 2X4BLI + Bm:,2(1Bl 2+ /LIZ> 

+Alll 3,2(XlB3 + X2B2L + X3L3 + h4BL2 + hoc.) 

+ (A-l)m3,2 (,B2 + h.c.) (30) 

-. 

Observe that all splittings are of order m3i2 except for the last 
term which is of order um3/2. Thus the heavy fields are split by 
a large amount, and one has to worry whether this might induce large 
splittings in the low energy sector through radiative corrections. 
The light fields are coupled to the heavy ones through the couplings 
X2 and X4. Let us discuss the two terms separately. 

The effect of X4 can be seen in the tadpole of Fig. 1. It gives 
a contribution ~m3,2(L2+L*2) in leading order. This is however 
cancelled by the graph in Fig. 2. What remains are contributions of 
order rnsi2. Graphs where a vertex uXl (in Fig. 1) is replaced by 
Am3/2hl also give contributions of order m$,2(L2+L*2). Thus the 
hierarchy remains stable. The exercise shows however that m3/2 cannot 
be much larger than the weak interaction scale MW, even of the param- 
eters A and B are very small. 

We proceed to discuss the terms proportional to h2 (from h2B2L). 
A graph like Fig. 3 which contains (A-l)um3j2 and m3j2X2 terms 
explicitly is not cancelled by any other graph and contributes with 
um3/2 to the mass of the light particles. The reason is the light 
partic>e exchange in Fig. 3. In the previous case (X4) these 
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Fig. 1. Potentially 
dangerous contribu- 
tion to light narti- 
cle masses. 

pm 3/2 

_- B Q B 

L 
AI A4 

L 

contributions were suppressed by the heavy 
propagator. As a result the tree graph level 
hierarchy in our toy model is spoiled. 

In realistic models this problem occurs 
only if the model contains light singlets 
that couple via A2LB2 to heavy particles, but 
most of the locally supersymmetric grand 
unified models have this disease. It appears 
in graphs like Fig. 4 where a light singlet 
connects the light Higgs doublets with the 
heavy triplets. The problem usually persists 
even in more complicated models that contain 
light singlets.27 The only natural way to 
solve the problem with a light singlet is to 
impose a discrete symmetry that does not 
allow the feeddown of urn3i2 to the light 
particles. Such a symmetry, however, makes 
it difficult to generate masses for the Higgs 
triplets, which however can be solved by 
imagination and a fairly large amount of 
group theory;28 The cleanest way, however, 
is the absence of light singlets. 

Ultimately one might understand MY from 

It seems at the moment that the marriage 
of localsupersymmetry and grand unification 
leads to phenomenologically acceptable models. 
It might even be possible to understand the 
small mass scale in form of a conspiracy 
of the two big es MX and Mp as described. 

Z-83 

Fig. 2. Cancels con- 
4464A2 

tribution of Fig. 1 
to leading order. 

gauged extended supergravities where the 
gauge interactions become strong at MX and 
breaks the last remaining supersymmetry. The 

pm3/2 

t’ t’ 
L m3/2 ‘3 L fi2 m3/2X3 H2 

2-83 4464A3 Z-81 4464A4 

Fig. 3. Tadpole that 
spoils the hierarchy 
in the toy model. 

. 

Fig. 4. The contri- 
bution that is rele- 
vant in grand unified 
models. 

small gravitino mass 
can induce the break- 
down of SU(2) xLJ(1) 
in a natural way. 
This could be achieved 
in several ways 
depending on the 
parameters of the 
special model. Those 
parameters, however, 
can only be fixed by 
new experimental 
input. 
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