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ABSTRACT 

We present a new formalism which systematically accounts for nucleon com- 

positeness in nuclear scattering amplitudes, consistent-with quantum chromody- 

namics (QCD) and covariance. Reduced gauge-invariant nuclear amplitudes are 

defined which have elementary QCD scaling properties. The procedure is applied 

to the photodisintegration and electrodisintegration of the deuteron as a test of 

nuclear chromodynamics and as a method to isolate contributions of dibaryon 

resonances. 

1. INTRODUCTION 

One of the most basic problems in the analysis of nuclear scattering am- 

plitudes is how to consistently take into account the effects of the quark/gluon 

composite structure of nucleons. In nuclear physics the traditional method of 

treating nucleon dynamics has been to use an effective meson-nucleon local La- 

grangian field theory. However this method is sorely deficient for a number of 

reasons: (1) the wrong degrees of freedom are used, (2) neither the te2 power-law 

fall-off of nucleon form factors nor the t- ’ fall-off of pion form factors is naturally 
reproduced,’ (3) nucleon pair terms are not correctly suppressed in intermediate 

states, and (4) a renormalizable (i.e., calculable) field theory of massive isovector 

mesons requires the full apparatus of non-Abelian gauge theories, including a 

spontaneous symmetry breaking mechanism. Models for nuclear scattering am- 

plitudes based on the Born approximation and local meson-nucleon couplings 

have the wrong dynamical dependence in virtually every kinematical variable for 

composite hadrons. The inclusion of ad hoc form factors at each meson-nucleon 

or photon-nucleon vertex is unsatisfactory since one must understand the off- 

shell dependence in each leg while retaining gauge invariance. None of these 

traditional methods have any real predictive power. 

In principle all nuclear scattering amplitudes could be calculated from quan- 

tum chromodynamics (QCD) in terms of the basic quark and gluon degrees of 
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freedom. A method for computing large momentum transfer exclusive scatter- 

ing amplitudes for hadrons and nuclei, starting with a Fock state wave function 

expansion on the light-cone (equal r = t + z), has been developed.2 At large 

momentum transfer one can readily derive QCD predictions for the leading fixed 

angle power-law scaling behavior and spin structure of hadronic and nuclear scat- 

tering matrix elements. However, the explicit evaluation of the multiquark and 

gluon hard scattering amplitudes needed for predicting the normalization and 

angular dependence for a nuclear process, even at leading order in a8, requires 

the consideration of millions of Feynman diagrams. Beyond leading order one 

must include contributions of non-valence Fock states, wave function and binding 

corrections, and a rapidly expanding number of radiative corrections and loop 

diagrams. 

In this paper we will discuss a new definition of nuclear scattering amplitudes 

which provides a simple method for identifying the dynamical effects of nucleon 

substructure, consistent with QCD and covariance. Although this technique 

cannot replace a full QCD calculation, it does provide a basis for constructing 

models for “reduced” nuclear scattering amplitudes consistent with QCD scaling 

laws and gauge invariance. 

The basic idea for this method was given by Brodsky and Chertok.3 Consider 

the deuteron form factor as measured in electron-deuteron elastic scattering. In 

general, a form factor F(Q2 = -q2) is the probability amplitude that the target 

remains intact after absorbing four-momentum q. To the extent that we can 

neglect its binding energy, the deuteron can be represented as two nucleons, each 

with an equal portion of the nuclear momentum. Therefore the deuteron form 

factor contains the probability that each nucleon remains intact after absorbing 

one-half of the momentum transfer. We thus define the “reduced” deuteron form 

factor 

FdQ2) 
fd(Q2) = Fp(Q2/4) Fn(Q2/4) (1.1) 

which effectively removes the fall-off of the measured form factor due to the 

internal degrees of freedom of the nucleons. It is defined separately for each 
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helicity form factor. 

The reduced form factor must still be a decreasing function of Q2 since it still 

contains the probability that the scattered nucleons reform into the ground state 

deuteron. An important prediction of &CD is that, module logarithmic factors4 

that come from the running coupling constant and anomalous dimensions of the 

hadronic distribution amplitudes, the large Q2 behavior is 

fd(Q2) - G . (l-2) 

Thus the reduced deuteron form factor and meson form factors (for helicity 

x = 0 to x’ = 0) have the identical (monopole) scaling law. After removing 

the nucleon form factors, the nucleons are effectively reduced to point-like spin 

l/2 fermions, so the reduced deuteron and meson form factors have the same 

dimensional scaling behavior f - (1/Q2)“-‘, basically the slowest possible for 

two-particle composites. Similarly, if one.defines for-A = 3: 

_- Fk4Q2) fHs(Q2) = [FN(Q2/g)]3 t (' = 'I2 to " = 'i2) (1.3) 

then QCD predicts that the reduced He3 (and triton) form factor scales at large 

Q2 in the same way as a nucleon form factor: 

f~$(&~) - h(Q2) - P/Q212 - (1.4 

A comparison of data5 with the QCD prediction 

(1 + Q2/m;) fd(Q2) 21 cod. (1.5) 

is shown in Fig. 1. (Here rn$ = 0.3 GeV2, as predicted in Ref. 3, although any 
value rni < 1 GeV2 is irrelevant for the comparison.) The results show that 

QCD works remarkably well down to scales of order Q2 - 1 GeV2! 

One can compare the definition (1.1) for the reduced deuteron form factor 

with the standard “impulse approximation” form 

Fd(Q2) = F~TQ~) F~Q~) (1.6) 
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where FN(&~) is th e on-shell form factor for the struck nucleon and Fy(Q2) is 

defined to represent the remaining structure of the nucleus. In fact, as discussed 

in Ref. 3, this approximation is incorrect since the struck nucleon has at least 

one leg off-shell and the off-shell form factor has a completely different dynamical 

dependence than does the on-shell form factor in &CD. 

The idea of “reducing” nuclear form factors leads to a general treatment of 

nuclear amplitudes that is discussed in Sec. 2. The method is applied to deuteron 

disintegration in Sec. 3 where we consider photodisintegration, dibaryon reso- 

nances and a specific model for the reduced background amplitude. Section 4 

contains a summary of our results and some additional remarks. Details of the 

model for the reduced deuteron disintegration amplitudes are given in an ap- 

pendix. As an aside, the specifics of this model have relevance for the calculation 

of higher twist effects in electroproduction. 

2. GENERAL TREATMENT OF REDUCED NUCLEAR AMPLITUDES 

We can go beyond the case of nuclear form factors and define reduced nuclear 
- scattering amplitudes in general. If we consider a generic process with amplitude 

M(s, t) that involves A ingoing and outgoing nucleons and transfers, in the zero 

binding limit, momentum qi to nucleon i, then the reduced amplitude is defined 

as 

m(s, t) = M(eyt) i FN(Zi =qf) 1 i= 1 1 
-1 

e W) 
For example, the reduced amplitude for the photo- (or electro-) disintegration of 

the deuteron would be written as 

M 
m-yd-wp = 

7d-w 
f’n( in) Fp(ip) 

where 

P-2) 

(2.3a) 
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2 
, (2.3b) 

with pn, pp and Pd the momenta of 

tively. 

the neutron, proton and deuteron, respec- 

The nominal fixed-angle scaling behavior of the reduced amplitude is pre- 

dicted by dimensional counting rules6 Modulo logarithms they give 

m - ~$7 f( invariants 
9 > (2.4 

where p$ = tu/s is the transverse momentum and n is the number of “elemen- 

tary” fields in the external state (ingoing and outgoing photons, leptons, gluons, 

quarks or reduced nucleons). Thus for deuteron photodisintegration the reduced 

amplitude scales as 

myd-+np - P$ f(&7n.) I (2.5) 

theangle ecern. being that of the proton direction with respect to the beam 

direction in the c.m. frame. This is the same QCD scaling as that for M7~+ai52; 

- here M is a meson with constituents q1 and q2. 

We can motivate the definition of the reduced amplitude by returning to the 

basic definition of hadronic matrix elements in r-ordered perturbation theory:’ 

where the 9 are the equal 7 = t+z wave functions and T is the momentum-space 

quark-gluon scattering amplitude. A sum over the Fock state amplitudes and 

quark and gluon helicities is understood. In the zero nuclear binding energy limit 

the nuclear Fock state wave function reduces to the product of wave functions for 

collinear nucleons with the nuclear momentum partitioned among the nucleons 

in proportion to each nucleon mass. Thus one is evidently neglecting corrections 

of order 2rnNAcBE/y2 where rnN is the nuclear mass, ABBE the nuclear binding 

energy and p2 a hadronic scale parameter, as well as contributions from higher 

Fock states in the nucleus, e.g. the hidden-color six-quark configurations. 
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At this stage of approximation one must compute the corresponding multi- 

nucleon scattering amplitude, e.g., the amplitude for the elastic electron-deuteron 

scattering process 

e+p p +n p (’ ) (’ )-+e’+p’(i p+i q)+n’tip+t q) . (2.7) 

If the momentum transfer occurs rapidly compared to the scale of hadronic bind- 

ing then one can argue (as in the Chou-Yang model of elastic scatteringa) that 

the probability amplitude for transfering the required momentum 23 to each nu- 

cleon is proportional to it,s elastic form factor. Since Sudakov effects always sup- 

press near on-shell (long-distance) momentum transfer mechanisms from pinch 

singularities9 and endpoint regions of phase space,1oj11 one can argue that large 

momentum transfer is always local in &CD. Thus this assumption is justified, 

with corrections of order p2/q2. A specific diagram which explicitly exhibits the 

factorization intrinsic to the reduced deuteron formfactor is shown in Fig. 2. 

As an application of nuclear amplitude reduction, we consider deuteron dis- _- 
integration. The reduced amplitude is defined in (2.2). Both the scaling behavior 

(2.5) and a model for the angular dependence are discussed in-the next section. 

Some other processes12 that might be pro fitably treated with our reduction 

method are pp -+ d?r+,13 pd + H3n+ and n*d -+ r*d. The reduced amplitudes 
have the same QCD scaling behavior as the amplitudes for qp -+ AIn, qqq + BT 

and aM + ~FM, respectively, where J3 represents a baryon. From (2.4) we find 

the scaling to be 

mpp+dn+ - PT2 fW) 9 

“pddH3n+ - PT4 f(e) 9 

“‘nd+nd - PT4 fW) * 

(2.8a) 

(2.8b) 

(2.8~) 
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3. A MODEL FOR REDUCED DEUTERON 
DISINTEGRATION AMPLITUDES 

A. Photodisintegration 

The asymptotic scaling law (2.5) is a remarkably simple form. The scaling 

holds for the hadron helicity conserving amplitude with Xn + X, = Ad, indepen- 

dent of the photon helicity. Amplitudes with Xn +X, # Ad should be suppressed 

by a power of /r /pT. 2 2 One could hope that the simple scaling 

pT m7d+np z COnd. (3-l) 

at fixed B,.,. will hold for p$ 2 1 GeV2 since the scaling (1.5) (see Fig. 1) begins 

in this region. 4 In terms of the differential cross section, (2.2) and (2.5) become 

da 
dfl I c.m. yd-wp 

-AZ F@p) F,‘f(L) -i f2(flc.m.) - P-2) 

A comparison of this form with present low energy data14 is shown in Fig. 3. 

The form factors were computed from the usual dipole formula3 

(3.3) 

Although the results are encouraging, the available energies are too low to make 

a detailed check of the prediction. 

We have not yet specified the form of j2; however, it is easy to construct a 

model for the reduced amplitude which is gauge-invariant and has the correct 

helicity and scaling form. As a prototype for the reduced amplitude we propose 

the amplitude for the photodisintegration of a polarized meson M into its con- 

stituent quarks q1 and +J. We will only use the lowest order QCD diagrams for 

this process. An actual calculation of the hard-scattering amplitude for yd --) pn 

includes a coherent sum of such amplitudes with varied charge assignments and 

additional gluon lines attached. For the model, the charge assignments, el for q1 

and -e2 for &, can be varied as parameters. The quark masses are taken to be 
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zero. A computation of the squared amplitude summed over final spins (see the 

Appendix) then givesll’ 

j2(ec.,.) = N (ue1 Lte2)2 ( iiuz 
transverse 

--iongitudinal (3-4 
XT’ 

where N is a normalization constant with dimensions GeV2/srad and “trans- 

verse” indicates an average over the two possible helicities. In the limit of & >> 

md we find 

/2(&.m.) = N 
[(2el - 1) + co8&.m.]2 1 Y transverse 

1 - cos2&.m. k (I+ cos2ec.m.) , longitudinal 

with the charges normalized by el -e2 = 1. This, when combined with (3.2) pro- 

vides a one-parameter model for the asymptotic behavior of deuteron photodis- 

integration away from the beam axis. The actual angular distribution predicted 

by_QCD from the coherent sum over the many diagrams of t,he type illustrated 

in Fig. 2 is undoubtedly more complicated than that given by the above model. 

Nevertheless Eq. (3.5) should be representative of the scaling and functional 

dependence predicted by QCD for the reduced photodisintegration amplitude. 

The simple model given in (3.5) makes apparent the need for data at higher 

energies. The points plotted in Fig. 4 were extracted by inspection from the data 

in Fig. 3 under the assumption that scaling had begun. The error bars reflect 

the range of values that would be consistent with the data. The empirical form 

sin40,.,. fits the points fairly well but does not agree with (3.5). In particular, 

(3.5) is unbounded at one or both endpoints. Of course the physical cross section 

is not unbounded at either endpoint; its rise is curtailed by mass terms dropped 

in our approximations. However, the sin4tJ,.,. behavior of the data is not com- 

patible with any rise at all. If the yM -+ q ij model is a good guide, then a sign 

that experimental energies are approaching the true scaling limit would be that 

the value of f2(&,.) near the backward or forward direction has become large 

relative to the values at wider angles. 
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B. Dibaryon Resonances 

An interesting feature of QCD is the possible occurence of resonances in the 

dibaryon system corresponding to six-quark Fock states which are dominantly 

hidden color, i.e., orthogonal to the usual n-p and A-A-configurations. Signals for 

such resonances could appear in photo- or electrodisintegration of the deuteron 

at fixed i = M2 in a specific partial wave in the full amplitude. The virtual 

phot,on probe may enhance the signal since it is sensitive to off-shell configurations 

in the nuclear target. Analysed6 of deuteron photodisintegration data have 

suggested the presence of dibaryon resonances with masses at 2.26 GeV and 

2.38 GeV, although definitive results have been elusive. The isolation of possible 

dibaryon contributions from the hard-scattering background is clearly interesting 

and important. It would be useful to have a specific model of the hard-scattering 

continuum since this would permit a more precise separation of the resonance 

and background contributions. Given the correct kinematic regime, the reduced 

amplitude technique leads directly to just such a mddel. 

-As an application of this approach we treat deuteron electrodisintegration. 

We have alrea,dy discussed photodisintegration, but for that-process the reso- 

nances occur at energies where the asymptotic form (3.2) does not apply. In 

electrodisintegration, however, the kinematics of resonance production are con- 

sistent with large transfers of momentum for the nucleons. The methods of the 

previous sections should then be applicable. 

We write the full disintegration amplitude as the sum of a dibaryon resonance 

amplitude MDB and a background amplitude MBG: 

M ed-+ epn =MDB+MBG. 

As discussed in Sec. 2, the hard-scattering background amplitude factorizes into 

a reduced amplitude mgG and the appropriate nucleon form factors, 

MBG = mBG Fp(ip) &(h) . (3.7) 
From (2.4) we find that the nominal scaling behavior for the reduced amplitude 
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is 

mBG 

As a model for the reduced electrodisintegration amplitude we suggest the natural 

extension of the model for photodisintegration, that is the electrodisintegration 
of a polarized meson into its constituent quarks. This model is developed in the 

following subsection and the appendix. 

In general, one would expect the dibaryon resonance and the continuum 

hard-scattering contributions to the electroproduction amplitude to have quite 

different q2 dependence. On the one hand, the resonance contribution, if it is 

dominated by soft hadronic physics, would be expected to have a characteristic 

vector meson-dominated fall-off in q2: MDBK(~ - q2/m$-’ independent of pg. 

While on the other hand, the q2 dependence of MBG is minimal for lq2j < p$ 

and p$ large, at least for the contribution from transversely polarized photons. 

These characteristics in q2 should be useful in separating possible resonances 

from the continuum. 

C. Electrodisintegration 

To model the reduced background amplitude for deuteron electrodisintegra- 

tion we will assume that it is a single-photon exchange process. The square of 

the photon emission amplitude will be written as E&a and the square of the 

absorption amplitude, summed over final spins, as Fap. Thus we have 

c 
final hadronic spins 

(3.9) 

Just as for photodisintegration we choose to model Fap by the lowest order QCD 

contributions to the process r*M --+ q1 ij2 where the photon now has mass q2. 

The results of the calculation are given in (A.4), (A.13) and (A.14). 

As an example we treat the case of a longitudinal deuteron and unpolarized 

electrons, for which we easily find 

(3.10) 

11 



Upon subsitution of (3.10) and (A.4) Eq. (3.9) becomes, in the limit i < 8, 

C I~BGI~ - - Fl + (5 + 2c + c2} 8 F2 
8(1- c) + {a2 - b2} ’ F3 

2(1 -c) 

+ ((1 - c)(a - b) [2b + a(1 + c) + (a- b)(l - c)] 

- 2(a - b)2(1 + c) - ab(l -c)“] q;2c)2 

where the Fi are given in (A.14), 

(3.11) 

a = (Ep - gp . fie)/s1i2 , (3.12a) 

b = (Ep - ap . &)/td2 , (3.12b) 

C =ie*$k 9 (3.12~) 

fie is the beam direction, $k the direction. of the outgoing electron and (Ep, &) 

the four-momentum of the proton, all in the c.m. frame. The invariants used to 

define the Fi are, in the same limit, given by 

Q2 -N f ~(1 - c) , (3.13a) 

i 21 -f ~(1 - c) - s(a - b) , 

ii “Y s(a- 6) . 

(3.13b) 

(3.13c) 

The expression in (3.11) should describe the background near a resonance. For 

a transverse deuteron the background amplitude is suppressed by additional 

factors of (5 /s)l12 that come from angular momentum effects.lt 

4. CONCLUSION 

The reduced amplitude method discussed in Sec. 2 is very general. The prin- 

cipal formulas, Eqs. (2.1) and (2.4), give an accurate estimate of the leading QCD 

behavior of hadron-helicity conserving amplitudes. Comparison with experiment 
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should provide a new test of &CD. These formulas also imply constraints on 

low energy models since one expects a synthesis4 of QCD and nuclear physics. 

Our results suggest the possibility that fully analytic nuclear amplitudes can be 

constructed which at low momentum transfer fit standard electromagnetic and 

chiral boundary conditions and low energy theorems, while satisfying the scaling 

law and anamolous dimension structure predicted by QCD at high momentum 

transfer. 

- . 

An application to deuteron disintegration and a model for its angular de- 

pendence were described in Sec. 3. The prediction for the photodisintegration 

differential cross section is contained in (3.2) and (3.5). The general form for 

the square of the electrodisintegration amplitude is given by (3.9), (A.4) (A.13) 

and (A.14). This latter result provides a new means for understanding the back- 

ground to dibaryon resonances. Equation (3.11) supplies a specific prediction for 

this background. 

The predictions made for deuteron disintegration apply to an energy do- 

main that is as yet uncharted by coincidence experiments. With the advent of 

intermediate-energy cw electron beams l7 this should-soon notbe the case. Some 

other nuclear processes that are of interest in the context of the reduced am- 

plitude method are mentioned at the end of Sec. 2. We urge experimentalists 

to pursue the acquisition of data at the largest possible energy and momentum 

transfer in order to test the scaling behavior predicted by &CD. 
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APPENDIX 

Consider the process 

r*M + qrh (A-1) 
where the photon may be off-shell with mass q2 and M is a polarized meson with 

constituents q1 and 92. Let q be the photon momentum, p the meson momentum 

and p1 and p2 the final momenta. We will assume all masses other than q2 = 

-Q2 to be zero. The charges of the constituents are to be denoted by el and 

-e2. The usual Mandelstam invariants are defined as 

i = (q+p)2 , i = (p1- q)2 ) ii = (p2 - q)2 (A4 

and related by 

i+i+ii+Q2=0. (A-3) 

The square of the amplitude for the process, when summed over final spins and 

when, in the case of transverse polarization, summed over the two helicity states 

of M, is written as Fa@. Gauge invariance requires that it be--of the form 

FaB =[qaqP - q2gaB] Fl 

+ IQ * PbaPB + @Pa - q - waB) - q2papBI F2 

+ [q * PdqaP& + @P? - Q - PIga - q2P?Pfl F3 

+ lq * PdQaPB - q”p”) - q. p(q”pf - q%?) + q2(p”pf - pa,?)1 F4 

+ [q * PQ * PdP”Pf + Pa,?) - bl* Pd2 PaPB - (q * PI2 P?Pfl F5 

(A.4 
where the Fi are functions of i, i and Q2. 

To estimate18 the Fi we use the lowest order QCD diagrams, which are shown 

in Fig. 5. The Mql ij2 vertex for a meson of spin J and helicity h is described 

by a factorlg 

/ Id4 w xJh (A-5) 
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with 

and 

[dx] = dxl dx2 6(1- x1 - x2) 
- 

(A4 

X Jh = c Nit2 x;lf2 x;lJ2 4w Sl) 0 (x224 52) - 
81182 

(A-7) 

For the massless case considered here, one can use” 

where cf = F( I/ &)(O, 1, fi, 0) in a frame with p = (I 3 1, O,O, 1 i; I). In writing 
the final formulas we will assume that the wave function Q[, obeys the symmetry 

It is useful to define the integrals 

*=lq$!--$q 
and 

(A. 10) 

(A.ll) 

where ,/i is the c.m. energy of the process for which (A.l) is a subprocess and 

Q2 =o, 9= i is the photodisintegration limit. These integrals appear in the 
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following combinations: 

11 = III2 9 

12 = I’T + II’*- II* + 0 ,-- 
Q*=O 

I3 = 11’ I2 -; III2 Qdo 0 f 
= 

Id = m-II’* --+ 0 . 
Q*=O 

In the transverse case we find 

Fi =o , i#2 

(A.12a) 

(A.12b) 

(A.12~) 

(A. 12d) 

(A. 13a) 

(A. 13b) 

and in both the longitudinal and scalar cases we obtain 

A 

Fl -; (2ir+i-&2)55 -(ii-Q2$]+ 12(i+Q2@g)} 9 

(A. 14a) 

4 e2 
zi-+(ir-3i-2Q2)%$+2(if2Q2)$ 

i2 

+ 12(y-3i(;- ti+2Q2)y+i(t+Q2);] 

(A. 14b) 
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F3 - 

+;Q2 
( 

e2 2 We2 e2 (3g+2i-Q2)-$-2(8+36-Q )T+(w29-3Q2)$ I 
- I~($ + Q’)(y - ;) [(ii - 2Q2)y - (ii - if - 3Q2)7] 

-213(i+Q2)2(y-ff (A. 14~) 

(A. 14d) 

F5 - - 4 ,. 
.s2(i + Q2)(t + Q2) 

(Il[+Q2)(;+%) 

+;Q2 (ifi-2Q2)%$-2(3- 
( 

e2 - 

&) I 
2 + 

+~~(%--~)[(~+ZQ~)el-((~+Q~)(i-Q~)+ti~i)~] . 

-21&i+Q2)(~-~)2) . (A. 14e) 
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FIGURE CAPTIONS 

1. Comparison of deuteron form factor data with the QCD prediction in Eq. 

(1.5) of the text. The data are from Ref. 5. 

2. A deuteron form factor diagram that exhibits-factorization. 

3. Comparison of deuteron photodisintegration data with the prediction (3.2) 

of the text. The angle 8 c.m. is that of the proton direction with respect to 

the beam in the c.m. frame. The predicted scaling requires f”(e.,.) to be 

independent of energy at any fixed angle. The data are from Ref. 8. 

4. Values of f2(0,,.) extracted by inspection from the data presented in Fig. 

3 with the assumption that scaling has begun in each data set. The solid 

line represents sin46,,. which was chosen empirically to summarize the 

extracted values. 

5. Lowest order QCD diagrams for y*M + qlij2 where M is a bound state 

of q1 and q2. 
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