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ABSTRACT 

The spatial resolution of a drift chamber 

often is the foremost design parameter. The 

calculation described here-a design tool- 

permits us to estimate the contributions of 

ionization statistics and diffusion to the 

spatial resolution when actually sampling the 

_ drift-pulse waveform. Useful formulae are 

.indrical and jet-chamber derived for the cyl 

cell geometries. 
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1. Introduction -__ - 

The spatial resolution of a drift chamber- often---is the-foremost 

design parameter. Measurements on a prototype cell are the best indi- 

cators of the resolution ultimately achievable in a given set up. 

However, these measurements demand considerable effort when many alterna- 

tive designs are considered. Simulation programs Cl1 thus become design 

tools of choice. These programs consider many relevant effects such as 

the random ionization deposition, the drift and diffusion of primary and 

secondary ionization, the signal amplification and collection around the 

sense wire, and the electronic shaping and processing of the signal. 

This rather incomplete list of the elements included in the Monte Carlo 

programs indicates their size. As with any other Monte Carlo, it is 

desirable to verify the validity of these simulations by transparent 

methods and for a wide range of parameters' values. 

The statistical laws governing ionization statistics and diffusion, 

namely, Poisson and Gaussian distributions, respectively, are amenable 

to analytic calculation. An analytic evaluation brings forth the 

relative magnitude of effects, permits rapid evaluation of a given con- 

figuration, and, most importantly, yields a result that, on average, 

correct Monte Carlo simulations must reproduce. My calculation takes 

account of the cell geometry, of ionization statistics, and of diffusion. 

The assumptions of the derivation are: 

i> A sense wire collects ionization from a track segment of length a. 

ii) The particle moves in a plane perpendicular to the sense wire. 

Its impact parameter is b. 

iii) A minimum ionizing particle produces, on average, u ionization 

clusters per unit length. The actual number of primary 
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ionizations in the length a obeys Poisson statistics, the 

probability of having n such clusters being - 

e-ua(ua)n . 
n. t 

iv) Each cluster has a single electron. 

v> The electric field is high enough to saturate the drift velocity 

in the gas, which has a constant value v. 

vi) The electronic readout is a waveform sampler that provides 

sufficient information to characterize the original drift pulse. 

2. Heuristic Derivation for Radial Charge Collection 

For the time being, we disregard the randomness of the charge 

distribution, replacing it by a continuous uniform distribution of charge 

of density u, as shown in fig. 1. This ionization is collected between 
L-- 

the times t' = b/v and t" = [b2+ (a/2>2l'/v. The charge collected between 

the times t and t+dt is 

Q(t)dt = 2udx = 2~ 

= 2u f(t) dt t’<tlt” . 

The identity defines the function f(t); for impact parameters 

b > (a/2), Q(t) is a sharply peaked function, with a long tail extending 

up to the latest accessible time. The distribution Q(t) is used next 

to calculate the physical values of interest, namely, the average time 

of arrival t, the variance s2 of the distribution, and the spread Us of 
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the average time of arrival; but before deriving these quantities, -- - 

I shall show that, when including the random ionization deposition, the 

probability distribution of charge arrival at the wire coincides with 

the (deterministic) function Q(t). Later in section 3 we compute t, 

S2 and at. 

3. Charge Distribution with Random Ionization 

The probability of a single ionization event, in which the electron 

is emitted between x and x+dx, is given by the product of three terms: 

1) the probability of no ionization from 0 to x; 2) the probability of 

producing one electron between x and x+dx; and 3) the probability of 

no ionization from x+dx up to a: 

Pl(x)dx = PCO;(O,x)l*PC1;(x,x+dx)l*P~O;(x+dx,a)l 

where, Pl(x)dx is the desired probability, and P[n;(x',x")l is the 

probability of producing n electrons in the interval (x',x"). 

Pl(x)dx = e-ux e -udx udx e +(a-x- dx) = e-lJ-a I.ldx . 

The-charge distribution at the wire, in time, due to this event, 

is given by its probability times a geometric factor relating time of 

arrival to emission coordinates: 
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Ql(t)dt = ue-ua dt t - 
J7qzg-y -dx 

V 

i 

, 

= e -ua 2uf(t)dt , t's t 5 t" 0 

6 is Dirac's function. 

The contribution to the charge distribution from n ionization 

events, Q,(t), can be calculated similarly, First, we compute the 

probability of having emitted n electrons at the coordinates 

0 5 x1 5 x2 < . . . < x 2 a : n 

p n( Xl’ X2’ o.., xn) ,;;, dxi = 

+X1 -udxl +(x2- x1 - dxl) 4x2 
e l e  pdxl l e l e  Pdx2 . . . 

-’ (Xn - Xn-l - dxn-l) -Nx, -~(a-xn-dxn) 
l e  - e  udxn* e 

n 
=p e 

-ua i dxi l 

i=l 

Now, we get the temporal charge distribution at the wire, using the 

appropriate geometric factors: 

Q,(t)dt = un emPa dt [' dxi r2 dx; 4' dX; ..a p dxi 
x1 X n-l 

[( 

l 6  t- 

n =p e -w 

Jb2tlx;-fJi 
V 

1 

a a 
dt 
n! /J 

. . . 

0 0 

+ . . . + 

a 

J I; 
0 i=l 
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---------Tin the first expression, the sequence x1 < x2 < . . . < xn is preserved. 
- 

The factor n! in the second expression accounts for the permutations of 

the n coordinates x i introduced by releasing all integration limits to 

CO,al. By straightforward integration, 

Q,Wt = e-'a (va)n-l . 2 ~ f(t) dt 
(n-l)! 0 

The probability distribution of charge at the wire can be calculated 

now by adding all probability contributions, 
m 

Q(t)dt = c q,(t)dt = 2u f(t)dt , t'<t<t" . 

n=l 

The probability distribution of change arrival is thus equal to that of 

an equivalent continuous uniform charge deposition. 

Now we complete the study of the radial charge collection. The 

average time of arrival T is given by 

Limits of this expression, for very small and for very large impact 

parameters, are 
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The variance s2 of the time distribution is given by -- ~. 

Finally, the root mean square variation of the average time of arrival 

is the square root of the variance divided by the average number of 

ionization events, 

This is the expected error in the measurement of the average time of 

arrival, due to ionization statistics. In a cylindrical cell of radius 

2% 
r, a = 2(r2 -b) . 

The derivation above shows how to generalize the formulae to other 

geometries. The shape of the electrons' trajectories is contained in 

the function f(t), 
a 

f(t) = 
/ 

sCt-g(x)1 dx 

0 

where g(x) gives the transit time of an electron emitted at the coordin- 

ate x and collected at time t. Consider, for instance, the cell shown 

in fig. 2, where the radial field around the wire extends up to a 

radius r, becoming a parallel field thereafter. In this case, 
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-- 

b+r-Jr'-ix-;)" 

V 

b+Ix-tl 

V 

and the f function becomes: 

(b+r-vt)v 

r2 - (vt-b-r)2 

V 

Henceforth, I set r = a/2 and b > r. 

lx-$1 > r,b > r 

b ptr b+r -, b>r 
V 

b+r b+: 
-stt- , b>r 

V V 

The corresponding charge distribu- 

tion has a large spike at the earliest possible times, and a long tail 

characteristic of this geometry. In a system capable of sampling the 

pulse shape, it is advantageous to truncate the pulse after a substantial 

fraction a of the total charge has been collected. The cutoff time tc 

is given by 

Half the charge 

average time of 

t -b = 5 (l&7 ) . 
c v 

is collected in 17% of the total pulse length. The 

arrival ta for the truncated distribution is 

, 
t = g+& l- ( J l- a2 ( arccosa - 4 ) 

a 2 1 +& . a 

The variance of the truncated distribution is 
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2 -with the limit sl = (a2/4v2)C(2/3) - (1~/4>~1 = 1.245~ 10m2 (a/v)2. 

Finally , the root mean square deviation of t -is - -. 
a 

S2 F a 
(Jr = . 

a wa 

In this geometry, o- is independent of the impact parameter for 
t a 

b > r. 

4. Results and Discussion 

As an electron drifts with velocity v in the gas, for a time t, 

along a direction y, it will not in general be at the coordinate 

y,=vt. Due to the collisions with gas molecules, its position will 

obey a Gaussian distribution exp{ -(y- ~~)~/20 02 vtl . Here oo2 gives 

the mean square coordinate fluctuation per unit length. As each electron 

diffuses independently of all others, the effect of diffusion is to 

broaden f(t) incoherently. 

In this discussion, the space resolution o has two terms: the con- 

tribution from ionization statistics and that from diffusion. These 

terms add in quadrature. For a measurement of the average time of 

arrival, 0 is given by 

Notice that o does not explicitly depend on the drift velocity, since 

both v2si and vfa are determined solely by the cell geometry. In prac- 

tice, the drift velocity affects the resolution- due to its dependence on 
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-- the electric field and its impact on the required speed of the readout 
- 

electronics. These facts restrict the validity of these expressions 

accordingly. The diffusion parameter o" also depends on the operating 

conditions, and an appropriate value must be used. 

A cell of the central drift chamber of the SLD [21 detector is 

shown in fig. 3. The cell is described in detail in the proposal. The 

sense-wire interval is 8mm, and guard wires are interspersed between 

the sense ones. The maximum drift distance is about 15mm. In the 

calculation the ionization collection pattern is approximated as shown 

in fig0 2. A sense wire collects charge from a track length of 8mm. 

The charge drifts towards the wire along parallel drift lines for track 

impact parameters larger than a given radius around the wire. Within 

this circle, the charge drifts radially. Results are shown in fig. 4; 

two examples have been worked out-corresponding to 50% and 66% of total 

charge collected. In the latter case, the ionization statistics limit 

for impact parameters beyond the radial collection region is about 75 urn. 

By including the diffusion contribution, the limiting resolution varies 

from about 85 pm at 4mm impact parameters to about 115 urn at the furthest 

point in the cell. These values have been obtained with o" = 280 urn/G . 

The resolution shown for impact parameters b < r corresponds to the 

radial charge collection formulae, and for b w r the two curves have been 

joined smoothly. 

In conclusion, formulae have been derived that permit us to estimate 

the resolution of a drift cell when measuring the temporal charge distri- 

bution arriving at the wire. The approximations used restrict the valid- 

ity of the calculation to cases where the electron drift velocity is nearly 
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constant and relatively low,as in a time expansion chamber [31, or when 
- 

waveform sampling electronics cansample the charge at rates in excess of 

100 MHz. Within these limitations, our simple formulae apply. 

Measurements from a prototype cell under construction will be used to 

assess the range of validity of our calcuations. The formulae presented 

here complement the well-known C4,51 expressions that apply to the case 

of leading edge threshold discrimination. 
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-- Eigure Captions 

Fig. 1. Schematics of ionization collection in a radial field. The 

electrons drift towards the sense wires in straight lines. 

In fig. l(a) the random distribution of charge along the 

track is approximated by a continuous line charge density, 

The coordinate x is measured from 0 along the track. 

Fig. 2. Charge collection geometry with radial field up to distance r 

from the wire and parallel field thereafter. 

Fig. 3. A cell of the central drift chamber of the SLD detector. The 

distance between nearest neighbor wires is 41mn, and the 

average cell width is 30mm. 

Fig. 4. Resolution as a function of impact parameter in the SLD 

geometry. Each pair of curves corresponds to different pulse 

truncations. The ionization statistics contribution, and that 

plus the diffusion contribution are shown separately. 
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