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aBSTR.ACT 

Weak interaction gauge symmetry breaking can be generated by radiative correc- 

tions in a spontaneously broken supergravity theory, provided the top quark is heavy 

enough. In one class of such theories the weak Higgs vacuum expectation values are 

determined by dimensional transmutation ;5 la Coleman-Weinberg, and may be consid- 

erably larger than the magnitudes of susy breaking mass parameters. In this scenario 

rnt 2 65 GeV, the supersymmetric partners of known particles may have masses 

<< pnw, the mass of the lighter neutral scalar Higgs boson is determined by radiative 

corrections, and there is some variant of a light pseudoscalar axion. In contrast to 

conventional Coleman-Weinberg models, the weak phase transition is second order and 

there is no likelihood of excess entropy production. - 
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Supersymmetry (susy) has recently attracted considerable phenomenological atten- 

tion because’ it can protect the weak interaction scale and preserve the hierarchy 

rn~/~np << 1. However, susy does not by itself predict or explain the magnitude of 

mw. Also, although the susy partners of many familiar particles must have masses 

< O(1) TeV if th e h ierarchy is to be maintained, the primordial susy breaking scale L/SE 

could be much larger. 2,3 Thus, scenarios have been proposed in which the weak inter- 

action scale is obt,ained from high order radiative corrections,3 with symmetry breaking 

driven by a heavy top quark.4j5 When fi 2 O(l0”) GeV it seems essential to con- 

sider the effects of local susy, since the gravitino mass m3/2 = o(d/mp) = O(naw), 

and scalar fields acquire contributions m to their masses of O(m312).~ Some phe- 

nomenological supergravity models have been proposed in which weak gauge symmetry 

breaking is realized at the tree level.’ However, it seemed8 to us more natural to 

suppose that radiative corrections play an important role, possibly with a heavy t quark 

driving weak gauge symmetry breaking, as had been proposed earlier!!4y5 in the context 

of global susy (see also ref. 9). Moreover, there emerged” difficulties with alternative 

models for weak symmetry breaking which employed light singlet chiral superfields. In 

the previous paper8 we demonstrated the feasibility of a similar scenario in the context 

of local susy, without solving the full coupled set of renormalization group equations for 

the susy breaking paramet,ers. 

Conveniently enough, the full renormalization group equations for these parameters 

are available from a previous analysis’ in the context of global susy. All that is necessary 

in order to arrive at an analogous broken supergravity model is to choose a somewhat 

different set of initial conditions for the susy breaking parameters.ll These include 

gaugino masses M,8 scalar boson masses m, 6 and t,rilinear scalar couplings X.7,12113 

One’s guess might be that all of these parameters are O(m3/2). However, it has been 



proposed14 on the basis of a U(n) symmetry among the chiral superfields respected 

by perturbative gravitational effects, that perhaps M = O(a/2T)m3,2.13 We see no 

particular reason why such a symmetry should survive non-perturbative gravitational 

effects, and it is in any case broken by Yukawa couplings which may be large for the 

top quark. Therefore we prefer to retain n?l F M/m = o(1). The initial value of 

the ratio >; s X/m is related7y12j13 to unknown parameters of a hidden sector of the 

theory, and is model-dependent but probably o(l). 

We prefer to keep an open mind about this sector of the theory, which may well not 

be a simple polynomial in a single unknown chiral superfield added on to the superpo- 

tential for known chiral superfields,15 but may reflect some more complicated dynamics 

at scales O(mp). In addition to the mass parameters listed above, the low energy Higgs 

potential involving two Higgs superfields H1,2 with susy breaking masses 7731,~ may also 

include a quadratic term HlH2 wit,h coefficient p X O(m3/2) related to a quadratic 

- term c~HlH2 in the chiral superpotential. There is no a priori connection between the 

values of ~1 and of “3/z, and if fl << mu the physical Higgs spectrum contains an 

axion. Phenomenological model-builders search in the multi-dimensional space of the 

parameters m, iI%, i, ~1 and the t quark Yukawa coupling ht to the Higgs H2 for outputs 

of the renormalization group equations in which m$ has been driven negative by ht, 

permitting the breakdown of SU(2) X U(1) to U(l),,. Typically, for given choices of 
L L 

-. 

1~), M, X and p we find a range of values of ht which give n$ negative, corresponding to 

mt 2 O(Mw). s’ lnce rnz varies quite rapidly as one approaches the strong interaction 

scale, different negative values of rni are attained at the price of modest variations in 

ht and hence mt. 

Instead of reporting on a general survey” of this parameter space, we have chosen 

to formulate plausible hypotheses which diminish its dimensionality and constrain the 
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theory in an interesting way. Since p has no definite reason to be O(mw), and could 

well be much less, perhaps O((a/lr)n)mw or O(mQlrnx) or even zero, we consider 

the possibility 

P = 0, or at least < mw . (1) 

In this case the weak gauge symmetry breaking occurs near a scale Qo where the linear 

combination mf+mz of Higgs mass2 parameters vanishes. This scale Qo is independent 
L L 

of m as long as m << Qo. Furthermore, for a given choice of M and X there is a unique 

value of ht and hence rnt which fixes Qo so as to give mw correctly. This enables us to 

predict mt as a function of u and i, and we find that for all plausible values of these 

parameters 

_- mt 2 65 GeV . (2) 

- In contrast to other models, in this scenario the unseen supersymmetric partners of 

known particles could be lurking arbitrarily close to the present experimental lower lim- 

its on their masses. In this scenario the weak interaction scale is divorced from the 

scalar and gravitino masses, since it is fixed by dimensional transmutation in the style 

of Coleman and E. Weinberg l7 The difference is that whereas in their case it was the 

logarithmic evolution of a quartic Higgs coupling which determined the weak interaction 

scale, in our susy case it is the logarithmic evolution of a quadratic Higgs coupling. As 

in the C:)!eman-Weinberg analysis, we have a light neutral Higgs scalar whose mass is 

determined by radiative corrections, and we also have the pseudoscalar axibn mentioned 

earlier, We assume that this axion could ultimately be made phenomenologically accept- 

able, perhaps by becoming a new improved invisible axion in a GUT18~‘g or perhaps 

by p being sufficiently large (2 O(l)MeV) to push the axion mass ma = O(pm)‘/2 
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above the experimental lower limit of 350 MeV from K -+ I + u decay. It is interesting 

to speculate that the initial stage of GUT symmetry breaking could also be driven by 

radiative corrections, in which case one might hope to understand why rnw/rnx << 

m;y/mp << 1 along the lines proposed in ref. 20. In this connection we make some 

remarks about the variat.ion in couplings and mass parameters between mp and mx. 

We assume there are no other light chiral superfields besides the Higgses Hl,2, the 

quarks and the leptons. Therefore the low energy potential for the neutral Higgses is21 

v= ” +8g’2 (lHli2 - lH2i2)2 + mflHl12 + m$H212 - rn$(HlH2 + HfHi) (3) 

The quartic D-term allows the Higgses to leak to infinity unless21 

rnT+rng > 2rnz 

and there is SU(2) X u(l) breaking if21 

rn$ > mfm$j 

with 

2mz Vl - < olH1lo > = cot 0 - sin 20 = 
v2 - < OlH40 > - (mT+mf) . 

(4 

(5) 

(6) 

We assume that H2 gives mass to the t quark mt = (I/ fi)htvz, and ht > hb 

so that the renormalization group drives rnz < rn? at present energies, and we will 

be interested in what happens when rnz = O(pm) -+ 0. In leading order of the 

renormalization group equations the Higgs mass parameters rnf in the effective potential 

depend (logarithmically) only on the corresponding IHij2, and they are positive at large 
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scales ensuring that condition (4) is obeyed. If rn; + rni decreases to zero at some scale 

IKl = Qo, th is will determine the value of v2 s V: + v$ while 

62 vf 2); 2b? - f = “22) 4m?C&i) - 
(9; + 9’2) = (9; + 9’2) * (7) 

The combination mT+ rnz becomes negative at scales less than Qo, resulting in the form 

of potential shown in fig. 2. If ml,2 are much less than the dimensional transmutation 

scale Qo then equat,ion (7) tells us that the absolute minimum of the potential is at 

2 2 V2 
?I1 m 94 ?a - 

2 

and 

So=& R i90 GeV . (9) 

To calculate the scale Qo at which rn! + rni = 0 we need the leading order renormal- 

ization group equations of ref. 5 which are valid for Q >> M2, m2. We have in their 

notation the initial conditions 

* 
m3=m4=m5=m7=mg=o; mg===mg=ml()=hm 

In the limit that m = 0 our init,ial conditions become a limiting case of those considered 

in ref. 5, with the only susy breaking in the initial conditions coming from M # 0. 

Neglecting all Yukawa couplings except those of the top quark, the relevant renormal- 

ization group equations are 
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dmf 1 

QdQ=-- (4 J21 
-69; M; - 2g12 Mf] W) 

drnz 

’ dQ __ = kTp (-6gzMi - 2g’2Mf + 6hF(rni3 + rn& + m& + mTo)] (3 

dmlo 
’ dQ 

Ml+6h;‘n10 1 WC) 

’ dmi3 ____ 1 -32 = dQ ~~3 
1 y’+h 2 2 2 12 - 6&f: - s 9 Mf + 2@( mf3 + rni3 + rni + rnTo) I 

(114 

Qd&= dm& 1 -32 1 3 g3M3 2 2 
32 

r2 -__ - (47r)2 -g 9 M?+ + 4@( mi3 + mf3 + rni + mTo) 1 We) 

for the susy breaking scalar mass parameters, and 

+6hf 1 
for the t quark Yukawa coupling. The gaugino masses are 

M3,2 = 
&(Q21M , - 

&JT 

hf = 5g’2(Q2)M 
1 

3 &UT 

(12) 

(13) 

while g3,2 and g’ evolve conventionally with Q. 

e. 
We have integrated these renormalization group equations for different starting val- 

L L 
ues of the ratios M and X, and located the corresponding values of mt which yield a 

dimensional transmutation scale Qo = 290 GeV. Vacuum stability conditions prefer22 

i < 3, but this condition should be interpreted cum grano aalia. It is applicable at 

* scales 0( mw) h w ere X is renormalized from its initial value in different ways for different 
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trilinear couplings. Finite temperature effects in the early universe favour the conven- 

tional local minimum. Tunnelling into other minima is suppressed by exp(-0(1)/h’) 

where h is the relevant Yukawa coupling. The false vacuum is more stable than the 

age of the universe except perhaps for transition to the minimum controlled by ht. If 

mi < mi3, m& at scales CJ (mw), the absolute stability condition 22 on i is modified 

to it s &(mw)/mz(mw) < 2. Th’ IS condition is obeyed if the initial $ 5 2(1/2), 

as can be seen in the Table. Even if this condition is not obeyed, it is still possible that 

the lifetime of the false vacuum may be longer than the age of the universe for relevant 

values of ht. 

Our results for rnt are shown in fig. 1: they were determined by integrating the 

renormalization group equation for ht down to a momentum scale & = mt. Note that 
1 1 

we are not able to find solutions if A4 < 0.35 for X = 1. Within the allowed range 
A 

of Mwe find rnt > 65 GeV in the supersymmetric Coleman-Weinberg scenario for 

i < 2 4. If rnt turns out to be < 65 GeV, our scenario could still apply if our present 

vacuum is unstable, or if there is a fourth generation. In general, rns is evolving very 

rapidly at low &, which means that the values of rnt needed are not much larger than 

the typical ranges found when we look for general solutions5T16 to the inequalities (4,5) 

rather than looking specifically for rnf + mf -+ 0. In the general case we often find 

q < “2 = 21, so that the same value of ht gives rnt a factor fi larger than in the 

dimensional transmutation case (8). 

-. 
The rapid final stages of evolution of rni are driven by the increases in the t quark 

Yukawa coupling and more importantly in the squark masses which occur when g$/4lr 

becomes large. Thus in the super-symmetric Coleman-Weinberg scenario the weak inter- 

action scale is related to that of the strong interactions, while the absolute values of m 

and m3j2 are not directly related to rnw. This contrasts with what usually happens in 
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models of weak gauge symmetry breaking in supergravity models7~8~g~16 where rnw is 

connected with m and m312, but is not directly related to the strong interaction scale. 

In practice, phenomenology dictates that m must be large enough for all unobserved 

particles to have been able to escape’detection, but it could be as low as 15 GeV in our 

scenario, thus offering the prospect of imminent detection of susy particles. The table 

shows values of t,he physical masses of these particles in units of m for selected repre- 
L L 

sentative values of the input parameters M and X. We see that the lightest spin-zero 

superpartners are the sleptons. For small M the lightest gaugino is approximately a 

photino 7 with mass 

m- w d2M2 + !?Wl - 8 &y2 
7 csg + !Y2) - 3(s22 + 9’2)!&~ 

M x 0.47M . (14) 

This could be light enough to be pair-produced at PEP and PETRA, and the selectron 

mass could well be small enough for the cross-section for e+e- + 5 5 7 to be detectably 

_ large at present energies.23 Turning now to the physical Riggs bos(ins in this class of 

model,21 the charged bosons H* and the heavier neutral scalar boson Ho’ acquire 

masses 

mH* = q+, mHOl = mzO 

at the tree level. The lighter extra scalar boson Ho acquires 

(15) 

mk0 + mi, + m3 + mTo) - 12g2@ - 4gt2i@ (16) 

from radiative corrections. Values of mHO corresponding to typical values of the input 

parameters & and i are also given in the table. Typically 

mHOw(i to2/3) m (17) 
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which is not much smaller than the slepton masses, as a result of the relatively large 

squark masses exhibited in the table and appearing in eq. (16). Finally, our spectrum 

contains a light neutral pseudoscalar axion state which must be exorcised in one of the 

ways discussed earlier. This can” be done in such a way as to avoid astrophysical 

and cosmological pitfalls. Our class of susy Coleman-Weinberg models also avoids the 

danger24 of excess entropy generation during the weak phase transition, because as 

seen from fig. 2 the origin is an unstable extremum and there is a second order phase 

transition once the temperature falls below O(m). 

Before closing we would like to add a few comments about the possibility of embed- 

ding this susy Coleman-Weinberg scenario in a GUT. One remark contains the initial 

values of the scalar masses that we have assumed. There is no good reason why the 

masses of 5 and @ matter fields F and T should be the-same at the GUT breaking 

scale-ax, nor why the 5 and 5 Higgs masses should be the same. Even if some sym- 

metry fixed them to be equal at mp, they would differ at Mx. We have evaluated this 

possible difference in the minimal SU(5) GUT’ and found that 

(18) 

with m2 a rni12 4 m m$. Figure 1 shows that variation in the range (18) does 

not have a substantial effect on the required t quark mass, though it can increase the 

physical masses of squarks and sleptons from the 10 representations of SU(5), such as 

the en, BR and ?R. 

It is enticing to speculate whether the grand unification scale rnx could also be 

determined by dimensional transmutation, thanks to some susy breaking scalar mass 

in the GUT sector being driven to zero at a scale Q = o(mx). This would be a 
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reincarnation of the double Coleman-Weinberg scenario of ref. 20, in which the “hier- 

archy of hierarchies” rnW/mx << mX/mp << 1 was ascribed to the rapid evolution 

of the couplings of large GUT representations such as the 24 of Higgs in SU(5) which 

gave a very large dimensional transmutation scale to the GUT breaking. This suggestion 

would now be applied to the susy breaking mass parameters instead of the quartic scalar 

couplings as illust,rated in fig. 3. Unfortunately, such a scenario cannot be realized in 

the minimal susy GUT25 where the lightness of the Weinberg-Salam Higgses and the 

heaviness of their colour triplet partners are enforced by the fine-tuning of two mass 

parameters in the superpotential. If one supplements the conventional minimal SU(5) 
- 

GUT with additional @ and 40 chiral superfields with a coupling u to the adjoint 21 

of Higgs, one can easily find plausible initial conditions at mp which can drive rnz4 to 

zero at scales Q = O(10B3)mp, such as . 

&-&) 19 * 
47r * 

f!? = 0 004 ; mzo = rn$ = other m2 ; 
‘4w - 

M = O(2) m . (19) 

It remains to find a cleverer model featuring such a supersymmetric hierarchy of hier- 

archies in which the Higgs doublet/triplet splitting problem is also solved. 
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TABLE 

Masses in models with the SU(2) X U(1) breaking 

scale determined by radiative corrections. 

^ . 

;= i= 1 
M=l A= .35 C=l i=l$=J3/2 

m=X=O 1=1 ! = 2.5 
M=mF 

mt 88 67 140 70 82 

GO .67 .46 .26 .66 .67 

h 
rn- 2.7 2,6 1.1 2.7 2.7 

93 

%1 2 2*g 2.7 104 2.9 3.0 
, 

h 
?3 203 2.4 :60 -2.3 2.4 

I;Lu _- 2.8 2.6 1.4 2.8 2.9 
p1,2 

& 2.8 2.6 1.4 -2.8 -- : --i 2-8 _ 
“1,2,3 

A 
mN 

‘1,2,3 
1.2 .73 1.0 1.2 1.2 

I 1.1 I .39 1 1.0 I 1.1 
?,2,3 

it 1.6 1.5 1.0 2.2 1.7 

All masses denoted rizi are in units of the -plet scalar masses at the grand unification 

scale mx, except that masses in the second column are in units of the gaugino mass at 

the scale mx. 
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FIGURE CAPTIONS 

1. Predictions of rnt corresponding to different values of the input mass ratios 

a-’ s m/M (dashed line), i z mlo/m (dashed-dotted line) and mT/mp 

(solid line). - . 

2. Form of potential in the dimensional transmutation scenario. The dashed line 

represents the curve of minima (7) in the (vl,212) plane. The solid line represents 

the shape of the potential along this curve induced by the radiative corrections 

(Ila) and (1 lb). The dotted lines show the location and depth of the absolute 

minimum of the potential at O(Qo) where mf + rni N 0. The extremum at 

q = 0, ~2 # 0 is unstable since rn: + mf < 0 at scales O(m) << Qo. 

3. Qualitative features of the variation of susy breaking mass parameters in the 

“hierarchy of hierarchies” scenario. It may be possible to generate rnx = 0(&l): 

--Qo/mp < Ql/mp < 1. 
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