F. F. Hall
Stanford Linear Accelerator Center
Stanford University
Stanford, California 94305, U.S.A.

ABSTRACT

A number of design refinements for the basic system were discussed at MICAES IV. Net effect was increased operating temperature and concentration factors at the expense of solar energy collection efficiency. This paper discusses revisions needed to effect a more balanced overall system performance. Some items result in subsystem improvements. Notably the collection probe diameter is increased so as to obviate need for auxiliary support cables. The larger probe diameter also permits the adoption of a simpler and lighter weight probe construction system. The overall effect of lower concentration factors is reviewed. For thermal systems the heat collected per unit of collection area will be increased at lower collection temperatures. Happily, it is possible to use lower temperature and/or pressure steam turbine-generator sets having reasonably good engine efficiencies. For photo-electric applications the power flux can be much less, which is beneficial. Each of the revisions is described in some detail. An updated set of design parameters is appended.

1. PROBLEMS

Last year the weightless balloon reflector system was further described : [1]. Concurrently with the preparation of that paper a review was made of the concepts which developed a number of problem areas [2]. These had to do with the following:

The assumed concentration factors were improbably high. The rationale is that the sun's rays spread from a $1,300,000 \mathrm{Km}$ wide source located $150,000,000$ Km away and arrive in a spread formation. This, coupled with the imperfections of the mirrored surface of a balloon, results in further spread. The resultant spread requires a linear collector which has a larger diameter and a concentration factor of 75 which will limit the temperature of collection of a thermal system.

Ideas for reducing wastage of balloon skin material, as shown then, foundered on the harsh realities of the two-way curvature of a spherical surface. Conventional approaches restit in $20-50 \%$ wastage and earlier improvements considered require so many film strip cross snips as to make assembly very complicated.

The passage of sun's rays through the outer portions of the clear balloon hemisphere is at bad angles. The more extreme outer rays have to be double

[^0]Presented at the 5th Miami International Conference on Alternate Energy. Miami Beach, Flordia, December 13-15, 1982.
bounced to reach the linear collector. Many single-bounced rays arrive near the collector outer tip also at bad angles. All of this results in the possibility that, as shown, only 72% of the reflective surface may be of assured usefulness.

2. SOLUTIONS

Studying the total ramifications of these postulated shortcomings required considerable effort, as one cannot veto the premises of basic engineering or physics.

One possibility was to have the balloon halves be opposed cones. Forgetting structural difficulties for a moment, this would require sacrifice of size, shape and weightlessness which, per se, are expendable. All sun's rays would cross the clear film at the same angle. The reflected rays would impinge on collectors (absorbers) at very good angles. Two cones within a sphere have less surface material. This sounds great, but the collector must be two to four times longer and the concentration factor drops to 45 plus or minus 5 .

Giving up on opposed cones brings us back to spheres, which is a natural shape for balloons. In thinking about how to make a sphere at minimal skin wastage, I studied a toy balloon. It had six large sextant panels and two polar 'circle panels. Since main panels can be made using many gores or subpanels, the wastage problem is all but eliminated. The subpanels could be concentric, as previously show, but this compounds the third problem. Extreme sun's rays have progressively more difficulty seeing in past the circular seam tapes. This is solved by placing the subpanels at right angles to the balloon equator. Further reflection indicated that the use of eight main panels, each consisting of an equilateral polar triangle having 90° corner angles, allows an easy construction. The general arrangement for a 32 m diameter balloon is shown in Fig. 1.

Now the extreme sun's rays can see in unimpeded, except by increasing reflectance, all the way to the balloon equator. A penalty of 10% of available solar energy is assessed due to bad reflectance at the collection area perimeter. Fig. 2 shows the construction of the main panel layout for a 32 m diameter balloon. Fig. 3 gives key dimensions for reflective and clear main panels (8 per balloon) and how gores can be cut to all but eliminate wastage, again for a 32 m diameter balloon. Fig. 4 shows the appearance of the clear hemisphere as seen from the sun.

In considering the various inadequacies of thermal energy collection, it became clear that aluminized plastic film should not be used. There are two primary reasons. First, regenerative feed water heating steam cycles could not be used because hot primary coolant returns would heat balloon fill gas at balloon skin surface above plastic service temperatures close to the collector (absorber). Second, aluminized plastic reflectivity at 0.76 gives away too much [3]. Fortunately, mirrored, heavy high-purity aluminum foil at a reflectivity of 0.91 [3], backed by glass cloth reinforcement, can be used with seam tapes having high temperature-resistant sodium silicate adhesive which can be cured at room temperature. The use of cryogenically dried, oxygen-free nitrogen balloon fill gas will assure retention of the excellent reflectance of the aluminum sheets (and make large balloons weightless).

In considering collector design it is clear that earlier designs were forced in order to improve shape and increase concentration factors to achieve higher temperatures. While the higher temperatures are attainable, practical collection efficiencies are not. Conceding that very high collection temperatures can be achieved only by parabolic collectors allows a simplistic solution.

Hombighere Puthationg Cormeration.
1025 Vermarl avi.. N.W
Waning:or, D.C. SoOOS

A helically wound tubing arrangement is shown in Fig. 5. The tubing toward the tip alternately presents good and bad angles to the incident sun's rays. The rays arriving at bad angles will reflect into the next coil turn at good angles and a cooled sun-end plate at collector tip will intercept worst angle reflections. A by-product benefit of larger diameter collectors is that these can be cantilevered to further simplify overall system construction by obviating the need for free end support cables.

Balloon collectors of solar energy could also be paraboloid, but this requires more skin material than for spherical collectors of the same diameter. Collection tolerances appear to exceed the capability of balloon makers and the support of an inverted cup collector is an interesting problem which I will look into when time permits. The possibility of helically winding strips of photo-voltaic cells around a linear collector is of obvious interest, but awaits the advance of technology to lower the collector cost to practical levels. Collectors discussed below are for thermal heat applications.

There are two general cases. One is low temperature collection at low pressure using water as the heat transfer medium. The other is high temperature collection using a medium which can be at high temperature and at low pressure such as liquid sodium-potassium eutectic alloy (NAK) which is liquid about $262^{\circ} \mathrm{K}$. The collector tubing coil is the same in either case with water coolant flow at $2 \mathrm{~m} / \mathrm{s}$ or NAK flowing at $16 \mathrm{~m} / \mathrm{s}$. Coolant friction losses are low and similar for the two cases due to the much higher viscosity of vater.

The NAK coolant flow rate has to be 7.5 times greater due to its poor heat capacity and larger temperature rise. Collector tubing would be seamless type 304 stainless steel. Heated coolant return tube is straight and runs down the centerline of the outer helically wound heat pick-up coil. Coils are terminated by two end plates. The mirror end plate furnishes an anchorage for the balloon skin and is attached to a mount which can be turned horizontally and tilted up and down to track the sun. Tubing assemblies will be brazed to be vacuumtight and add selective surface.

The concentration factor limit in turn limits the collection temperature to about $717^{\circ} \mathrm{K}$ [3]. The $12,650 \mathrm{KW}$ AIEEE/ASME preferred standard steam turbine unit had throttle steam at $714^{\circ} \mathrm{K}$ and 40 atma pressure. It had 4 -stage regenerative heating returning condensate to boilers at $449^{\circ} \mathrm{K}$ and a heat rate of 3 Kwt/Kwe. Such a unit can be the low pressure turbine in a tandem arrangement.

Steam can be expanded from $700^{\circ} \mathrm{K}, 136$ atma to $526^{\circ} \mathrm{K}, 42$ atma in a high pressure turbine and then be reheated to $714^{\circ} \mathrm{K}, 40$ atma. The two turbines drive a single generator and the indicated dual heat steam electric heat rate is improved to $2.47 \mathrm{Kwt} / \mathrm{Kwe}$. See Fig. 6.

To do this requires four heat exchangers. The feedwater heater (FWH) raises water temperature to $609^{\circ} \mathrm{K}$. The boiler (BLR) boils water at $609^{\circ} \mathrm{K}$. A superheater (SUP) raises steam temperature to $700^{\circ} \mathrm{K}$. A reheater (REH) raises steam temperature from $526^{\circ} \mathrm{K}$ to $714^{\circ} \mathrm{K}$. Since heat is supplied from the liquid NAK, these heat exchangers can all be of the platefin type which are very lightweight and compact as compared to fuel burning plant equipment.

The foregoing cycle is based on a postulated maximum collection temperature of $717^{\circ} \mathrm{K}$ at the sun-end tip of the collector tubing coil. Since collection efficiency improves as collection temperatures are dropped, a similar cycle having a maximum temperature of $659^{\circ} \mathrm{K}$ was studied but, while collection efficiency improved 2%, the indicated thermal-electric efficiency was 6% lower and the cost of collectors per Kwe rose by 13% or more.

Attached is Table 1 containing data regarding the design parameters of the above-described solar energy collection system based on thermal heat collection for the reason noted above. I also hope to assemble a small working model (heat only, no electricity) during November, but make no promises.

REFERENCES

1. Hall, F.F. "Design Refinements for a Sun-Tracking Solar Energy Receiver having a Spherical Reflector," MICAES IV, Miami Beach (1981).
2. Brown, M. Report $\# 007227$ on Spherical Balloon Collectors to the OERI of the USDOC (1981).
3. Duffie, J.A., and Beckman, W.A. "Solar Energy Processes," pg. 105, or pg. 187, John Wiley and Sons (1974).

BASIC ARRANGEMENT FOR AN $804 \mathrm{~m}^{2}$
SOLAR ENERGY COLLECTING BALLOON
HAVING A DIAMETER OF 32 m

1. CLEAR HEMISPHERE IS 0.0001 m THICK POLYVINYL FLUORIDE (PVF)

FILM REINFORCED BY POLYESTER MESH.
2. MIRRORED HEMISPHERE IS 0.000 Im THICK ALUMINUM SHEET Backed by glass cloth.
3. BALLOON FILL GAS IS DRY NITROGEN AT 1.012 ATMA TO OFFSET NULL-POINT WIND PRESSURE AT $161 \mathrm{~km} / \mathrm{Hr}$.

FIG.I

MAIN PANEL LAYOUT FOR A 32 m DIAMETER SPHERE
MAIN SKIN PANELS FOR A 32 m DIAMETER BALLOON

FIG. 2

Notes
SOME $13 \times$ or 104 SUbpanels or gores ARE REQUIRED.
32 SUBPANEIS
2. 32 suepanels are clear.
4. Subpanel cutting arrangement as shown
at left results in minimum wastage.
SUQPANELS ARE 2 m WIDE EXCEPT AT
equatorial corners.

FIG. 3

CLEAR HEMISPHERE OF 32 m DIAMETER BALLOON AS SEEN FROM SUN

BASIC ARRANGEMENT OF A BRAZED SOLAR energy collection coil of tubing

morss

NOTES

1. VIEW IS LOOKING DOWN ON CLEAR HEMISPHERE.
2. MIRRORED HEMISPHERE IS REVERSED AND BEYOND
3. SUGPANEL EDGE SEAMS ARE 2 m ON CENTER.
4. CLEAR HALF SEAM TAPE is PVF FILM WITH POLYESTER MESH REINFORCEMENT AND UV RESISTANT ADHESIVE.
5. reflective half seam tape is aluminum foil backed gy glass cloth with sodium silicate adhesive.

FIG. 6

Table la

NOTES:
Cl - These numbers are stipulated.
C2 - Each column of data is identified numerically which in this case is column "C2"
C3 - Tether off-axis angle is 60° when tether tangency diameter is one-half of balloon diameter or equal to its radius.
C 4 - The factor 0.5236 is $\pi / 6$ and $\mathrm{C} 1 * * 3$ is Cl cubed.
c5 - The factor 1.5708 is $\pi / 2$.
C6 - The second and third lines of each column heading define the subject matter as in "Balloon Whole Surface."
67 - Each quadrant is divided by 2 m width of subpanels, 2 are added for closure pieces at each side \& answer is multiplited by 8 .
C8 - The fourth line of each column heading ident
69- The factor 9.425 is $3 / \pi$, as these are 3 great circle seams.
Iloou or 16 subseans. See Note c7.
C11 - Obtained graphically.
C14 - The final line in each colum of 60°. indicates how the data was obtained which in this case is C13/2.
C 15 - The factor 0.7854 is $\pi / 4$.

Table 1B

c19	c20	C21	C22	c23	c24	c25	C26	C27
Inner Cone	Inner Cone	Base Concrete	Base Concrete	Collector	Collector	Collector	Collection	Concentration
$\operatorname{Slant}_{\mathrm{m}^{2}} \text { Area }$	Surface m^{2}	$\begin{aligned} & \text { Surface } \\ & \mathrm{m}^{2} \end{aligned}$	Volume	Length m	Diameter m	Projected Area m^{2}	$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Factor Number
Ci6/4	C18+C19	$\mathrm{C} 17+\mathrm{C} 20$	0.08 (c21)	Cl/4	C1/75	3.1416(C23) (c24)) $0.7854(\mathrm{C} 1 * * 2)$	C26/c25
c. 1	0.2	1.0	0.1	0.25	0.013	0.01	0.8	75
0.5	0.8	3.9	0.3	0.5	0.027	0.04	3.1	75
2.1	3.1	15.7	1.3	1	0.053	0.17	12.6	75
8.4	12.6	62.8	5.0	2	0.107	0.67	50.3	75
33.5	50.3	251.	20.	4	0.213	2.68	201.	75
134.	201.	1,005.	80.	8	0.427	10.72	804.	75
536.	804.	4,021.	322.	16	0.853	42.89	3,217.	75
2,145.	3,217.	16,085.	1,287.	32	1.707	171.57	12,868.	75
8,579	12,868.	$64,340$.	5,147.	64	3.413	686.29	51,472.	75
C28	C29	C30	C31	C32	C33	C34	C35	C36
Balloon Skin	n Balloon	Balloon	Balloon E	Equatorial	Clear Cone	Clear Cone	Light Rearhing	Gross Solar
Stress Force	e Dras	Lift	Wind Force	Tension	Yarns/m	Window Space	Collector	Energy Available
Kg	Kg	Kg	Kg	Kg / m	Number	Fraction	Percent	Kw
125(C26)	0.4(C28)	0.2 (C28)	0.45 (C28)	c31/c8	2(C32)/19	1-0.0005(C33)	0.838 (C34)	0.85(C26)
98	39	19.6	44.	14	1.5	0.999	0.837	0.67
393	157	78.5	177.	28	3	0.998	0.836	2.64
1,571	628	314.	707.	56	6	0.997	0.835	10.68
6,283	2,513	1,257.	2,827.	112	12	0.994	0.833	42.73
25,133	10,053	5,027.	11,310	225	24	0.988	0.828	170.9
100,531	40,212	20,106.	45,239.	450	48	0.976	0.818	684.
402,124	160,850	80.425.	180,955.	900	95	0.952	0.798	2,734.
1,608,495	643,398	321,699.	723,821.	1,800	190	0.905	0.758	10,938.
6,433,961	2,573,593	1,286,797	2,895,282.	3,600	379	0.810	0.679	43,751.

NOTES:
C22 - The thin-wall thickness of 0.08 m , about the thinnest practical for concrete construction, also provides sufficient
C23 - reinforcement to resist wind forces and sufficient mass to prevent overturn at $161 \mathrm{Km} / \mathrm{Hr}$ wind velocity by a factor of 2.5 .
C23 - The collector diameter is dictated by the spread angle of sun's rays incident upon the mirrored hemisphere and as
reflected toward the collector and is dependent on the distance of reflection. It is close to 1.333% of balloon diameter.
28 - Stagnant air pressure at $161 \mathrm{Km} / \mathrm{Hr}$ is $125 \mathrm{Kg} / \mathrm{m}^{2}$
C29 - Drag factor for a sphere close to and attached to ground is taken as 0.4 .
c30-Lift factor for a sphere ciose to and attached to ground is taken as 0.2
C31 - Wind force is the resultant of lift and drag.
33 - The 19 Kg design pull strength is 70% of the breaking pull of aramid yarn. Aramid yarn would have to be sheathed against UV light. Other materials such as polyester are available.
C35-The factor of 0.838 is derived from published dat see Note C33.
through clear PVF faner surface times 0.91 reflectance from clean new aluminum.
c36 - The 0.85 factor is consensus of published data.

Table IC

NOTES:
C52 - The mass flow is 7.378 times that of water because heat content is $1 / 4.76$ and temperature range is 1.55 times larger. See Fig. 5.
53 - The 750 factor is the weight of $1 \mathrm{~m}^{3}$ of NAK. TE stands for thermal-electric. $0.0003 \mathrm{~kg} / \mathrm{mm}$.
C57 - See Note C46.
C60 - Each tether cable is tendrilled to cover 1 m of the tether cable tangential belt so that tether cables are 2 m apart at same except there should not be less than 4 tether cables.
C61 - The factor of 0.5774 is derived from $1 / 2 \times 0.866$ where 1 is balloon radius and 0.866 is sin 60°
C63 .. The $61,500,000 \mathrm{Kg} / \mathrm{m}^{2}$ is the average of published data for stranded galvanized iron airplane cables.

Table 1E

C69 - The density of balloon skin in $\mathrm{Kg} / \mathrm{m}^{2}$ is based on the average of published data.
c70-The factor of 0.000435 is derived as follows: The clear half weighs $0.00029 \mathrm{Kg} / \mathrm{m}^{2}$ based on yarn density times yarn area using data previously given. The mirror half has twice as many yarns to withstand intensified stresses at the tether cable tangency circle.
C71 - The factor $0.0075 \mathrm{Kg} / \mathrm{m}$ is based on seam tape witth of 0.05 m .
C73 - Does not include collector tubing assembly
C74 - The factor 1.1744 is based on the density of dry air.
C75 - The factor 1.1423 is based on the density of dry nitrogen.
C76 - Above 32 m diameter balloons, the balloons are weightless. ${ }^{\text {C }}$. The factor 2,482 is based on the density of concrete in $\mathrm{Kg} / \mathrm{m}^{3}$
C77 - The factor 2,482 is based on the den
c78 - This is wind force times base height
079 - This is concrete weight times base diameter over 2.
C80 - Heat loss factor of $0.29 \mathrm{Kw} / \mathrm{m}^{2}$ is derived from formulas on pages 4-68 and 4-69 of "Mark's Standard Handbook for Mechanical Engineers," 8th Edition.
C81 - Despite the balloon skin subpanel arrangement which permits a clear see-in all the way to balloon equator the last radial 5% is

C82 - Heat loss factor of $5.76 \mathrm{Kw} / \mathrm{m}^{2}$ is derived as per Note C 80 .

Table 1F

NOTES:
C83 - See Note C81.
C86 - The heat transfer factor of 0.0072 is derived from the ASHRAE Handbook
C87 - The $10,543,983$ factor 1 s 75% of $14,058,644 \mathrm{Kg} / \mathrm{m}^{2}$ which is the allowable tensile stress of steel C90 - The factor of 1.5 is arbitrarily selected
C92 - The factor of 3 is arbicrarily selected.

Table 1G

NOTES:
C97-The 0.0491 factor is $\pi / 64$.
C99 - The $0.1688\left(10^{12}\right)$ factor is 8 (cantilevered heam fixed at one end) times the elastic modulus of $2.11\left(10^{10}\right) \mathrm{Kg} / \mathrm{m}^{2}$ for steel. Cambering can negate deflection for balloons at 128 m and 256 m diameter. Equatorial cabling support would be required for larger diameters.
C100 - Rolling friction is taken as 0.04 times wind drag.
C102-The factor 367,000 is derived using standard energy units.
C103 - Rolling friction is taken as 0.04 times wind lift.
C104-The factor of 0.11054 is π times 76° divided by 6 hours times 360°. The sun rises a maximum of 76° in San Francisco
C106-This thermal efficiency is based on the use of a $700^{\circ} \mathrm{K}, 136$ atma/42 atma noncondensing high pressure turbine exhausting into a single reheater to furnish steam to a $714^{\circ} \mathrm{K}, 40$ atma condensing turbine with 4 stages of regenerative heating which is an AIEEE/ASME preferred standard unit. See Fig. 5.
C107 - The 16000 Kw is derived by dividing 0.42 by 0.31 , all times the $12,650 \mathrm{Kw}$ rating of the AIEEE/ASME preferred standard $714 \mathrm{~K}, 40$ atma condensing unit. See Fig. 5. The collector field area is constant and collector base areas are 5% of fleld area so that 95% of land is available for low head room use as for agriculture.

Table 1H

NOTES:
C115 - Total unit cast is the summation of C 107 through C113. Additional costs for lightning rod, aircraft warning lights, tether cable anchor plate and its bracing are included in the overall cost. No costs are fincluded for engineering, site work or contingency.
C122 - Eight polar triangles, each having 90° corner angles, are required to enclose the sphere. The main panel edge length is $\mathrm{C} 8 / 4$ for all three sides.

Table $1 I$

C123	C124	C125	C126
Edge Arc	Equilateral	Tether Ring	Average Strong
Pivot Radius	Triangle Leg	Diameter	Back Diameter
m		m	m
1.91(C122)	0.516(C123)	2 (C90)	See Note
1.5	0.77	0.04	0.0225
3	1.55	0.08	0.045
6	3.10	0.16	0.09
12	6.19	0.32	0.18
24	12.39	0.64	0.36
48	24.77	1.28	0.72
96	49.55	2.56	1.44
192	99.10	5.12	2.88
384	198.20	10.24	5.76

NOTES :
C123 - Obtained graphically.
C124 - When a main panel is flat its points are the points of an equilateral triangle having legs of this length which is abtained graphically. This dimension ould be used to lay out main panels followed by striking arce and cutting the edges. This would be done on a small scale and checked before tackilng larger balloons since π ts an indeterminate number.
125 - The factor of 2 is arbitrarily selected
C126 - The average strong back diameter is aclected as 0.72 m for $\mathrm{Cl}=32 \mathrm{~m}$ and by ratio for other Cl values.

[^0]: * Work supported by the Department of Energy, contract DE-ACO3-76SF00515.

