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ABSTRACT 

We impose the requirement of good high energy behavior on j j + W+W- scat- 

tering amplitudes for effective theory of electroweak interactions in composite models. 

We find that there exists a set of constraints on the form factors which we call the 

“evolution condition” any such theory should obey. According to this condition the 

electromagnetic and weak interactions are “unified” in a less stringent way than the 

so-called “unification condition.” In addition, the effective theory should have a well- 

defined evolution governed by the constraints on the form factors. We have checked this 

condition on several 7 - W mixing schemes. Possible experimental tests are discussed. 
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1. INTRODUCTION 

So far all the low energy phenomenology of electroweak interactions is consistent 

with the standard model predictions. Even the recent data from CERN’ on the W-boson 

mass seems to be close to the value expected by the standaid model. But there are also 

difficulties in the standard model: the “generation problem” associated with lepton- 

quark masses; the large number of parameters; the “naturalness” problem associated 

with the Higgs particles; the “desert” between lo2 GeV and 1015 GeV; . . . One wonders 

whether these difficulties could be avoided. 

There are, on the other hand, radical alternatives (as opposed to extended gauge 

theories) to the electroweak interactions advocated by Bjorken2 and by Hung and 

Sakurai.3 In these non-gauge-theory alternative models, the low energy phenomenol- 

ogy can also be successfully reproduced. However, the price to pay is, aside from the 

non-renormalizability of their models, that the aesthetic beauty of unification between 

the electromagnetic and the weak interactions is not any more guaranteed as in the stan- 

dard model. This is because in these non-gauge models-extra parameters are present. 

For example, in the Hung-Sakurai model an extra parameter appears through the 7-W3 

mixing strength. 

To find constraints on this extra freedom, Hung and Sakurai imposed requirements 

based on general principles. In particular, by imposing “asymptotic m(2) X U( 1) 

symmetry” on the neutral current Hamiltonian, they arrived at a constraint between 

EM and weak couplings which they called the “unification condition.” Namely, the ratio 

of the two couplings g is identical to the mixing strength X between the photon and the 

neutral weak-boson intermediate states. It is under this unification condition that all 

the low energy predictions, including the Weinberg mass relation, are identical to that of 

the standard model. This is actually not very surprising since one also has the property 

of asymptotic SU(2) X U( 1) gauge symmetry in the standard model when the energy 

is much larger than the scale of spontaneous gauge symmetry breaking. 

What surprises us is that they get the same unification condition by imposing an- 

other independent requirement. If one uses the so-called “minimal substitution scheme” 

for W* couplings (see Sec. 3) and requires for good high energy behaviors of u P -+ 

W+W- or e+e- --) W+W- scattering amplitudes, one will again arrive at the same 
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condition b e = 1. Is this merely a coincidence? Or maybe the Hung-Sakurai model has 

mimicked the gauge coupling structure too much via the minimal substitution scheme? 

In recent years, there has been a large industry of composite models of leptons 

and quarks4, which aim at solving the difficulties associated with the standard model. 

Among widely different approaches, there is a class of composite models that treats the 

weak-bosons also as composite particles. As a result the weak interactions are never 

more mediated by the gauge fields. It is in this context that the Hung-Sakurai model 

has been largely used5 at the composite effective level so as to reproduce the low energy 

phenomenology of electroweak interactions. 

Again, the question of how EM interaction and weak interaction are unified arises. 

With rather strong assumption of complete W-dominance for the photon couplings, 

KSgerler and Schildknecht’ and Kuroda and Schildknecht7 were forced to impose the 

unification condition due to universality. Without this strong assumption, one wonders 

whether the unification condition can still be obtained in composite models. Notice that 

if we ask for asymptotic properties of a composite system, potential complexities will 

arise. In particular, when 8 2 A2, where A is the mass scale of the underlying dynamics 

of the subconstituents, many new effects are expected to turn on. 

Nevertheless, if we assume that A2 >> M$ g (which is the- case from various 

constraints8) then there is still a very large energy range (i.e., 4M$ < 8 < A2) where 

we don’t see much “oasis” in the “desert.” It is within this energy range that the 

study of asymptotic SU(2) X U( 1) y s mmetry and good high energy behaviors of the 

j j -+ W+W- scattering amplitudes can be carried out without involving unwanted 

complexities. 

In this paper we shall show that, under the requirement of good high energy 

(4M& << s 5 A2) behaviors of j? -N W+W-, the W form factors due to com- 

positeness should obey a set of constraints which we call the “evolution condition.” 

This evolution condition tells us not only how EM and weak interactions should unify, 

but also how an effective electroweak interaction should evolve. Namely, we found that 

for any composite model with effective electroweak interaction the relation between e 

and g may deviate from the unification condition. In addition, this effective description 

of the electroweak interaction should evolve in the following way: At low energy it is al- 

lowed to be non-standard although all other predictions like GF, sin2Bw, and p should 
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agree with experiments. As energy goes higher, the form factors of the W couplings 

should evolve into a Yang-Mills-like structure, so that this effective theory evolves into 

a gauge-like theory. 

One may observe that our approach to the constraints on W couplings is in the 

same spirit as that of Llewellyn Smith and Cornwall et al.’ The main difference is 

that we replace the assumption of point-like couplings by the form factor effects due to 

compositeness. 

The contents of this paper is the following: in Sec. 2 we review briefly the 7 - W 
mixing formalism in general cases. The “unification condition” is introduced through 

asymptotic SU(2) X U(1) y s mmetry. In Sec. 3 we derive the evolution condition in 

a primitive model which assumes only one isotriplet of composite W bosons. Some 

consequences of the evolution condition are then illustrated. Next we re-examine the 

evolution condition in multi&son cases in Sec. 4. We conclude that the essential 
features of the condition is unaltered. Section 5 is the summary and discussion. 

2. THE 7 - W MIXING FORMALISM 

In this section we briefly review the 7 - W mixing formalism in its simplest’ and 

generalized” forms with attentions to their connections with composite models. The 

concept of the so-called “unification condition,” which is the center of our concern in this 

paper, will also be established. The basic assumptions of the 7 - W mixing formalism 

are the following: 

1. There exists a triplet of weak bosons I@ (can be either point-like or composite) 

whose interactions satisfy a global SU( 2) invariance. The kinetic and mass terms 

of their Lagrangian are 

(2.1) 

where l?,, s 8, I?, - 8, @,, and Mw are the (degenerate) masses of the 

w’s. 

2. There exists a mixing Lagrangian which transfers the photon and the neutral 

component of the I?’ triplet into each other. Let the strength of this mixing be 
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X, then the relevent Lagrangian is assumed to be 

1, + Lmiz = -;Fp,F” -;X(F~vW;v + W$FpY) . 

Notice that the mixing strength X can either be-interpreted as a point-like 

coupling,3 or it can be viewed as originated from W3 substructures such as di- 

rect 7 -subconstituent charge coupling and W3 bound-state wave function at the 

0rigin.l’ 

Using the propagator formalism (see Appendix A) one finds the physical photon and 

neutral Z-boson poles after wave function renormalization and mass matrix diagonal- 

ization. Their resultant masses and currents after mixing are 

rm, = 0 , Jpm unchanged ; 

M;=s, J/f= - 
(2.3) 

Note that this is a zero width treatment of the W-bosons. Finite width effects (which 

are treated in Ref. 12) do not change the essential feature of our discussions, so we 

ignore them throughout this paper. 

The outcome of this 7 - W mixing model is perfectly consistent with low energy 

charged current and neutral current experiments and phenomenology. Namely, the 

charged current Hamiltonian has the form 

#CC=1. g2 
2 M&-s 

J(+).J+) 

whereas the neutral current Hamiltonian has the form 

(2.4 

(2.5) 

Moreover, the EM current Jim is related to the third component of isospin current Ii 
through the following identity 

(2.6) 



where Yp is the U(1) hypercharge current. Thus, with Ji = gIz, 

When related to experimental measurable quantities, one has 

(2.7) 

There is, however, one free parameter $(E F) which actually controls the values of 
Mw and Mz and has not yet been fixed by experiments. (In the recent discovery of W 
at CERN’, its mass measurement still needs better accuracy.) To be more specific, the 

mass relation of Eq. (2.3) can also be written as 

and there’s no a priorireason to tell what value that F should be. However, it is quite 

obvious to see that this model can accommodate the standard model if one imposes the 

“unification condition n3 : 

F-!!,I - 
e * 

(2.10) 

Under this condition Eq. (2.9) then turns into the well-known Weinberg mass relation. 

Hung and Sakurai have shown that this “unification condition” can be obtained in 

two ways: 

1. One may impose “asymptotic sU(2) X V(l) symmetry.” This means that one 

requires no 13Yp term in UNc P s*co This can be achieved in Eq. (2.5) and Eq. (2.7) 

by letting 

h7 =e, orF=l. 



2. One may instead ask for good high energy behavior in the process u D + W+W- 
or e+e- + W+W- (neglecting mc and scalar effects). This however requires 

additional assumptions about W* self-couplings (see the “minimal substitution 

scheme” in Sec. 3). 

The 7 - W mixing formalism can be extended to a multi-boson case, see Refs. 

10 and 18. Let us consider the case of N ii’i triplets (i = 1,. . . , N) and N’ W$) 

singlets (i = 1,. . . , N’) under global SU( 2) invariance. One introduces N Xi’s for 

7 - Wf junctions and N’ X$‘s for 7 - 9 junctions and proceeds with propagator 

renormalization and mass matrix diagonalization as before. Only that now we should 

work on (N + N’ + 1) X (N + N’ + 1) matrices (see Appendix A). The results are of 

similar nature. Namely, UC’ and UN’ are now given by a series of 7, Zi and Yj poles. 

However there is obviously a definite departure from the standard model because of the 

additional weak-boson poles. One can still ask for asymptotic S’U(2) X U( 1) symmetry 

in UNc 3 cc as 8 goes to infinity. The requirement of no I,Y term now leads to 

(2.11) 

The original unification condition e = Xg is now replaced by either e = CyCl Xigi 

or e = C$‘!,!,l Xjgi, both of which we shall call “generalized unification condition.” It is 

surprising that actually only one generalized unification condition is sufficient to ensure 

the good asymptotic symmetry of UN’. 

In some specific models these two constraints are in fact related. For example, in 

the composite models where W3 and W() are made of the same subconstituents, then 

the effective couplings Xigi and X!g,f may be related. Or, as we mentioned previously, 

in the case of W-dominance model 6~7, both conditions follow from universality, i.e., 

Czl Xigi = C$!,!,l XIgl = e. 

3. THE EVOLUTION CONDITION IN A PRIMITIVE MODEL 

Having introduced the basic ideas of the 7-W mixing formalism and the unification 

condition, we now want to derive the “evolution condition” in a primitive model. We 

lirst look at the high energy behavior of f 7 -+ W+W- scattering amplitude in the 
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case of one triplet of ti. The evolution condition is obtained as a set of constraints on 

the W form factors at high (8 5 A2) energy. We then discuss its consequences. 

3.1 THEHIGH ANDLOWENERGYCONSTRAINTS 

For a non-gauge effective theory of weak interaction based on some composite sub- 

structures, the 7W+W- and W3W+W- vertex structures are quite unrestricted other 

than some very general invariance principles. Consider the most general C,P, T, in- 

variant forms that the 7W+W- vertex can have. They are 13 

If = (c+ - c-)(k-- - k+y - (t+ * k--)r-P + (c- * k+)E+p ) 

I; = (C . k+)(c+ * CF-)(K - k+)p , 

where Ic* are the four-momentum, and c* are the polarizations, of W*, respectively. 

Notice that 1: is associated with W* quadrupole moment and is knowngp14 to give 

an incurable bad high energy behavior unless it is attached to a vanishing form factor. 

Thus we ignore this term in the following discussion. 

For the remaining two expressions, 11 is associated with charge and (11 + 12) is 

associated with magnetic moment of W*. We shall keep their explicit forms in both 

7W+W- and W3W+W- vertices with a priorifour independent form factors: 

Jm = e [h,F~~(s) + 12pF2m(8)] I Ic 

The normalization conditions (at s = 0) for the form factors can be fixed by the 

“minimal substitution scheme,” meaning that we make the following substitutions in 

the Lagrangians in Eq. (2.1) and Eq. (2.2): 

a,, + 8, - ie Q A,, for EM couplings, (3.3) 

and 

for W3 couplings . (34 
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By imposing (3.3) on the kinetic part of the @ Lagrangian f.0 (Eq. (2.1)), one identifies 

Ffm(0) = Qw = 1 , (3.5) 
but has nothing to say on Fim(0). On the other hand, imposing (3.4) on L, + f,miz 

(Eq. (2.2)) one finds 

F2m(0) = 5 E F , F;(o) = I , F;(O) = 1 . (3-6) 

In a non-gauge theory there is a priori no restriction on how the couplings should 

be written. Schemes other than the “minimal substitution” can surely be constructed. 

However, the minimal substitution scheme turns out to be the simplest scheme that 

accommodates universality, and serves well enough our purpose of discussing the origin 

of unification. Thus in the following we shall allow for four arbitrary s-dependent form 

factors with their corresponding normalizations given by Eqs. (3.5) and (3.0). Notice, 

however , that ?J!I e = F is still arbitrary. _ 

After mixing with the photon we get the Z current, 

It is worth mentioning that in the Hung-Sakurai model all form factors are identical 

to 1 (without s-dependence). With X = i = sin&v, Eq. (3.7) reduces to 

Jlf = &[I” + 12pl ? 
W 

whereas 

Jem P = e h, + 12pl - 

These currents have exactly the same expressions as in the standard model. 

We now look to the high energy behavior of v P -+ W+W- and e+e- -+ W+ W- 
scattering amplitudes. We compute them with e(v) exchange in the t-channel and r,Z 
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formation in the s-channel (Fig. 1). With the help of Jim (cf. Eq. (3.2)) and J,f (cf. 

Eq. (3.7)) the amplitudes are (with me N 0), 

for uP + W+W-: 

g2 IFe(O12 
R/i =- 4t cJ (P’) f w- - A /’ (1 - 75) 4P) 

(3.8) 

+ p&4 - ;F2Y4] 12) 0 - 75MP) 

for e+e- -+ W+W-: 

g2 IW)12 
Rfi =- 4t 8 (P’) /’ v+ - A /- (1 - 75MP) 

+ e2Fe;(e) fl (P’) Wf”W A+ Gm(4 ,414~) 

(3.9) 
g2 

. , 
+ (I- X2)(8 - M;)‘(“) 

{-;(I + r5)Fj(s) - 33s)} 

where Fe(t) and Fv( t) are the t-channel e and v exchange form factors, respectively. 

And F/3(s) and F/“( ) s are defined through the following couplings (see Appendix C): 

for W3f 7 coupling , 

and 

eF/em(4 f ?&f for 7f f coupling . 

These amplitudes presumably will have bad high energy behaviors when one (to 

order &) or both (to order 8) polarizations e* are longitudinal. We shall list the 
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asymptotic (8 >> M$,z) behaviors of these amplitudes by looking at the coefficients of 

their 1 - 75 part and vector part separately. 

(i) For the 1 - 75 Part. 

To order s: 

IFf4t)12 - n Fy3(8) {F;(s) - p,z,,(,)} , (from VD + W’W-) , 

IFm12 - D F,3(s) (F23(1?) - 3 F2Rno), (from e+e- -+ W+W) . 

to order fi: 

IFeM - 2(Fj?2) k:(s) + F;(s) - $[Flm(s) + Fim(s)]} 

(from uli -+ W+W-) , 

IW)12 - 2(;y!2) k:(s) + F;(s) - $ IFr”(i) + Fjm(B)]} 

(from e+e- 3 W+W-) . 

(ii) For the vector part. (from e+e- + W+W- only) 

To order s: 

to order ,/g: 

‘Fy$’ {eFg”(s) - XgFi(s)} , 

e:T$) {e [Ffm(s) + Fim(s)] - Xg [F?(s) + F:(s)]} . 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

It is easy to check that with all form factors equal to one, all the above coefficients 

will vanish when xg e = 1 (the Hung-Sakurai result). 
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The existence of t-dependent form factors deserves a special discussion. First we 

notice that by subtracting Eq. (3.10) from Eq. (3.12), and Eq. (3.11) from Eq. (3.13), 

one gets t -independent constraints: 

F:(s) - F:(s) - !$ [Flm(s) - F2m(s)] = 0 (from u P -+ W+W-) (3.16) 

and 

eFim(s) - XgFz(s) = eFlm(s) - XgFf(s) = 0 (from e+e- ---) W+W-) (3.17) 

If one takes the non-trivial condition where Fern(s) and F:(s) are not necessarily van- 

ishing, then one has the solutions 

Flm(g) = F2m(s) , F;(S) = F;(B) , 

and 

_- Xg F;m(s) F2m(5) 
- = F?(s) e 

=m~F. 

Let us turn back to the coefficients of the 1 - 75 parts (i.e., Eq. (3.10) to Eq. (3.13)). 

Notice that these t-dependent constraints cannot be satisfied without additional 

contributions if F(t) # 1. S o either we restrict our discussions to the “t = 0 window,” 

or we add effective “contact terms” to assure the good high energy behavior. 

In the tist case, at t = 0 we let 

Fe(b0 = Fv( t)tzo = 1 , (3.19) 

then the requirement for good high energy behavior translates into the following con- 

straint: 

F:(s) . F;(s) = Ff(s)F$) = I . (3.20) 

Note that even by choosing F;(S) 21 F:(S) N F?(S) N 1 we are still left with an 

undetermined Flm( 8) = Fgm(8) asymptotic value. Thus our free parameter % = F 
is still undetermined. 
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This “t = 0 window” can be compared to the “low pi window” in the hadronic 

processes where the substructure effects do not directly show up. This is opposite to the 

“large PT” case where the hard scatterings of subconstituents occur (e.g., the jets). 

In the second case, we can just add, for example, to the-amplitudes R/i in Eqs. (3.8) 

and (3.9) an extra contact term 

m t) 0 (P’) IA + 121u - 75MP) 9 

with 

and 

3.21) 

(3.22) 

respectively, such that the t-dependent constraints are automatically satisfied. Notice 

that the t-independent constraints (Eq. (3.16), (3.17)) are not modified by this additional 

term. 

This procedure would be similar to the one proposed a long time agoI for keeping 

gauge invariance and Ward identities while modifying QED with electron form factors. 

For example in the e+e- -+ 77 scattering if one introduces form factors Fe(t) and 

Fe(u) for the electron exchange diagrams, one is lead to add a e+e-77 contact (or 

“seagull”) term which is very similar to the H(s, t) in Eq. (3.21). This shows that if 

there is a substructure inside electrons, QED will not be the only possible solution; with 

Fe(t) # 1 and the additional contact term one has perfectly acceptable amplitudes. 

Our problem is in fact very similar to this one. In our case, without form factors 

(i.e., all Fi’s are equal to one) the theorem of Llewellyn Smith and Cornwall et al9 would 

enforce the gauge model as being the only solution to the complete good high energy 

behavior of WV, fw, f 7, &,b, #W . . . scatterings including scalar and vector bosons. 

When we employ the possibility of some underlying substructures, we are allowed to 

find solutions to good high energy behaviors which depart from the gauge structure. As 
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is demonstrated above, a general solution with arbitrary s and t can be easily achieved 

by adding the contact terms to the scattering amplitudes. However, the contact terms 

may actually simulate the complexities due to excited states like e*, e**, . . . and spins 

i, i, . . . etc., which we have assumed to neglect. Actually, since the t-independent 

constraints (plus the t = 0 constraint) give us another self-consistent solution, which 

is not modified by t-dependent considerations, we believe that it forms a close set of 

properties which are independent of the remaining unknowns. This closed sub-set of 

constraints then helps us to open up a “window” to look into the composite nature of 

the system. 

We shall from now on call this closed set of constraints the “evolution condition.” 

To be precise, the evolution condition consists of a set of constraints at high energy 

(4M& < s 5 A) which the W form factors should satisfy. Given initial (i.e., the 

normalization) conditions at s = 0 in a particular model, the form factors should evolve 

in such a way that the high energy constraints be satisfied. The detailed expressions of 

these constraints may have to be modified when we extend our consideration from this 

primitive version of the effective weak interaction to more sophisticated ones. But the 

essential feature of the evolution condition is unchanged, as we will show in the next 

set tion. 

3.2 CONSEQUENCESFROM THECONSTRAINTS 

Limiting ourselves on the “t = 0 window,” we now discuss some consequences of 

the evolution condition. From Eq. (3.18) we have $ = F where F is a priori not 

equal to 1. This corresponds to non-unified, non-standard effective theories, however, 

prefectly consistent with the low energy phenomenology of charged current and neutral 

current. The experimental constraints 

s2Jz eX X2 
GF=~, sin2ew=g=F ,and p=l 

W 

are satisfied for any value of F. Only that the W and Z masses 

(3.23) 

(3.24) 

M; = 4% 
1 - F side, 
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may differ from the standard model (which corresponds to F = 1). We now have 

Ml% = flM$h4. and the relation between Z and W masses is modified. Here the 

parameter F appears as the ratio of the W boson mass squared to the canonical value. 

Furthermore, the form factor effects will produce departure from standard model 

predictions when energy increases. Consider for example the W* form factors. At low 

energy (i.e., 8 N 4M& < A) Fi(8) = Fi(0) which are normalized according to Eq. 

(3.5) and Eq. (3.6). In particular, the W* magnetic moment is 

CrW = & [1+ F2m(0)] 
W 

(3.25) 

with F2m(0) = % = F if we take the minimal substitution scheme. It differs from the 

standard value which is pw = &. 

Next we discuss the nature of the F parameter. In Eq. (3.18) F appears as the 

ratio of photon versus W3 form factors at large value of S. It is possible that this ratio 

is independent of s at high energy. In any case, in a model where there is a mass scale 

A for the substructure and where the energy domain of interest is 4M$ < s < A2, 

for definiteness we can take _ 

F = Flm(A2, 
- Ff(A2) ’ 

Notice that if there is a hard core inside the W-boson (and perhaps also inside e and V) 

of extension 1: due to its substructure it is perfectly possible that the form factors tend 

to some non-zero constant values asymptotically. Then it is not unreasonable to assume 

that at high energy F is s-independent, i.e., 

F = Ffm(s) 
q(s) 

= const. for s >> 4M$. (3.26) 

Now we turn to the “evolution” of the form factors. As the energy increases the 

s-dependence of the form factors must evolve in such a way that the constraints in Eq. 
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(3.18) are satisfied. Consequently for large s (5 A2) we get 

Jpm --) eFfm(s) {hp + &I , 

(3.27) 

Comparing with Eqs. (3.2) and (3.7) we see that the W* form factors should evolve in 

such a way that they look more closely like that of the standard model, apart from a 

different overall normalization and a different weak angle. 

This specific feature can be best illustrated by the cross section 

a(e+e- --+ W+W-). To simplify our computation of g(s), we take the simplest non- 

trivial form factors satisfying Eq. (3.18) and Eq. (3.20): 

Fv(t) = 1, F;(s) = F;(s) e f(s), F;‘?(s) = Ff(s), Ffm(s) = “6’,“a f(s) , 

_- (3.28) 
and 

A F:(s) = &, with f(s) = - 
A+s 

where A is a very large parameter associated with A. With a t-channel Y -exchange 

diagram and two s-channel 7 and Z formation diagrams (whose helicity amplitudes are 

given in Appendix B), the cross section as a function of s is shown in Fig. 2. This 

cross section differs from that of the standard model at low energy. Large differences 

could be seen on the angular distribution in the backward direction, even when F = 1. 

This is so for two reasons: Firstly (and obviously) because Mw and Mz values are 

not the standard ones. Secondly because the W* form factors are not the standard 

ones. Nevertheless, it is well-behaved when s increases. This is because it evolves (along 

with the evolution of the form factors) in such a way that it behaves for large s like a 

standard model, only that the weak angle is “rotated” from sin28w to $sin2ew. 

This large s behavior may very well be a temporary one for 4M& << s 5 A2. 

When s 2 A2 new effects coming from direct subconstituent hard scatterings may 

appear. As a result the picture will be further modified. 
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These are the main consequences of the evolution condition under which an effective 

theory based on any composite model should behave. 

4. MULTI-BOSON GASES 

In this section we want to investigate the “evolution condition” in multi-boson cases. 

We will show that the basic feature of the condition is unaltered. 

- . 

The reason for going to multi-boson cases are the following: Firstly, the contents 

of the composite system was overly simplified in the previous section. So long as I? ‘s 

are composite and act as an isotriplet of a global SU(2) symmetry, there is apriori no 

reason why the isosinglet partner W” should not be around. In particular, this neutral 

vector particle W” should participate in the neutral current Hamiltonian, thus it may 

potentially modify a lot of the “evolution condition.” Secondly, there are versions of 

extended gauge theories lo in which several triplets of gauge W-bosons are allowed. In 

case these weak-bosons have masses much lower than the mass scale A, will the “evolution 

condition” still work? Incidentally, these multi-bosons should not be confused with 

composite excited states of the lowest lying fi and W” since we expect them to have 

masses at least of the order A.16 Since we are working in the energy domain 4M& << 
s 5 A2, we shall ignore these excited state in the following discussions. 

Let us consider the two cases separately. 

4.1 THEY-Z SYSTEM 

We now have an isotriplet ti c (W+, W-, W3) and an isosinglet W” weak-bosons 

before mixing. Following the same “minimal substitution scheme,” we assume the cou- 

pling constant of WOW+W- vertex to be g’ and the strength of 7 - W” junction to be 

X’. At this level we have to take the 3 X 3 matrix 7- W3 - W” mixing formalism (see 

Appendices A and C for the general treatment). After mixing, W” turns into a physical 

vector boson Y and W3 turns into Z. 

We then add the Y intermediate state to u D -+ W+W- and e+e- -+ W+W- 
amplitudes and write again the constraints for a good high energy behavior like we did in 

Sec. 3. The essential feature of the W” contribution is that it has a change of sign against 

the W3 contribution when passing from u li to e+e- because of the isosinglet nature of 

W”. So in order to satisfy both uti and e+e- constraints the W” contribution to the 
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amplitudes should by itself be well-behaved. This gives the constraint (see Appendix C 

for the detailed treatment) 

g’fqs) = 0 (4-l) 

for W*W+W- coupling times a possible form factor. 

The solutions are either a zero W*W+W- coupling at any s or a vanishing form 

factor H(s) at large S. If we were dealing with a gauge theory, then the requirement 

for gauge invariance should tell us that 9’ must be associated with the hypercharge 

operator which vanishes when applied to W*. Actually, if we insist on the “minimal 

substitution scheme,” we also expect to have H(0) = 0 in our non-gauge theory, since 

both the hypercharge and isospoin charge of W* are zero. 

-20 we conclude that the constraints on the Z boson form factors in Sec. 3 are 

not affected by the presence of Y-boson. The only change in the ferm of the Z-boson 

couplings comes from the different mixing parameters. For example, the factor dn 

is now replaced by JI - X2 - X12. But otherwise everything is the same, and we see 

that the “evolution condition” is unchanged. 

4.2 MULTI-Y - 2 SYSTEM 

Next we consider the case of N isotriplets of I?; and N’ isosinglets of WJq with a 

(N+N’+l)x(N+N’+l) matrix mixing scheme (see Sec. 2 and Appendix A). 

The generalization of the method of Sec. 3 is straightforward, although tedious to write 

explicitly. We give some steps of the calculation in Appendix C. 

We consider the amplitudes of the processes uD(e+e-) + W,‘r^i, where n and 

m run from 1 to N independently. So in these processes there will be t-channel e(v) 

exchanges and 7; 21,. . . ,ZN; Yl, . * * , YNI formations in the s-channel. Asking for 

well-vehaved amplitudes at large s produces eight sets of t-independent sum rules and 

one set of t- dependent sum rules. 
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The simplest non-trivial solution (without having all form factors vanish) we found 

is the following (at 4A&$ << s 5 A2): 

Fl nmFem(s) = F.fmfm(s) for TW$W~ , 

4 inmJ3(s) = Fpmp3(s) for WFWzWi , P-2) 

and 

I-P”(s) = 0 for W!W$Wi, 

N 
C XigiF;‘nmv3(s) = eFimyem(s) . 
i=l 

(4.3) 

Again, these generalized conditions deviate from the “generalized unification condi- 

tion” (cf. Eq. (2.11)) f ound in Sec. 2 on the basis of asymptotic symmetry. They may 

be identical only if 

- Fpm?3(s) = Ftrn?em (s) , at 4M$ < s < A2. - P-4 

- But there is no apriori reason for this condition to hold unless we r&e in a complete W 
dominance mode16J7 * In which photon couplings are completely dominated by W3. 

We can also find other solutions (to the good high energy behavior) under less general 

conditions. For example, if we assume the vanishing of the form factors for non-diagonal 

WsW,$WG couplings (n # m # i), then we have (at 4M$ << s 5 A2): : 

Fl mflsm(s) = Frrnjm(s) for rw,‘WG , 

Fl mmmr3(s) = FTmmr3(s) for W,$W,‘Wi 
(4.5) 

and 

Xrngrn J’rrnJem(s) -= 
F2 rnmmJ3( 8) 

s Fm 
e 

for any m = 1, * . . , N . (4.6) 

In this case the unification condition Ci Xigi = e can be satisfied only if Cm Fm = 1 
which effectively requires for delicate arrangements among the form factors. 
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From both solutions we see that the constraints on the relation between EM and 

weak couplings are again departing from the “generalized unification condition.” More- 

over, comparing Eq. (4.2) and Eq. (4.5) with their corresponding normalization condi- 

tions (see Appendix C), one again sees that the form factors should evolve in different 

fashion such that the conditions at the two extremes (i.e., at s = 0 and s 5 A2) can 

be consistent. 

Finally, Eq. (4.2) and Eq. (4.5) also tell us that at high energy (i.e., 4M$ << 
s 5 A2) the system should evolve into a gauge-like model. We thus conclude that the 

essential features of our “evolution condition” is unchanged in the multi-boson cases. 

5. CONCLUSION 

So far we have demonstrated, in the case of one 6’ triplet and in the cases of multi- 

bosons, that any composite model (with large mass scale A) at its effective level should 

obey the evolution condition. 

In summary, we started with the following assumptions: 

1. The leptons, quarks, and weak-bosons are composite particles whose underlying 

dynamics has a mass scale A, which is much larger than the lV-boson mass Mw. 

2. The observed electroweak interaction is an effective interaction at the composite 

level. The connection between EM and weak interaction is through the 7 - W 
mixing mechanism. 

3. The scattering amplitudes of /p --) W+W- are well- behaved at high energy. 

We then derived a set of constraints at high energy which we called the evolution 

condition. There are two important implications of this condition: 

1. The EM and weak interactions need not be unified in the same way as in the 

standard model and Hung-Sakurai model, although the standard way of unifica- 

tion can be accommodated. For the single (@, W*) case we have $ = F and 

for multi-boson case we have CirigiFFm’3(s) = eFtmrm(s). 

2. Given initial (i.e., the normalization) conditions at s = 0 in a particular model, 

the form factors should evolve in such a way that the high energy constraints be 

satisfied. 
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So the landscapes that we shall see as suggested by the evolution condition are the 

following: 

1. At low energy (8 < A2) th e model has a non-standard, non- unified effective 

description of electroweak interactions. 

2. At high energy (4i$$ << s 5 A2) b f e ore hard substructure effects show up, this 

effective description is well-behaved, and it progressively evolves into a “rotated” 

gauge-like model. 

3. At super-high energy (8 > A2) many new substructure effects appear. There will 

be new excited states, new channels, subconstituent jets . . . etc., many “oases” 

prospering in the “desert.” 

How can we test this picture at the present energy range or at the future colliders? 

First of all, a direct test will be the mass relation between !V and 2. If we take the 

data of the recent CERN experiment,l we can fix the parameter F (cf. Eq. (3.24)) and 

look for Mz at the right place. Other tests could be the universality and form factors 

_ in Zf j and Wf j couplings (cf. Appendix C). Furthermore, we can test the W* self- 

couplings and EM form factors, e.g., through the process e+e- -+ W+W-. There are 

also possibilities of additional couplings ” such as quadrupole moment (associated with 

vanishing form factors at high energy) which should not exist according to the standard 

model. Also, if there is a non-vanishing contribution to the isoscalar current, then it 

would be a good indication of the composite idea. 

Finally, we would like to make some remarks on the parameter F. First notice 

that F = 1 does not mean that every feature of our picture should be identical to 

the standard model. This just means that Mw and Mz should fall on the right place 

that the standard model predicts. All the possible departures due to form factors and 

additional couplings may still occur. Secondly, it is likely that the experimental value1 

for A4w will be close to the standard prediction up to a few percent. Even if this 

deviation can be made up by the radiative corrections within the standard model, it can 

equally well be explained by the substructure effects. In this sense it is not unreasonable 

to relate the dimensionless quantity (F - 1) to the ratio 9. 
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MEMORIUM 

A portion of the ideas in this paper were originally raised by Professor J. J. Sakurai 

who passed away on November 1, 1982. We deeply regret that he could not contribute 

further along this line of thought. 

_- 
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APPENDIX A 

Propagator Formalism for 7 - W Mixing 

In this section we closely follow the method used by Hung and Sakurai3 in the case 

of a single W and by de Groot and Schildknecht” in the multiboson case. We just 

write the formulae and the sum rules in a slightly more general form so that they can 

be applied to the case of N 6’i triplets and N’ WY singlets with arbitrary coupling 

constants. 

Let us put n = N + N’ and write the propagator in an (pt + 1) X (n + 1) matrix 

form with 4T = (7, Wt,. . . W&, Wf, . . . Wf;,) representing the boson fields. From 

the kinetic and mixing terms defined in Sec. 2 we gef the inverse propagator matrix: 

with 

&f2= 

and 

D=iiif2-sA (A-1) 

A= 

1 ~- = the squared masses before mixing , 

= the mixing matrix . (A-3) 

We introduce a “wave function renormalization” matrix D and a “diagonalization uni- 
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tary matrix” R defined by 

DAD+ = 1 i.e., D = 

with 

. 0 

. 0 - 

0 1 

.=n-5x; 
1 

and 

R+(D itf2 D+)R = M2 E 

.o 0 -. . . 0 

0 Mf 
. 0 
. . 
. 0 * 

0 M,2 

(A.4 

(A4 

(A4 

withR+=R-‘. Me2 (t=l , . . . n are the masses of the physical weak bosons. The 

inverse propagtor now becomes: 

D = (R+D)-’ [M2 - s] (D+R)-’ (A-7) 

so that any transition amplitude going through 7 (e = 0) and weak boson (f! = 

1 ,“‘, n) formation can be written: 

-. 

R/i = (flJD-‘Jli) = 2 F 
e=o em8 

(A-8) 

with g/e = Et=, PJ~ Che (and similarly for sit). ?jlk G (flJlk) are the coupling 

constants before mixing. Cke E (D+R)ke are real mixing coefficients. Notice, as 
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shown in Ref. 10, that Cm = 1 and ck() = 0. In the single W case (n = N = 
1, N’ = 0) we have explicifely: 

x 
C&J= 1 Go =o c()1=- ___ Jl _ x2 %1= &2 - (A-9) 

In the multiboson case, from D+D = A-’ and R+R = 1 we get the sum rules 

n 
eq(c ) 

2 1-K 
oe =- 

K = 

n 
c )‘I, 
e=r 

CoeCke = - ; 

n 
c s/eCoe 

1 n = -- 
e=i 

cc ,c, g/k Ah = 

(A. 10) 

n 
C SjeCjt = 

x- n 

e=i 
g/j +$kxlgfkhk - 

= 

These sum rules will be used in Sec. 4 and Appendix C. 

APPENDM B 

-. 

eSe- -+ W+W- Helicity Amplitudes and Cross Section 

We consider the case of a single ti triplet with 7 - W3 mixing. The e+e- -+ 

W+W- amplitude due to u -exchange and 7, Z formation has been given in Sec. 3, 
Eq. (3.9). In order to easily compute the cross section we give below the complete set 

of helicity amplitudes. We use the formalism and notations of Ref. 13. p = ii; 

PI = A;; 7 = 0, &I; 7’ = 0, fl are, respectively, the e-, e+, W-, W+ helicity 

states. 4! = ,/S/2, p = ($-- M$)lt2 are the e* and W* momenta.in the center of 

mass. 19 is the (e-, W-) scattering angle. 
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u exchange in the t-channel (only p = -i , p’ = +i contribute): 

(p - e c0sf?)sin0 

g. ?-- 7 = s2P&N2 4t ~i(cos6 - r)sid 

go = -g2’Fy~)IZ[2P~o~B-p(M~+~)]ain28 
2Mwt (B-1) 

%,T I = 3!T,,o = - s2Pw)12 
2&M& 

with t = M&,/i ($ - pcose). 

7, Z formation in the s-channel (only p = -p’ = f 1 contribute): 
_- 

3$ 7,r = 2pe by + Af(a + fpb)] 2psid 

q-7 = 0 . 

360 = 2pe [2M$AT + s4 + (a + 2pb) (SM$wAf + SA!)]~ 
w - 

(B 2) 

33 077 I = 3:7t,o =2w[A:+G+(a+2$J)(Af+A$)] 

. p ~(T’COd? - 24 
&Mw * 

with: 

A; = - eFem(s)Fim(s) 
8 

-E+"' s 
A; = 

g2 F?(s) - $F;m(s) 1 Af = 
!I2 F;(s) [ g 2 ( )I 

(1 - X2)(8 - M;) (1 - X2)(s - M;) 
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and 

F:(s) eX a=--- f34 4 +yF,em(s) “=- . 

The differential cross section is now given by: 

do cup 
afi = 327r fi 

c 
p,cI,*l 

p&, + Jig2 * 

Z 
I ,I ‘=O,fl 

(B.3) 

APPENDIX C 

High Energy Contraints in the Multiboson Case 

We suppose that there exists N isotriplets tii and N’ isosinglets WT. The neutral 

states Wf and WT mix with the photon (see Sec. 2 and Appendix A) through junctions 

Xi and Xi (we put Ic E l-CiXf ;2 - C * X . J 3 ). We introduce form factors for their 

couplings to fermions f s (4: 

(W 

eFfemb) 7 7&‘f 

and for their couplings to W+W-: 

(C-2) 

w?w+w- * I n rn- 

yw,‘w; : e [FrmTnn (s)Il~, + 4 nm’em(s)12p] Ap (C-5) 
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I1 and I2 have been defined in Sec. 3; i, n, m run from 1 to N; and j runs from 1 to 

N’. We fhen consider the amplitudes of the reactions UP -+ WzWz and e+e- + 

WzWz with e(v) exchange in the t-channel and 7, 21, . . . ZN, Yl, . . . Y,, in the 

s-channel. We ask for ? good high energy behavior (like-in Sec. 3) and we get the 

constraints for s large 
t 

s >> M$N, M& : 
N’ J 

Vector part (t -independent constraints in ewe-): 

(8) - C AigiF:mp3 = 0 . 
i 

W.6) 

eFtm(s) 
K e [FFmyem(s) - FFrnJem (s)] - C Xigi bprnp3(S) - FpmS3 s ( ‘I} = 0 

i 

eFlm(s) * - c X;g;IIJnm(s) = 0 . 
K j 

NW 

- Left-handed Part (in UP and e+e-): 
-_ 

t-independent constraints (f E u or e): 

ci ‘igiFir(“) 
tc 

e [F,y,m(s) _ Fnm,m 
1 (s)] - C Xigi [F2nmp3(s) - F;‘“m93(~)]} 

i 

- C gfFi/( s) pinmy3(s) - Fpm13(s)] = 0 . 
i 

(C-9) 

Cj xigjHjj(s) eFnm,m 
2 (9) - C AigiFprnp3 = 0 K (C.10) 

i 

Cj xJs;!Hj/(s> 
K 

e [F2nmpm(s) - Frmfm(s)] - 

FFm,3(s) - F;‘nmJ3 = 0 . 
(C.11) 
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Ci xiSiFif(s) 
K 

c A;g;IIbm(s) = 0 . 
j 

(C.12) 

C j XJ9,!Hjr( s, 
C X~g,!Hj”“(S) + C s,!211j,(S)Hj”m(S) = 0 s (C.13) 

K j j 

t-dependent constraints (/ E u or e : j’ s e or u): 

SnSm IFn/r(t)Fm/r(t)l + ci ‘igiFi/(‘) 
K: 

eFnmjem(s) _ 
2 

(C.14) 

CXigiFpmy3 S - 0) c gfF/(s)F~ms3(s) = 0 . 
i i 

The non-trivial (i.e., with non-vanishing Fe*(s) and Fil(s)) general solution of the 

t-independent constraints is for s large: _- 

I.+“(s) = 0 

eFimpem(S) = C XigiF2 inm,3(s) 
i 

If there was no additional contacf term the t-dependent constraint would be: 

(C.15) 

gngmFnf’(t)f’mll(t) = C g~Fi,(s)F~mJ3(s) (C.16) 
i 

(see the discussion of Sec. 3). 

Extended minimal scheme: Using the covariant derivative a, - ieQAp - i Ci gi ?. 
itip- i Ci gjW$ in the kinetic and mixing parts of the fermion and boson Lagrangian 
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one gets preditions for the various couplings defined above. Supposing they are valid at 

low energy and transfer this gives: 

Fi/(O) = Hj/(O) = 1 
- . 

F/em(O) = Qj 

F2 nmpm(0) = k(hn!7rn + Am&t) 
(C.17) 

II’“(O) = Snm 

FFmp3(o) = bnrn [!?$!!I + (I_ 6nm) dingm2g SimSn 
i 

F2 inmJ3(o) = 4n!lm + 6imSn . 2g 
i 

One can easily check for N > 1 that it, is impossible to keep these values for large s if 

oneivants the constraints to be satisfied; for example Frmpem(0) = Ftm’em(0) gives 

&(Xngrn + Xrnh) = 6,m impossible to satisfy non-trivially if N- > 1. s-dependent 

form factors (i.e., an evolutional model) are then required for this scheme. 

REFERENCES 

1. UAl Coll. Phys. Let%. 122 B, 189 (1983); UA2 Coll. Phys. Letf. &I B, 476 

(1983). 

2. J. D. Bjorken, Phys. Rev. D l9, 335 (1979). 

3. P. Q. Hung and J. J. Sakurai, Nucl. Phys. Bw, 81 (1978), 538 (1979). 

4. For a review see: M. E. Peskin, Proc. 1981 International Symposium on Lepton 

and Photon Interactions, Bonn, ed. W. Pfeil; and H. Harari, Lectures given at 

SLAC Summer Institute, August 1982 to be published. 

5. L. Abbott and E. Farhi, Phys. Lett. 101 B, 69 (1981); H. Fritzsch and G. 

Mandelbaum, Phys. Lett. m B, 319 (1981); R. Barbieri, R. N. Mohapatra and 

A. Masiero, Phys. Lett. 105 B, 369 (1981). 

. 30 



6. R. KSgerler and D. Schildknecht, CERN-TH3231 (1982). 

7. M. Kuroda and D. Schildknecht, Phys. Left. &?.!l- B, 173 (1983). 

8. L. Lyons, Oxford University report 52/82 (1982). 

9. C. H. Llewellyn Smith, Phys. Lett. 46 B, 233 (1973); J. M. Cornwall, D. Levin 

and G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974). 

10. E. H. deGroot and D. Schildknecht, Z. Phys. ClO, 55 (1981). 

11. H. Fritzsch, CERN-TH3219, Talk given at the Second Europhysics Study Con- 

ference on Unification of Fundamental Interactions, Erice, October 1981. 

12. P. Chen, Z. Rek and F. M. Renard, SLAC-PUB-3095 (1983). 

13. F. M. Renard, Basics of e+e- Collisions, ed. Front&es (1981). 

14. K.J.F. Gaemers and G. J. Gounaris, Z. Phys. C& 259 (1979). 

15. S. D. Drell and J. A. McClure, Nuovo Cim. 37, 1638 (1965); N. M. Kroll, Nuovo 

Cim. 4&65 (1966). 

16. P. Chen and J. J. Sakurai, Phys. Lett. 110 B, 481 (1982). _- 

17. F. M. Renard, Phys. Left. 116 B, 269 (1982); Nucl. Phys. Bm, 93 (1982). 

18. N. Wright, Nucl. Phys. B#34, 237 (1982). 

31 



FIGURE CAPTIONS 

1. Feynman diagrams for u D --) W+W- and e+e- --) W+W- including form 

factor effects. 

2. s-dependence of o(e+e- -+ W+W-) for several ckices of the parameter F E 
% with A = 1 TeV2 and sin2& = 0.22. Full curves ( -) represent the 

mixing model and dashed curves (- - -) the “standard model- with sin26w/F. 
For F = 0.7, 1, and 1.3, we have (Mw, Mz) = (67,81), (80,91) and (91,100) 

GeV, respectively. 
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