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1. INTRODUCTION 

In a previous paper [l], hereafter referred to as I, we investigated sponta- 

neous CP violation in a class of extended technicolor (ETC) models [2,3,4,5]. 

We constructed the effective Hamiltonian generated by broken EZ’C interactions 

and minimized its contribution to the vacuum energy, as called for by Dashen’s 

Theorem [S]. As originally pointed out by Dashen, and more recently by Eichten, 

Lane and Preskill in the context of the EK’ program, this aligning of the chiral 

vacuum and Hamiltonian can lead to CP violation from an initially CP symmet- 

ric theory [7,8]. 

- . 

The ETC models analyzed in I were distinguished by the global flavor invari- 

ance of the color-technicolor forces: 

GF = n u(2)L @  u@)R (1) 

For these models, we found that, in general, the occurrence of spontaneous CP -- 
violation is tied to CP nonconservation in the strong interactions and, thus, 

- to an unacceptably large neutron electric dipole moment. However, strong CP 

violation is avoided by imposing a discrete invariance, denoted by GP, on the 

effective Hamiltonian. 

We also showed that if CP violating phases do arise when the vacuum is 

aligned, their size scales with a ratio of En: gauge boson masses rather than 

being on the order of one as expected by Eichten, Lane and Preskill. 

Here, we address several problems deferred in I. First, the models considered 

in I did not include electro-weak degrees of freedom. The chiral symmetry group, 

Eq. (I), was “horizontal,” i.e., operated in the space of fermion generations. Of 

course, when the electro-weak interactions are included, GF must. be enlarged to 

contain G 1u = sum @  U(l)y. In sect. 2 we argue that the analysis carried 

out in I remains applicable when G, is embedded in GF. 

In sect. 3, we exhibit the results of I in the context of a toy model based on 

an SO(lO)mc group. 
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In sect. 4, we raise and discuss a possible flaw in this mechanism for CP 

violation related to the contribution of techniquarks to strong CP violation. 

Finally, we note that conditions exist under which the GP symmetry constraint 

can be relaxed, allowing the development of a realistic quark mass matrix without 

sacrificing its hermiticity. * 

2. INCLUSION OF ELECTRO-WEAK DEGREES OF FREEDOM 

In considering models with GF given by (l), the requirement that the low- 

energy effective EK Hamiltonian be a G, singlet forced us to identify flavor 

doublets as generational rather than electro-weak. The alternative would have 

led to a trivial problem with only CP conserving solutions. But, in reality, GF 

contains G, as a subgroup. Therefore, in the analysis of I, we simply ignored 

electroweak degrees of freedom. Here we argue that this simplification is as 

reasonable as it is expedient. 

If we assume all left-handed fermions occur in weak sum doublets, the 

multiplicity of each irreducible representation of GTC @  GC must be doubled. 

This yields 

GF = n u(4)L @  u(4)R - 

Now, the analysis carried out in I depended crucially on GF being a product of 

U(~)L @  u(2)R factors. However, it is easy to see that if the chiral vacuum is 

to conserve electric charge, its alignment must be specified by an element of the 

subgroup. 

n [u@)L @  U@)Rjup 8 i”(2)L (8 U(2)Rhown ; (2) 
-. 

that is, up-like and down-like fermions are to be rotated independently. Other- 

wise, a non-zero vacuum expectation value with the G, properties of 0~ dR will 

appear, spontaneously breaking electric charge. 

* See I, sect. 3.1. 
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More precisely, the vacuum is specified by the expectation values 

where p and u denote irreducible representations of GTC @  Gc, r,r’ is a flavor 

index, and l&‘) is a 4 X 4 unitary matrix, W(p) = WR(p)WL(p)’ (GTC @  GC 

indices have been suppressed). Clearly a conserved electric charge exists only if 

tip) = W(P,“) 0 
( 0 W(PJ4 1 

(3) 
in some basis, where w(p~‘) and l&‘jd) are 2 X 2 unitary matrices. Thus, if we 

restrict our interest to charge conserving vacua, the effective flavor invariance 

is given by (2) and the CP character of charge conserving critical points of the 

vacuum energy is determined by the analysis promulgated in I. In particular, a 

GP operation can be defined and its conservation by the effective Hamiltonian 

will imply that the CP symmetry of the strong interactions is unmolested. Also, 

phases will be suppressed through the mechanism identified in I. 

Of course, in a given model, the true, global minimum might spontaneously -- 
break charge conservation. In this case, the model would be disqualified on 

._ 
- grounds unrelated to the fate of CP. 

3. A TOY MODEL 

In this section, we describe a simple toy model which displays the spontaneous 

CP violation discussed in I. The model includes the essential properties of CP 

and GP symmetry at the level of the effective Hamiltonian, and spontaneously 

generates CP violating phases suppressed by a ratio of EK’ mass scales. Our 

purpose here is to go some way towards demonstrating the feasibility and internal 

consistency of this mechanism, rather than to present a realistic model into which 

it is incorporated. As we will see, the model is either pathological or incomplete in 

several important respects, which, however, do not obviously bear on the matter 

at hand.* 

*An evident exception to this is the unrealistic quark mass spectrum implied 
by GP symmetry (cf. sect. 1.3.1). 
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Initially, the unbroken local gauge symmetry is Gm @  Gc @  Gw, where 

Gm= SO(lO)mc and G, @  G, is the standard color-electro-weak sector. 

Fermions occur in three representations:. 

$L-(16,3,2,;); $a”)-(16,3,1,;); #-(16,3,1,-i). (4 

The last label for each field is the weak hypercharge. 

Immediately, three comments must be made: 

1. In general, [Gm, G,] = 0 and/or [Gm, U(l),] = 0 implies that some 

chiral symmetries are not gauged and therefore leads to massless Goldstone 

bosons. This was originally pointed out by Eichten and Lane who concluded 

that quarks and leptons must occur together in irreducible representations of 

G-.[4] Here this constraint is “solved” by omitting leptons altogether, thus 

eliminating unwanted chiral symmetries.. Were we to introduce color singlets, 

w m?m 63 SW% c3 U( 1) y would, presumably, have to be embedded in some 

larger, simple group. 

2. The fermion content, (4), leads to vectorial E% interactions possessing a 

global sum @  Su(2)R symmetry. After chiral symmetry breaking, assuming 

the vacuum alignment conserved electric charge and ignoring the weak gauging 

of sum the model retains a residual vector isospin symmetry and, therefore, 

can only generate equal masses for up- and down-like quarks. * 

3. By embedding G, @  Gw in an SO( lo), and adding leptons to fill out the 

standard multiplet, a variation of the “vertical-horizontal symmetric” SO(lO)v@ 

S0(10)~ grand unifying model proposed by Davidson, Wali and Mannheim is 

obtained.[Q] Here, the major departures from that model is the choice of tech- 

nicolor group (SU(3) rather than SU(4)) and of fermion representation (16,16) 

rather than (16,lO) + (10,16)). (In fact, these variations are related since, for 

*A non-vectorial realization of the model is obtained by assigning right-handed 
up-like fermions to the l6, and right-handed down-like fermions to the in- 
equivalent E* of SO(lO)mc. However, this complication tends to obscure our 
program in exchange for extremely meager compensation. 
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Gm = SU(4), the (16,16) contains no technicolor singlets.) Since we are pri- 

marily interested in the breaking of G~c, which occurs at a mass scale well 

below grand unification, and in light of the constraint mentioned in comment 1, 

we do not further emphasize this aspect of the model;. 

At a mass scale Mhc, Gm is broken to SO(6) @  SO(4) = SU(4)n;l @ I 

SUP)1 63 ~(2)II. A second stage of symmetry breaking occurs at M~c < 

Mbc leaving intact only the technicolor group, Su(3)TC. Under SU(3)m @ I 

SU(2)1@ SU(2)11, the fermionic 16plets transform as 

16 = (3,2,1) + (3*, 1,2) + (1,2,1) + (1, 1,2) . 

Thus, there are four generations of both techniquarks and quarks. We denote 

these fields by 

(5) . 
-- &@) - 09 2, l) ; (&,(R) - (I, l, 2, 

where A = 1,2,3 labels technicolor, r = 1,2 is the SU(2)1 or.SU(2)II index and 

a = 1,2 distinguishes up- and down-like fermions. The suppressed color degree 

of freedom plays a trivial role in what follows. 

Now, ideally, GTC would mimic SU(3), with An: N 103AC. Unfortunately, 

in this model the technicolor p -function is positive, indicating that GTC is 

not asymptotically free. Nevertheless, we will assume that, in analogy to the 

presumed low energy behavior of the color forces, w(3)TC spontaneously breaks 

chiral symmetry at an energy scale of 1 TeV. 

Since the fields, (5) are all triplets under Gc, the Gw @ I G, couplings are 

invariant under the action of the global symmetry group 

GF = V@)L @  W IRIQ 8 [WL @YW)RIQ 63 [W)L CW@)RI~,~ - 
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By imposing GTC @  Gc @  G, @  Su(2)R invariance, we can write 

general four-fermion operator which breaks GF and contributes 

the vacuum energy: 

down the most 

non-t rivally to 

(6) 

In this expression, all I-tensors are real; m = 1,2 with tgcD 

t!ZCD 

= b&D~ 

= c~&~BC. The indices x,2’, y, d take on the values 1,2,3,4, with, e.g., 

qz = qr, for x = 1,2, and qz = fl, for x = 39. q and-q’ will eventually 

decouple in N’. * 

Our program is to compute the I-tensors to lowest order in g&C from single 

boson exchange interactions. ER7 gauge bosons make up a 45 of SO( lo)-; 

* The observant reader will have noticed that the technifermions possess a 
U( 24)~ @  U( 24)~ global invariance when their color interactions are neglected. 
This symmetry is weakly and explicitly broken by color to the factors appear- 
ing in GF. The larger invariance group implies relations amongst the several 
technifermion condensates (see eqs. (12) and (13)) but, since color is strictly 
conserved, does not admit additional terms in eq. (6) for U’. 



together with their transformation properties under SU(~)TC@SU(~)~@SU(~)II 

and the fermionic currents to which they couple, they are: 

D$ - (3*, 1,l) : q+ 

A;” - (3,2,2) : J;” = P&J;1Ars 

-- 
A? - (3* ) 2,2) : If” = P&( J;1A+y8 ._ 

4 - W, 1) . 

In eq. (7), suppressed indices are traced and K = 1,2,3,4 with 

1+T3 

1 - 73 

71 - ir2 

r1 + 8-72 I . 

(7) 

All gauge bosons, except the Hp, acquire mass at one, or both, stages of G- 

breaking. Using the residual su(3)TC symmetry we have 
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Here ~2, ~42, ~7 and p& are real and symmetric and of order Mhc. pt2 is 

hermitian and of order M&. In this model, we take pf,ll = pT,-, = &u = 

P II2 = 0, which is a consistent choice provided SO(lO)mc is broken only by 

objects transforming as (1,l) or (1,3) $ (3,l) under SU( 2)1@ SU( 2)rl. 

The effective current-current Hamiltonian is 

with 
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o! 

r*=2 

rL2 
( 

3&p 0 

0 aq12 1 
(9) 

In eq. (Q), I’l” has been been given in the basis (TO, 72, $, r3), and we have 

assumed that Ji’ is invariant under the action of a GP operation defined with 

respect to the subgroup of GF 

HF = II 
a=u,d 

[“(2)L @  u(2)RlQ,a @  [U(2)L @  U(2)RIQf,a 

(8 [“(2)L @  U(2)RIq,a @  I”t2)L @  U(2)RIqJ,a 

In other words, U’ is invariant under 

wr 
QL(R)a -b “$ cp&yR)a 

Wf (cp)-1 

(10) 

(11) 
o- 

qL(R)a + iTfrt “QL(R)a ( 
(Of cp)-1 

This assumption has enabled us to restrict I”’ to the form given in (9). 
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Now, when their couplings become strong, GTC @  Gc interactions break 

GF to SF = [u(d)V]Q @I [u(4)V]Q/@ [U(~)V]~,~ and generate non-zero vacuum 

expectation values for fermion bilinears: 

02) 

and for four-fermion operators: 

= A%&, , A@ = A&q’ ; 

(13) 
A99 = Ad , A’99 = A’99’ . 

The vacuum of eqs. (12,13) is invariant under the action of the vector sub- 

group of GF. * The true chiral vacuum, determined by minimizing the ground 

state energy, is parameterized by U(4) matrices W and W’ corresponding to chiral 

transformations of Q’, and Qz, and a U(8) matrix associated with &. However, 

as pointed out in sect. 2, by assuming that the true vacuum is electrically neu- 

tral, the effective flavor symmetry is reduced to HF, eq. (10). Furthermore, the 

* The equalities A@ = A& in (12) and A&Q = Aq@, A@ = A@9 in (13) 
follow from the SU( 24)~ @  sum global invariance of the technicolor sector 
when color is neglected and are accurate up to small QCD corrections. 
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residual vector isospin symmetry of U’ implies W(Py”) = I+@J~) at the minimum 

of the vacuum energy (cf. eq. (2)). Thus 

w - wRwLt = babWrrl = babei’(tu(J + i $ - 3) - t-r’ - 
(14) 

W ’ = j,pRJ,pL+ = 6 w’ ab rf= 6abeif(wb + i izl’ - ?),,.I 

In addition, with N’ diagonal with respect to (q, q’) and invariant under the 

GP transformation, eq. (ll), charge conserving critical points correspond to 

independent rotations of q and q’: 

(J = &JL+ = 6abeiX(u(j + i a . ?)rrl 
U’ = tfRUtL+ = 6abt?iX’(t& + i ii’ * ‘2),./J 

(15) 

Combining eqs. (8), (13), (14) and (15) and using, from I, eqs. (1.17), (I.A.l) 
and (I.A.7) we obtain the vacuum energy 

E(W, W ’, U, U’) =const. + WaXfpwp + &A$$ 
-- 

In this expression, h = A4,$,&M& < 1 and g = AQ’J/AQQ - 10Bg. The X 

-matrices are all of comparable magnitude and are given by 

xQ = ~AQQxI, xQ’ = &%*I , 

g2J@ = 4Aqq),’ , g2Q+ = 4Aqq),” , (17) 

hXQq = ~AQ’&,~~ , hg#‘QQQ,‘o , gxQq = 4AQqpT2 1 , 

where 

XI = Tfcl12 O ; 
( 0 (Py2)ij 1 

(184 
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Trph2 0 

0 (Pz2)ij 
( 1w 

(19) 

Constant terms have been extracted from both A’ and XI’ in (18a,b) (cf. eq. 

(1.36)). The variables wa, da, ua and uk are real and satisfy wawa = dawh = 
I I uaua = uau, = 1. To avoid anomalous elements of GF the phases must satisfy 

exp 24i($ + 4’) = exp 24i(x + x’) = 1 

Equation (13) is, of course, the desired result: its minimization follows the 

program described in I. Strong CP conservation is assured since vacuum align- 

ment takes place within a subgroup, HF, with respect to which, U’ is GP sym- -- 
metric. Whether or not spontaneous CP violation occurs depends only on the 

_ matrices x’, X” and Alo and on the sign of AQQ, ti discussed in sections 1.3.3 

and 1.3.4. 

Thus far, the following assumptions have been made about the breakdown 

of SO( lO)mc: 

-. 

(i) The vacuum which minimizes the effective potential conserves electric 

charge. This assumption is plausible, though its complete vindication 

would require explicitly minimizing E with respect to the full flavor sym- 

metry, GF. Still, we expect that for some range of values of x’, X” and 

X1O, charge conservation is obtained. What is not clear is that this range 

is consistent with the assumptions which follow. 

(4 &I = $,Q = $1,~ = Ptt2 = 0. As was mentioned, this is realized if 

SO( lO)mc is broken only by objects transforming as (1,l) or (1,3) + (3,l) 

under the SU(2)1@ SU(2)11 subgroup. 

(iii) U’ is CP and GP symmetric. 
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If spontaneous CP violation is to occur, two additional criteria must be 

met. 

(iv) The largest eigenvalue of ~3 is (/J&J and the largest eigenvalue of & is 

not (~$)22, or vice-versa. 
~. 

(v) A&Q > 0. Otherwise E is minimized by w = W’ = u = u’ = 1. This is *I 

not a constraint on ElYl breakdown and, for purposes of this dicsussion, 

will simply be imposed. * 

To demonstrate the feasibility and consistency of (i), (iii) and (iv), we resort 

to the Higgs mechanism to break SO(10) ETC. The Higgs sector we’ll introduce is 

not very aesthetic, even as these things go, and the pattern of vacuum expectation 

values is, unfortunately, not general. However, this scheme has the advantage of 

quickly and easily justifying (ii), (iii) and (iv). 

Higgs scalars comprise four representations of SO( lO)m~: 

t-54; tp-4J ;4’“45;x”rs, 

2nd~ under su(4)TC 8 m@)I @  ~(2)II, 

MO - (171, 1) ; (4)o - (4’)o - (1,3,1) + (19 113) ; (x)0 - W3,l) + (lo*, 173) * 

(C)Q is of the order of Mbc and breaks SO( lO)mc to Su(4)TC @  SU(2)1@ 

SU(2)11. It produces 

(4)0, (4’)~ and 1x)0 are order M2 M%. (x)0 must transform as the SU(3) singlet 

found in the 10 and @  of SU(4), and gives ~02 - ~42 - Mhc. Now, if the 

* Calculation of A&Q is a strong interaction problem, however it looks sus- 
piciously like the positive definite square of a mass operator and in simple 
approximations this impression is affirmed. On the other hand, in ref. 8, the 
author suggests that A@’ < 0 but states that a proof has not been found. 
If this is true, a vector model will not generate CP violation, though a non- 
vectorial model of G- can.[lO] Of course, G~c must be non-vectorial for 
unrelated reasons, i.e., to produce up-down mass splittings. 
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triplets under SU(2)1@ SU(2)11 are denoted by 

(4)o : if - PI31 11, 67 - (1, 1,3) ; 

(4’)Q : d - (1,3,1), f6’ - (1,1,31.; 

(x)0 : 3” - (10,3,1) ) iv - (lo*, 1,3) ; 

then each (3,l) + (1,3) contributes, for example, 

b&j CC G2 Sij - ViVj 9 (/lfJ)K C2 6ij - WiWj , 

i 

v3w3 v-w- vgw- wgv- 

pt2a - (7J2 + ?I@)1 - 2 
v+w+ v3w3 -w3v+ -v3w+ 

v3w+ w3 v- --v3w3 v- v+ 

w3v+ -vgw- v+ w- -v3w3 

where vf = Vl f iv2, w* = wl f iw2. By choosing 

iJ = (Vl,O, v3) , iz = (Wl,O, w3) ) 3’ = (0, v’z,O) ) 

G’ = (0, w’2,o) ) 8” = (0, 0, v!J ) ii!’ -z (0, 0, w!$ 

1 
= (d2)+ I 

(20) 

-. 

we readily obtain CP and GP conservation. For pi and & we find 

( 

VT + v; + vg2 0 0 

Pfa: 0 vg + v!j + vi2 --v1v3 

) 
9 

0 -74v3 ?Jf + VF 

! 

wf + wg + wb2 0 0 

da: 0 wg + wf + wg2 --w1w3 

0 --w1w3 w; + w’z2 1 

in the (r2, TV, TV) basis. A straightforward computation of eigenvalues shows that 

vk and d2 are easily adjusted to meet criterion (iv), above. Specifically, CP is 

spontaneously violated when 

v!; ; $vf + vg + tJg2) - ; j/(vf + ?Jg + up - 4v~v~2 
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and 

J; ; f (wf + w; + wg2, - ; \/( wf + 20; + wf2)2 - 4W+!!2 (21) 

provided AQQ > 0. 

This result suggests that spontaneous CP violation occurs for a sizable range 

of vacuum expectation values. However, it must be pointed out that, although 

the KEY’s 3, 3, 5” and a” may always be brought into the forms of eq. (20) our 

choice of V: = US = wi = wi = 0 is very special. We conclude that our ansatz 

is not to be taken too seriously; in particular, the constraint (ii), introduced here 

to simplify exposition, is far too strong. 

4. A PROBLEM WITH TECHNIQUARKS 

When CP is spontaneously broken, strong CP violation is typically signalled 

by the appearance of an anti-hermitian component in the quark mass matrix. 

Put_ting the matrix in real diagonal form then requires an anomalous axial U(1) 

transformation which induces a change in the Lagrangian 
._ 

&if = -iOeff $$.$W’c - F, , eeff = arg det Mquark , 

where Fc is the color field strength tensor and F, its dual. If the model con- 

tains colored technifermions, i.e., techniquarks, evidently 0,,,1 has an additional 

component when their mass matrix is not hermitian. 

Now, the light quark mass matrix is readily identified in the effective low 

energy theory obtained after integration over heavy technicolor and broken ETC 

degrees of freedom. It is hermitian to a part in 10’ provided the matrix 

c c c AqoJm$‘8;w!p,‘kV~‘t z AqM$ 
u rr’ss’ m 

is hermitian.[7] This is the statement of eqs. (1.6) and (1.7). 

However, though the corresponding techniquark operator, MQ, will generally 

be hermitian whenever Mq is [7,10,11], its connection to Be/f is not as straight- 

forward. In fact, there is no reason to believe that techniquarks renormalize 
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fleff primarily through this operator. Thus, in a model with techniquarks, the 

Eichten, Lane, Preskill criterion (MP = Mpt) appears to be insufficient for pre- 

dicting the fate of strong CP conservation. 

In this section, we investigate the techniquark contribution to t9eff in the 

context of models described by eq. (1) (and by straightforward extension, those 

of sect. 2). Our results suggest that suppression of this contribution requires an 

additional constraint on the effective ETC Hamiltonian beyond those invoked in 

I. 

For simplicity, we consider a model with no technileptons, i.e., color singlet 
technifermions. This restriction will in no way affect our conclusions. We will 

also ignore effects at the level of a part in 10’. Explicitly, then, the CP violat- 

ing technifermion operator which renormalizes B,ff is just the four-techniquark 

terms of U’: 

-- pa d88’ 
tt’=1 

where color and technicolor indices have been suppressed, and the sum is over 

inequivalent, non-trivial representations, p, 0, of GTC@GC. CP violating phases 

reside in the matrices W(P). On d’ imensional grounds, we expect the leading 

contribution to 0 e~j from this operator to be of order (assuming phases are O( 1)) 

1 -lllQ  - 1o-3 

-ATC- 

which is, clearly, unacceptably large. 

A model calculation of 8,,{ can be done, based on the single ET boson 

exchange contribution to Nb and the vacuum graphs in fig. 1. If the double 

solid lines in fig. 1 represent exact fermion propagators in the presence of color 

instantons, * these vacuum amplitudes include a term proportional to TTF,. F,. 

The coefficient vanishes in perturbation theory since TTF,.F, is a total divergence, 

* Or any other effect which gives rise to a non-vanishing Fc. F,. 
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but can be extracted in the dilute gas approximation by expanding the fermion 

propagators in powers of the field strength.[12,13] 

The massive ETC boson exchanged in fig. (1) couples to broken currents 

where i, j are color indices and technicolor indices have been suppressed. Omitted 

in this expression are possible additional terms which, however, do not contribute 

to II&. For the generators we write 

Now, the alignment of the chiral, technicolor vacuum with respect to the 

currents, (22) is specified by a set of matrices. j&‘) = WR(P)WUP)+ which, 

presumably, harbor CP violating phases. We introduce this CP violation into 
thegraphs of fig. 1 by choosing WL(P) = 1 and rotating the currents: 

where 

(23) 

Having introduced the chiral rotations, W(P), into the broken ElC currents 

(i.e., into U’ ) the appropriate fermion propagator is that obtained in the vacuum Q’ 

(25) 

When the techniquarks carry momenta < Am this condensate induces a mass 

term in the propagator. Above ATC, though, the propagator is 75 -even (there 
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is no bare techniquark mass) and the matrices W(P) can be rotated away. Thus, 

the loop integrals for fig. 1 are naturally cut off. 

To perform this calculation, however, we introduce an explicit “hard” mass 

into the techniquark propagators, 

where mp = o&C); the flavor structure follows from eq. (25) and the fact that 

we work to lowest order in g&. Loop integrals will be cut off with a Pauli- 
Villars regulator. The result contains a logarithmic divergence associated with 

the techniquark self-energy, which we ignore in view of the natural cut-off. 

Using the vertices defined by eqs. (22), (23) and (24), the CP violating 

amplitude, M,,, is 

Tr Sprivpr’-$ - y)rpS~k~ua’e(y - s)rv75~~3z - TJ F 

+ (A;i,ul)a (Ci,pj)B Tr sFi’p’j(z - ?I) 
(26) 

7p75sF uakJus’t(y - x)qvDi;(x - y)] 

Here and below, all repeated indices, except p and O, are summed. The trace is 

over Dirac indices and spacetime parameters and 

V; , A: = T:” f (TRW), 
2 

D$’ is the massive EK boson propagator in ‘t Hooft-Feynman gauge: 
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Bij = 7p(d’ - igcAf)ij (27) 

is the exact fermion propagator. From (26), (27) and well known properties of 

the Dirac matrices, we obtain 

Mpu = - g&ppmu 

* [(Tzut), (TZ:pjQPu*)a - (T$>t@pu)~ (Tii,pj),] 

- Tr’y5(~ IV2 + +);‘I Y)“YP(Y 1(P2 + d&)1 47&3z - Y) 

where we have dropped a term which is independent of W ’. 

To proceed, we expand ( ,B2 + rn;)-l to lowest non-vanishing order in the 
ratio of instanton size to mp. After a bit more algebra (cf. fig. 2) 

- (y l(a2 + rnz)-l 6kt?l x)DzL(s - Y) - (5 l(a2 + mz)-* bijl Y) 

+/ l(a2 + mz)-’ F$jk, (a2 + rnz)-’ FcrkpL’ (a2 + rnz)-‘l z)Di[(~(” - y)] 

(28) 
The space-time integrals are carried out in ref. [13] with the result 

where 

1 

(-1 ( 
-1 M2 

&f2 ab 
J--en- - 3enp+M2 

mi 
M2 

ab 
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and A is a Pauli-Pillars mass. For convenience, we have set mp = mu = mQ 

which, though by no means general, will not alter our conclusions. 

Now recall, to lowest order in g!&., we had (cf. eqs. (1.2) (1.3) (1.17)) 

(29) 

where the tf$” are SU(3), singlets (again, technicolor is suppressed). In the 

same way, we can write 

It is easy to verify, using eq. (I.A.4) that f\pu’m = fupm’*. Thus, we find * 

Mpu = 4 
i 
?$(,(p) - ,(“I) c i Im Tr(fPujm W”*) 

167r 7r m 1 Tr Fc - @  c 
(30) 

is; #-‘“TrF,. i;, =iiG 
where T(P) is the color dimensionality of GE @  GC representation p and 8P” is 

the contribution to 8,fj. 

This result requires elaboration. First, and most obvious, V = 0 for p = 

cr. Equation (30) also implies BP0 = 0 when p and c are complex conjugate 
representations of color; in fact this is only true when mp = mu as we have 

assumed. Otherwise &) and r((‘) d o not combine as simply as they do here. 
(In the model of sect. 3, eq. (12) implies mQ = rnQt, thus 8,,! = 0 in this 

calculation.) Of course, for p # 0, 8, P” is generally non-vanishing and 

b/f = C epu=o gen$ . 
P#U ( 1 

There is one case in which the techniquark component of 8,/l vanishes triv- 
FP,m . ially. This is when IaP IS both GP symmetric and hermitian for all tech- 

nifermion F and F’. Then it’s not difficult to demonstrate that, not only TFPJrn, 

but @FFI, is hermitian as well. Thus Im Tr fm’” cPm = 0 and OFF’ vanishes. 

* Up to technicolor multiplicity factors. 
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We conclude that, in general, techniquarks are a dangerous source of strong 

CP violation, even when the Eichten, Lane, Preskill criterion (arg det mqzlark N 

lo-‘) is satisfied. Neutralization of this effect requires an additional restriction 

on the tensors I’p”ym appearing in the effective Hamiltonian. At the level of our 

investigation it’s unclear how reasonable this added constraint is (though it’s 

realized rather effortlessly in the model of sect. 3). 

Though we will not go into details here,[lO] it is interesting to note that when 

the matrices I’cr are both hermitian and GP invariant, it becomes possible to 

obtain arg det mq = O(lOsg) without requiring that I’$ be GP symmetric. 

That is, GP symmetry can be broken by the quark mass matrix without its 

developing a large anti-hermitian part. This reopens the possibility, previously 

foreclosed by GP invariance (cf. eq. (1.16)), of quark mass splittings and Cabbibo 

mixing. 
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FIGURE CAPTIONS 

1. Diagrams contributing in lowest order in gbc/M& to the strong CP 

violating phase 8,/J. Double solid lines represent exact techniquark prop- 

agators in the presence of color instantons. The exchanged gauge particle 

is a massive ETC vector boson. 

2. Dilute gas approximation to fig. 1, corresponding to eq. (28). The fermion 
line is a free particle propagator and “x” represents the vertex gcopuFfv. 
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