SLAC-PUB-3023 November 1982 (M)

MORE ON DESIGN OF LINEAR SOLAR ENERGY COLLECTORS HAVING SPHERICAL REFLECTORS

F. F. Hall Stanford Linear Accelerator Center Stanford University Stanford, California 94305, U.S.A.

ABSTRACT

A number of design refinements for the basic system were discussed at MICAES IV. Net effect was increased operating temperature and concentration factors at the expense of solar energy collection efficiency. This paper discusses revisions needed to effect a more balanced overall system performance. Some items result in subsystem improvements. Notably the collection probe diameter is increased so as to obviate need for auxiliary support cables. The larger probe diameter also permits the adoption of a simpler and lighter weight probe construction system. The overall effect of lower concentration factors is reviewed. For thermal systems the heat collected per unit of collection area will be increased at lower collection temperatures. Happily, it is possible to use lower temperature and/or pressure steam turbine-generator sets having reasonably good engine efficiencies. For photo-electric applications the power flux can be much less, which is beneficial. Each of the revisions is described in some detail. An updated set of design parameters is appended.

1. PROBLEMS

Last year the weightless balloon reflector system was further described [1]. Concurrently with the preparation of that paper a review was made of the concepts which developed a number of problem areas [2]. These had to do with the following:

The assumed concentration factors were improbably high. The rationale is that the sun's rays spread from a 1,300,000 Km wide source located 150,000,000 Km away and arrive in a spread formation. This, coupled with the imperfections of the mirrored surface of a balloon, results in further spread. The resultant spread requires a linear collector which has a larger diameter and a concentration factor of 75 which will limit the temperature of collection of a thermal system.

Ideas for reducing wastage of balloon skin material, as shown then, foundered on the harsh realities of the two-way curvature of a spherical surface. Conventional approaches result in 20-50% wastage and earlier improvements considered require so many film strip cross snips as to make assembly very complicated.

The passage of sun's rays through the outer portions of the clear balloon hemisphere is at bad angles. The more extreme outer rays have to be double

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Presented at the 5th Miami International Conference on Alternate Energy. Miami Beach, Flordia, December 13 - 15, 1982. bounced to reach the linear collector. Many single-bounced rays arrive near the collector outer tip also at bad angles. All of this results in the possibility that, as shown, only 72% of the reflective surface may be of assured usefulness.

SOLUTIONS

* Studying the total ramifications of these postulated shortcomings required considerable effort, as one cannot veto the premises of basic engineering or physics.

One possibility was to have the balloon halves be opposed cones. Forgetting structural difficulties for a moment, this would require sacrifice of size, shape and weightlessness which, per se, are expendable. All sun's rays would cross the clear film at the same angle. The reflected rays would impinge on collectors (absorbers) at very good angles. Two cones within a sphere have less surface material. This sounds great, but the collector must be two to four times longer and the concentration factor drops to 45 plus or minus 5.

Giving up on opposed cones brings us back to spheres, which is a natural shape for balloons. In thinking about how to make a sphere at minimal skin wastage, I studied a toy balloon. It had six large sextant panels and two polar 'circle panels. Since main panels can be made using many gores or subpanels, the wastage problem is all but eliminated. The subpanels could be concentric, as previously shown, but this compounds the third problem. Extreme sun's rays have progressively more difficulty seeing in past the circular seam tapes. This is solved by placing the subpanels at right angles to the balloon equator. Further reflection indicated that the use of eight main panels, each consisting of an equilateral polar triangle having 90° corner angles, allows an easy construction. The general arrangement for a 32m diameter balloon is shown in Fig. 1.

Now the extreme sun's rays can see in unimpeded, except by increasing reflectance, all the way to the balloon equator. A penalty of 10% of available solar energy is assessed due to bad reflectance at the collection area perimeter. Fig. 2 shows the construction of the main panel layout for a 32m diameter balloon. Fig. 3 gives key dimensions for reflective and clear main panels (8 per balloon) and how gores can be cut to all but eliminate wastage, again for a 32m diameter balloon. Fig. 4 shows the appearance of the clear hemisphere as seen from the sun.

In considering the various inadequacies of thermal energy collection, it became clear that aluminized plastic film should not be used. There are two primary reasons. First, regenerative feed water heating steam cycles could not be used because hot primary coolant returns would heat balloon fill gas at balloon skin surface above plastic service temperatures close to the collector (absorber). Second, aluminized plastic reflectivity at 0.76 gives away too much [3]. Fortunately, mirrored, heavy high-purity aluminum foil at a reflectivity of 0.91 [3], backed by glass cloth reinforcement, can be used with seam tapes having high temperature-resistant sodium silicate adhesive which can be cured at room temperature. The use of cryogenically dried, oxygen-free nitrogen balloon fill gas will assure retention of the excellent reflectance of the aluminum sheets (and make large balloons weightless).

In considering collector design it is clear that earlier designs were forced in order to improve shape and increase concentration factors to achieve higher temperatures. While the higher temperatures are attainable, practical collection efficiencies are not. Conceding that very high collection temperatures can be achieved only by parabolic collectors allows a simplistic solution.

Form P-3 1 1 1 DO NOT TYPE BEYOND THIS LINE 1 1 1 Hemisphere Publishing Corporation 1025 Vermont Ave., N.W.

Washington, D.C. 20005

A helically wound tubing arrangement is shown in Fig. 5. The tubing toward the tip alternately presents good and bad angles to the incident sun's rays. The rays arriving at bad angles will reflect into the next coil turn at good angles and a cooled sun-end plate at collector tip will intercept worst angle reflections. A by-product benefit of larger diameter collectors is that these can be cantilevered to further simplify overall system construction by obviating the need for free end support cables.

Balloon collectors of solar energy could also be paraboloid, but this requires more skin material than for spherical collectors of the same diameter. Collection tolerances appear to exceed the capability of balloon makers and the support of an inverted cup collector is an interesting problem which I will look into when time permits. The possibility of helically winding strips of photo-voltaic cells around a linear collector is of obvious interest, but awaits the advance of technology to lower the collector cost to practical levels. Collectors discussed below are for thermal heat applications.

There are two general cases. One is low temperature collection at low pressure using water as the heat transfer medium. The other is high temperature collection using a medium which can be at high temperature and at low pressure such as liquid sodium-potassium eutectic alloy (NAK) which is liquid about 262° K. The collector tubing coil is the same in either case with water coolant 'flow at 2m/s or NAK flowing at 16m/s. Coolant friction losses are low and similar for the two cases due to the much higher viscosity of water.

The NAK coolant flow rate has to be 7.5 times greater due to its poor heat capacity and larger temperature rise. Collector tubing would be seamless type 304 stainless steel. Heated coolant return tube is straight and runs down the centerline of the outer helically wound heat pick-up coil. Coils are terminated by two end plates. The mirror end plate furnishes an anchorage for the balloon skin and is attached to a mount which can be turned horizontally and tilted up and down to track the sun. Tubing assemblies will be brazed to be vacuumtight and add selective surface.

The concentration factor limit in turn limits the collection temperature to about 717° K [3]. The 12,650 KW AIEEE/ASME preferred standard steam turbine unit had throttle steam at 714° K and 40 atma pressure. It had 4-stage regenerative heating returning condensate to boilers at 449° K and a heat rate of 3 Kwt/Kwe. Such a unit can be the low pressure turbine in a tandem arrangement.

Steam can be expanded from 700° K, 136 atma to 526° K, 42 atma in a high pressure turbine and then be reheated to 714° K, 40 atma. The two turbines drive a single generator and the indicated dual heat steam electric heat rate is improved to 2.47 Kwt/Kwe. See Fig. 6.

To do this requires four heat exchangers. The feedwater heater (FWH) raises water temperature to 609° K. The boiler (BLR) boils water at 609° K. A superheater (SUP) raises steam temperature to 700° K. A reheater (REH) raises steam temperature from 526°K to 714°K. Since heat is supplied from the liquid NAK, these heat exchangers can all be of the platefin type which are very lightweight and compact as compared to fuel burning plant equipment.

The foregoing cycle is based on a postulated maximum collection temperature of 717°K at the sun-end tip of the collector tubing coil. Since collection efficiency improves as collection temperatures are dropped, a similar cycle having a maximum temperature of 659°K was studied but, while collection efficiency improved 2%, the indicated thermal-electric efficiency was 6% lower and the cost of collectors per Kwe rose by 13% or more.

Attached is Table 1 containing data regarding the design parameters of the above-described solar energy collection system based on thermal heat collection for the reason noted above. I also hope to assemble a small working model (heat only, no electricity) during November, but make no promises.

REFERENCES

- 1. Hall, F.F. "Design Refinements for a Sun-Tracking Solar Energy Receiver having a Spherical Reflector," MICAES IV, Miami Beach (1981).
- Brown, M. Report #007227 on Spherical Balloon Collectors to the OERI of the USDOC (1981).
- 3. Duffie, J.A., and Beckman, W.A. "Solar Energy Processes," pg. 105, or pg. 187, John Wiley and Sons (1974).

- 2. MIRRORED HEMISPHERE IS 0.000Im THICK ALUMINUM SHEET BACKED BY GLASS CLOTH.
- BALLOON FILL GAS IS DRY NITROGEN AT 1.012 ATMA TO OFFSET NULL-POINT WIND PRESSURE AT 161 Km/Hr.

FIG.1

MAIN PANEL LAYOUT FOR A 32 m DIAMETER SPHERE

:

e de la esterio

MAIN SKIN PANELS FOR A 32 m DIAMETER BALLOON

THE

ZM

3M

414

5 M

eM.

7M

8 M

9₩

IOM

.UM

2

3

4

10

ш

5

.

8 9

7

23.13m

25.13 m

2

3

- 11

Bee

120

HC

юс

90

8C

70

60

3C

25.13 m

40

3C

20

1

NOTES

-CLEAR MAIN SKIN PANELS

(4 REQ'D.)

I. SOME I3 X8 OR IO4 SUBPANELS OR GORES ARE REQUIRED.

90* CORNER

ANGLES

TYP.

2. 52 SUBPANELS ARE CLEAR. 3.52 SUBPANELS ARE MIRRORED.

.

- 4. SUBPANEL CUTTING ARRANGEMENT AS SHOWN
- AT LEFT RESULTS IN MINIMUM WASTAGE.
- 5. SUBPANELS ARE 2m WIDE EXCEPT AT EQUATORIAL CORNERS.

FIG. 3

CLEAR HEMISPHERE OF 32 m DIAMETER BALLOON AS SEEN FROM SUN

4

BASIC ARRANGEMENT OF A BRAZED SOLAR ENERGY COLLECTION COIL OF TUBING

- x.²⁵ 25 - 6

NOTES

1. A = COOLANT SUPPLY; B = COOLANT RETURN; C = VACUUM CONNECTION; AND, D = BALLOON FILL GAS CONNECTION. ALL PIPING IS MINIMUM WALL THICKNESS 304L STAINLESS STEEL TUBING. S. TUBING COIL ASSEMBLY IS ALL BRAZED OR WELDED. 4. FINISHED ASSEMBLY SHALL BE EVACUABLE TO 10-9 ATMA.

NOTES

- . I. VIEW IS LOOKING DOWN ON CLEAR HEMISPHERE.
- 2. MIRRORED HEMISPHERE IS REVERSED AND BEYOND.
- 3. SUBPANEL EDGE SEAMS ARE 2 m ON CENTER.
- 4. CLEAR HALF SEAM TAPE IS PVF FILM WITH POLYESTER MESH REINFORCEMENT AND UV RESISTANT ADHESIVE.
- 5. REFLECTIVE HALF SEAM TAPE IS ALUMINUM FOIL BACKED BY GLASS CLOTH WITH SODIUM SILICATE ADHESIVE.

ŧ.

THERMAL ELECTRIC POWER CYCLE AT 717°K MAXIMUM TEMPERATURE

Ta	blę	1A	

C1	C2		C3	C4		C5	C6	C7	C8	C9
Balloon	Balloon Ra	dius Bal	lloon Tether	Balloc	n	Balloon	Balloon	Balloon Skin	Balloon	Great Circle
Diameter	Base Heigh	t Con	he Diameter	Volum	e	Half Surface	Whole Surface	Panels (Cores)	Circumference	Seam Length
m	ti ti		TP.	m ³		m²	m ²	Number	m.	m
Stipulated	C1/2		C2	0.5236(0	:1**3)	1.5708(C1**2)	2(C5)	See Note	3.1416(C1)	9.425(C1)
1	0.5		0.5	· 0	.5	1.6	3.1	8	3.1	9
2	1		1	4	. 2	6.3	12.6	8	6.3	19
4	2		2	33	.5	25.1	50.2	24	12.6	38
8	4		4	268		100.5	201.	40	25.1	75
16	8		8	2,145		402.	804.	56	50.3	151
32	16		16	17,157		1.608.	3,217.	104	101	302
64	32	2	32	137,258		6.434.	12,868.	200	201	603
128	64		54	1,098,066		25.736.	51,472.	392	402	1,206
256	128	12	28	8,784,528	•	102,944.	205,887.	792	804	2,413
C10	C11	C12		213		C14	C15	C16	C17	C18
Number of	Length of	Total Sea	am Outer H	Base Diam.	Inner	Base Cone	Outer Cone	Outer Cone	Outer Base	Inner Cone
Sub Seams	Sub Seams	Length	and Sla	ant Height	Diam.	& Slant Height	Base Area	Slant Area	Cone Surface	Base Area
Number	Ω1	m		m		m	m²	m²	m²	m².
See Note	See Note	C9+C11	C2/0	.86603		C13/2	0.7854(C13**2)	2(C15)	C15+C16	C15/4
0	0	9	0.	. 6		0.3	0.3	0.5	0.8	0.1
C	0	19	1.	.2		0.6	1.0	2.1	3.1	0.3
16	32	70	2	.3		1.2	4.2	8.4	12.6	1.0
32	113	188	4.	. 6		2.3	16.8	33.5	50.3	4.2
48	432	583	9.	.2		4.6	67.	134.	201.	16.8
96	1.770	2,072	18	.5		9.2	268.	536.	804.	67.
192	7.079	7.682	37			18.5	1,072.	2,145.	3,217.	268.
384	28,318	29.524	74			37.	4,289.	8,579	2,868.	1,072.
784]	13,271	115,684	148			74.	17,157.	34,315	51,472	4,289

NOTES:

Cl - These numbers are stipulated.

C2 - Each column of data is identified numerically which in this case is column "C2".

C3 - Tether off-axis angle is 60^{0} when tether tangency diameter is one-half of balloon diameter or equal to its radius.

C4 - The factor 0.5236 is $\pi/6$ and C1**3 is C1 cubed.

C5 - The factor 1.5708 is π/2.

C6 - The second and third lines of each column heading define the subject matter as in "Balloon Whole Surface."

C7 - Each quadrant is divided by 2m width of subpanels, 2 are added for closure pieces at each side & answer is multiplied by 8.

C8 - The fourth line of each column heading identifies the dimension as in "meters."

C9 - The factor 9.425 is $3(\pi)$, as these are 3 great circle seams.

C10 - At C1 = 4 there are 3 subpanels per quadrant or 24 per balloon or 16 subseams. See Note C7.

Cll - Obtained graphically.

.

Cl3 - The factor 0.86603 is the sine of 60° .

Cl4 - The final line in each column heading indicates how the data was obtained which in this case is Cl3/2.

C15 - The factor 0.7854 is π/4.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C19	C20	C21	C22	C23	C24	C25	C26	C27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inner Cone	Inner Cone	Base Concrete	Base Concret	e Collector	Collector	Collector	Collection	Concentration
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Slant_Area	Surface	Surface	Volume	Length	Diameter	Projected Area	Area	Factor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m²	m ²	m ²	m ²	m	m	m ²	m ²	Number
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16/4	C18+C19	C17+C20	0.08(C21)	C1/4	C1/75	3.1416(C23)(C24)) 0.7854(C1**2) C26/C25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	0.2	1.0	0.1	0.25	0.013	0.01	0.8	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	0.8	3.9	0.3	0.5	0.027	0.04	3.1	75
8.4 12.6 62.8 5.0 2 0.107 0.67 50.3 75 33.5 50.3 $251.$ $20.$ 4 0.213 2.68 $201.$ 75 $134.$ $201.$ $1,005.$ $80.$ 8 0.427 10.72 $804.$ 75 $536.$ $804.$ $4,021.$ $322.$ 16 0.853 42.89 $3,217.$ 75 $2,145.$ $3,217.$ $16,085.$ $1,287.$ 32 $1,707$ 171.57 $12,868.$ 75 $8,579$ $12,868.$ $64,340.$ $5,147.$ 64 3.413 686.29 $51,472.$ 75 $c28$ $c29$ $c30$ $C31$ $C32$ $c33$ $C34$ $c35$ $c36$ BalloonBalloonBalloonEquatorialClear ConeClear ConeLight ReachingGross SolStress PorceDragLiftWind ForceTensionYarns/mWindow SpaceCollectorEnergy Aval Kg Kg Kg Kg/m NumberFractionPercent Kw $125(c26)$ $0.4(c28)$ $0.2(c28)$ $0.45(c28)$ $c31/c8$ $2(c32)/19$ $1-0.0005(c33)$ $0.836(c34)$ $0.85(c26)$ 98 39 19.6 $44.$ 14 1.5 0.999 0.837 0.67 393 157 78.5 $177.$ 28 3 0.998 0.836 2.64 $1,571$ 628 $314.$ $707.$ 56 6 0.997 0.835 <	2.1	3.1	15.7	1.3	1	0.053	0.17	12.6	75
33.5 50.3 251. 20. 4 0.213 2.68 201. 75 134. 201. 1,005. 80. 8 0.427 10.72 804. 75 536. 804. 4,021. 322. 16 0.853 42.89 3,217. 75 2,145. 3,217. 16,085. 1,287. 32 1.707 171.57 12,868. 75 8,579 12,868. 64,340. 5,147. 64 3.413 686.29 51,472. 75 C28 C29 C30 C31 C32 C33 C34 C35 C36 Balloon Skin Balloon Balloon Equatorial Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Aval Kg Kg Kg Kg Kg/m Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34)	8.4	12.6	62.8	5.0	2	0.107	0.67	50.3	75
134.201.1,005.80.8 0.427 10.72 $804.$ 75 536.804.4,021.322.16 0.853 42.89 $3,217.$ 75 2,145.3,217.16,085. $1,287.$ 32 1.707 171.57 $12,868.$ 75 8,57912,868.64,340. $5,147.$ 64 3.413 686.29 $51,472.$ 75 c28C29C30C31C32C33C34C35C36BalloonBalloonBalloonEquatorialClear ConeLight ReachingGross SolStress ForceDragLiftWind ForceTensionYarns/mWindow SpaceCollectorEnergy AvalKgKgKgKgKg/mNumberFractionPercentKw125(C26)0.4(C28)0.2(C28)0.45(C28)C31/C82(C32)/19 $1-0.0005(C33)$ $0.838(C34)$ $0.85(C26)$ 983919.644.141.5 0.999 0.837 0.67 39315778.5177.283 0.998 0.836 2.64 1,571628314.707.566 0.997 0.835 10.68 6,2832,5131,257.2,827.11212 0.994 0.835 10.68 6,2632,5131,257.2,827.11212 0.994 0.835 10.68 6,2632,5131,257.2,827.11212 0.994	33.5	50.3	251.	20.	4	0.213	2.68	201.	75
536. 804. 4,021. 322. 16 0.853 42.89 3,217. 75 2,145. 3,217. 16,085. 1,287. 32 1.707 171.57 12,868. 75 8,579 12,868. 64,340. 5,147. 64 3.413 686.29 51,472. 75 C28 C29 C30 C31 C32 C33 C34 C35 C36 Balloon Skin Balloon Balloon Balloon Equatorial Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Aval Kg Kg Kg Kg Kg/m Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836	134.	201.	1,005.	80.	8	0.427	10.72	804.	75
2,145. 3,217. 16,085. 1,287. 32 1.707 171.57 12,868. 75 8,579 12,868. 64,340. 5,147. 64 3.413 686.29 51,472. 75 C28 C29 C30 C31 C32 C33 C34 C35 C36 Balloon Skin Balloon Balloon Balloon Equatorial Clear Cone Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Avai kg Kg Kg Kg Kg/m Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26) 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 6,283 2,513 1,257. 2,627. 112 12	536.	804.	4,021.	322.	16	0.853	42.89	3,217.	75
8,579 12,868. 64,340. 5,147. 64 3.413 686.29 51,472. 75 C28 C29 C30 C31 C32 C33 C34 C35 C36 Balloon Skin Balloon Balloon Balloon Equatorial Clear Cone Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Aval Kg Kg Kg Kg Kg/m Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 1,571 628 314. 707. 56 6 0.997 0.835 10.68 6,283 2,513 1,257. 2,827. 112 <t< td=""><td>2,145.</td><td>3,217.</td><td>16,085.</td><td>1,287.</td><td>32</td><td>1.707</td><td>171.57</td><td>12,868.</td><td>75</td></t<>	2,145.	3,217.	16,085.	1,287.	32	1.707	171.57	12,868.	75
C28 C29 C30 C31 C32 C33 C34 C35 C36 Balloon Skin Balloon Balloon Balloon Equatorial Clear Cone Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Avai Kg Kg Kg Kg Kg Kg Kg Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26) 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 6,283 2,513 1,257. 2,627. 112 12 0.994 0.633 42.73 25,133 10,053 5,027. 11,310 225 24 0.988 0.828 170.9	8,579	12,868.	64,340.	5,147.	64	3.413	686.29	51,472.	75
Balloon Balloon Balloon Balloon Equatorial Clear Cone Clear Cone Light Reaching Gross Sol Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Avai Kg Kg Kg Kg Kg/m Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26) 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 1,571 628 314. 707. 56 6 0.997 0.833 42.73 25,133 10,053 5,027. 11,310 225 24 0.988 0.828 170.9 100,531 40,212 20,106. 45,239. 450 48 0.976 0	C28	C29	C30	C31	C32	C33	C34	C35	C36
Stress Force Drag Lift Wind Force Tension Yarns/m Window Space Collector Energy Avai Kg Number Fraction Percent Kw 125(C26) 0.4(C28) 0.2(C28) 0.45(C28) C31/C8 2(C32)/19 1-0.0005(C33) 0.838(C34) 0.85(C26) 98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 1,571 628 314. 707. 56 6 0.997 0.835 10.68 6,283 2,513 1,257. 2,627. 112 12 0.994 0.828 170.9 100,531 40,212 20,106. 45,239. 450 48 0.976 0.818 684. 402,124 160,850 80.425.	Balloon Skin	n Balloon	Balloon	Balloon	Equatorial	Clear Cone	Clear Cone	Light Reaching	Gross Solar
KgKgKgKgKg/mNumberFractionPercentKw125(C26)0.4(C28)0.2(C28)0.45(C28)C31/C82(C32)/191-0.0005(C33)0.838(C34)0.85(C26)983919.644.141.50.9990.8370.6739315778.5177.2830.9980.8362.641,571628314.707.5660.9970.83510.686,2232,5131,257.2,827.112120.9940.83342.7325,13310,0535,027.11,310225240.9880.828170.9100,3140,21220,106.45,239.450480.9760.818684.402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	Stress Force	e Drag	Lift	Wind Force	Tension	Yarns/m	Window Space	Collector	Energy Available
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kg	Kg	Kg	Kg	Kg/m	Number	Fraction	Percent	Kw
98 39 19.6 44. 14 1.5 0.999 0.837 0.67 393 157 78.5 177. 28 3 0.998 0.836 2.64 1,571 628 314. 707. 56 6 0.997 0.835 10.68 6,263 2,513 1,257. 2,827. 112 12 0.998 0.828 170.9 100,531 10,053 5,027. 11,310 225 24 0.988 0.828 170.9 100,531 40,212 20,106. 45,239. 450 48 0.976 0.818 684. 402,124 160,850 80.425. 180,955. 900 95 0.952 0.798 2,734. 1,608,495 643,398 321,699. 723,821. 1,800 190 0.905 0.758 10,938. 6,433,961 2,573,593 1,286,797 2,895,282. 3,600 379 0.810 0.679 43,751. <td>125(C26)</td> <td>0.4(C28)</td> <td>0.2(C28)</td> <td>0.45(C28)</td> <td>C31/C8</td> <td>2(C32)/19</td> <td>1~0.0005(C33)</td> <td>0.838(C34)</td> <td>0.85(C26)</td>	125(C26)	0.4(C28)	0.2(C28)	0.45(C28)	C31/C8	2(C32)/19	1~0.0005(C33)	0.838(C34)	0.85(C26)
393 157 78.5 177. 28 3 0.998 0.836 2.64 1,571 628 314. 707. 56 6 0.997 0.835 10.68 6,263 2,513 1,257. 2,827. 112 12 0.998 0.828 170.9 25,133 10,053 5,027. 11,310 225 24 0.988 0.828 170.9 100,531 40,212 20,106. 45,239. 450 48 0.976 0.818 684. 402,124 160,850 80.425. 180,955. 900 95 0.952 0.798 2,734. 1,608,495 643,398 321,699. 723,821. 1,800 190 0.905 0.758 10,938. 6,433,961 2,573,593 1,286,797 2,895,282. 3,600 379 0.810 0.679 43,751.	98	39	19.6	44.	14	1.5	0.999	0.837	0.67
1,571628314.707.5660.9970.83510.686,2832,5131,257.2,827.112120.9940.83342.7325,13310,0535,027.11,310225240.9880.828170.9100,53140,21220,106.45,239.450480.9760.818684.402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	393	157	78.5	177.	28	3	0.998	0.836	2.64
6,2832,5131,257.2,827.112120.9940.83342.7325,13310,0535,027.11,310225240.9880.828170.9100,53140,21220,106.45,239.450480.9760.818684.402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	1,571	628	314.	707.	56	6	0.997	0.835	10.68
25,13310,0535,027.11,310225240.9880.828170.9100,53140,21220,106.45,239.450480.9760.818684.402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	6,283	2,513	1,257.	2,827.	112	12	0.994	0.833	42.73
100,53140,21220,106.45,239.450480.9760.818684.402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	25,133	10,053	5,027.	11,310	225	24	0.988	0.828	170.9
402,124160,85080.425.180,955.900950.9520.7982,734.1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	100,531	40,212	20,106.	45,239.	450	48	0.976	0.818	684.
1,608,495643,398321,699.723,821.1,8001900.9050.75810,938.6,433,9612,573,5931,286,7972,895,282.3,6003790.8100.67943,751.	402,124	160,850	80.425.	180,955.	900	95	0.952	0.798	2,734.
6,433,961 2,573,593 1,286,797 2,895,282. 3,600 379 0.810 0.679 43,751.	1,608,495	643,398	321,699.	723,821.	1,800	190	0.905	0.758	10,938.
	6,433,961	2,573,593	1,286,797	2,895,282.	3,600	379	0.810	0.679	43,751.

Table 1B

- ----

NOTES :

C22 - The thin-wall thickness of 0.08m, about the thinnest practical for concrete construction, also provides sufficient reinforcement to resist wind forces and sufficient mass to prevent overturn at 161 Km/Hr wind velocity by a factor of 2.5.

C23 - The collector diameter is dictated by the spread angle of sun's rays incident upon the mirrored hemisphere and as reflected toward the collector and is dependent on the distance of reflection. It is close to 1.333% of balloon diameter.

C28 - Stagnant air pressure at 161 Km/Hr is 125 Kg/m².

C29 - Drag factor for a sphere close to and attached to ground is taken as 0.4.

C30 - Lift factor for a sphere close to and attached to ground is taken as 0.2.

C31 - Wind force is the resultant of lift and drag.

C33 - The 19 Kg design pull strength is 70% of the breaking pull of aramid yarn. Aramid yarn would have to be sheathed against UV light. Other materials such as polyester are available.

C34 - The 0.0005m diameter is based on aramid yarn, but see Note C33.

C35 - The factor of 0.838 is derived from published data. It is 0.96 transmittance through clear PVF outer surface times 0.96 through clear PVF inner surface times 0.91 reflectance from clean new aluminum.

C36 - The 0.85 factor is consensus of published data.

.

Table 1C

-e....

C37	C38	C39	C4	0	Ç41			C42	C4	3	C	44
Solar Énergy	Collector	Water Flow for	Water Flo	ow for	Supply and	Return	Tube	Diameter	Total S	upply	Total	Tube
Reaching Collector	Heat Flux	Process Heating	Process	Heating	Header L	ength	at 2m/	s Velocity	Tube Ler	ngth	Leng	gth
Kw	Kw/m²	Kg/s	m ³ .	/s	m			m	m		m	
(C35) (C36)	C37/C25	0.00239(C37)	C39/1	,000	2(C2))	(0.636	6*C40)**0.5	C25/C	42	C41+	243
0.6	53.	0.001	0.000	0016	1			0.001	10	.3	13	1.3
2.2	53.	0.005	0.000	0065	2			0.002	20	.6	22	2.6
8.9	53.	0.021	0.000	026	4		1	0.004	41	.3	4	j.3
35.6	53.	0.085	0.0003	103	8			0.008	82	.6	90).6
141.5	53.	0.341	0.0004	41	16		(0.016	165	.9	182	2.
559.	52.	1.34	0.001	6	32		(0.032	334		366	. ذ
2,182.	51.	5.22	0.006		64		(0.064	675.	•	739).
8,291.	48.	19.8	0.024		128		().124	1,388.		1,516	j. –
29,707.	43.	71.	0.086		256		(.234	2,933.	•	3,189).
C45	C46	C47		C4	48	C49		C50			C51	
Water Flow	Water Flow	w Water Tu	ıbe	Water	Pump	Tub	e	Tube	!	1	ube	
Reynolds Number	Friction Fact	tor Friction	Loss	Power :	ln Loop	Thick	ness	Metal Vo	lume	Metal	. Weigh	t
Number	Number	Atmas	8	F	(w	m at 10	atma	m ³			Kg	
1,770,000(C42)	From Chart	(C44)(C46)/	203(C42)	0.1353	(C39) (C47)	See N	ote	π(C42)(C44)(C49)	7,831	.4(C50)
1,800	0.057	3.1		0.0	00056	0.000	89	0.0000	3		0.25	
3,600	0.047	2.6		0.0	0019	0.000	89	0.0001	.3		0.99	
7,200	0.040	2.2		0.0	006	0.000	89	0.0005	5		4.33	
14,400	0.034	1.9		0.0)22	0.000	89	0.002			15.86	
28,600	0.029	1.6		0.0)74	0.000	89	0.008			63.4	
56,817	0.025	1.4		0.2	25	0.000	89	0.03			253.9	
112,395	0.021	1.2		0.8	35	0.000	89	0.13		1,	013.	
218,772	0.018	1.1		2.9	92	0.000	93	0.55		4,	276.	
414,180	0.016	1.0		10.0)	0.001	76	4.1		32,	218.	

NOTES :

n - 1

C38 - This heat flux is easily within the range of standard boiler water wall heat collection.

C39 - This heat flux is easily within the range of standard botter water wall heat correction. C39 - The 0.00239 factor is based on 100° K rise in the primary pressurized water coolant loop. C40 - The 1,000 factor is the weight of Im^3 of water. C41 - This length is based on 0.5 balloon radius for return from collector sun end plus 1.5 radii for supply and return headers external to balloon and within hollow concrete bases.

headers external to balloon and within hollow concrete bases.
C42 - The 2m/s is a normal design velocity for water.
C43 - The spiral wind lead pitch is the pipe diameter C42.
C45 - The 1,770,000 factor is density times velocity over viscosity or 1000x2/0.00113 Kg/m-s.
C46 - The friction factor is derived from charts given in "Cameron Hydraulic Data" as taken from tentative data released by the Hydraulic Institute and required use of English units.
C47 - The 203 factor is 2gx10.363 where the 10.363 reconverts to metric units.
C48 - The 0.1353 factor is based on 90% motor efficiency and 83.33% pump efficiency for an overall efficiency of 75%.
C49 - The factor is 105,440/2x7,029,332 or 0.0075(C42). However minimum tubing thickness is 0.000889m which is used except for largest diameter tubes. The 105,440 Kg/m² is tube working pressure and the 7,029,332 Kg/m⁴ is tube metal allowable stress. C51 - The 7,831.4 Kg/ m^3 is for steel.

Table 1D

C52	C53	C54	C55	C56		C57	C58
NAK Flow for	NAK Flow for	NAK Flow	NAK Flow		NAK	Tube	NAK Tube
TE Power Plants	TE Power Plants	Area	Velocity	NAK Flow	Fricti	on Factor	Friction Loss
Kg/s	m ³	m ²	m/s	Reynolds Numb	er N	umber	Atmas
7.378(C39)	C52/750	0.7854(C42**	2) C53/C54	70,570,000(C4	2) Fro	n Chart (C	44)(C57)/203(C42)
0.01	0.000014	0.000008	16.2	71,700		0.038	2.1
0.04	0.00005	0.000032	16.2	143,300		0.033	1.8
0.16	0.0002	0.000013	16.2	286,500		0.030	1.6
0.6	0.0008	0.00005	16.2	572,300	(0.027	1.5
2.5	0.0033	0.0002	16.2	1,140,400	(0.024	1.3
9.9	0.013	0.0008	15.9	2,265,300		0.021	1.2
38.5	0.05	0.003	16.2	4,481,200	(0.018	1.0
146.	0.2	0.012	16.3	8,722,500	(0.016	0.9
524.	0.7	0.043	16.2	16,513,400	(0.014	0.9
C59	C60	C61	C62	C63	C64	C65	C66
NAK Fump	Tether Cable	Tether Cable	Tether Cable	Tether Cable	Tether Cable	Tether Cabl	e Tube Interior
Power in Loop	Number	Total Length	Pu11	Area	Volume	Weight	Volume
Kw	Number	m	Kg	m ²	m ³	Kg	m ³
0.1353(C52)(C58)	1.5708(C3)>̇́4	0.5774(C2)(C60)	2(C31)/(C60)	C62/61,500,000	(C61)(C63)	7831.4(C64)	0.7854(C42**2)(C44)
0.003	4	1.2	22.1	0.0000036	0.0000004	0.003	0.000009
0.01	4	2.3	88.4	0.0000014	0.000003	0.026	0.00007
0.035	4	4.6	353.	0.000058	0.00003	0.21	0.0006
0.13	6	13.9	942.	0.000015	0.0002	1.66	0.005
0.45	13	60.0	1,740.	0.000028	0.0017	13.3	0.04
1.6	25	231.	3,619.	0.000059	0.014	106.4	0.3
5.4	50	924.	7,238.	0.000118	0.11	851.6	2.3
18.5	100	3,695.	14,476.	0.00024	0.87	6,801.	18.2
64.	200	14,781.	28,953.	0.00047	6.96	54,523.	137.

NOTES:

C52 - The mass flow is 7.378 times that of water because heat content is 1/4.76 and temperature range is 1.55 times larger. See Fig. 5. C53 - The 750 factor is the weight of lm^3 of NAK. TE stands for thermal-electric.

C56 - The 70,570,000 factor is density times velocity over viscosity of 750x19.6/0.0002083 Kg/m-s.

C57 - See Note C46.

ı.

C60 - Each tether cable is tendrilled to cover 1m of the tether cable tangential belt so that tether cables are 2m apart at same except there should not be less than 4 tether cables. C61 - The factor of 0.5774 is derived from 1/2x0.866 where 1 is balloon radius and 0.866 is sin 60° . C63 - The 61,500,000 Kg/m² is the average of published data for stranded galvanized iron airplane cables.

Table 1E

C67	C68	C69	C70	C71	C72	C73	C74
Weight of	Weight of	Weight of	Veight of Skin	Weight of	Weight of	Weight of	Weight of
Water in Tube	NAK in Tube	Balloon Skin	Reinforcement	Seam Tape	Deployed Skin	Balloon Parts	Displaced Air
Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg
1,000(C66)	750(C66)	0.15(C6)	0.000435(C6)(C33)	0.0075(C12)	C69+C70+C71	C65+C72	1.1744(C4)
0.009	0.007	0.5	0.002	0.1	0.6	0.6	0.6
0.07	0.055	1.9	0.016	0.2	2.1	2.1	4.9
0.6	0.44	7.5	0.13	0.7	8.2	8.4	39.4
4.7	3.5	30.2	1.05	1.6	32.8	34.4	315.
37.3	28.	120.6	8.4	5.1	133.7	147.	2,519.
296.	222.	483.	67.2	16.3	566.	672.	20,150.
2,344.	1,758.	1,930.	. 537.	53.6	2,527.	3,378.	161,196.
18,191.	13,643	7,721.	4,299.	171.	12,245.	19,046.	1,289,686.
137,121.	102,841.	30,883.	34,391.	718.	66,152	120,674.	10,316.549.

C75	C76	C77	C78	C79	C80	C81	C82
Weight of	Balloon	Weight of	Destabilizing	Stabilizing	Collector	Net Energy	Collector
Balloon Gas	Buoyancy	Base Concrete	Forces	Force	Losses at 400°K	Collected at 400 K	Losses at /1/K
Kg	Kg	Kg	Kg-m	Kg-m	Kw	Kw	KW
1.1423(C4)	C74~C75	2,482(C22)	(C2)(C31)	(C13)(C77)/2	0.29(C25)	0.9(C37-C80)	13.8/3(C25)
0.6	0.02	195.	22.	56	0.003	0.54	0.06
4.8	0.1	780.	177.	450	0.012	1.97	0.23
38.3	1.1	3,119.	1,414.	3,601	0.05	7.96	0.98
306.	8.6	12,476.	11,310.	28,812	0.19	31.9	3.86
2,450.	68.8	49,903.	90,477.	230,495	0.78	126.6	15.4
19,599.	551.	199,612.	723,812.	1,843,958	3.1	500.	61.7
156,790.	4,405.	798,457.	5,790,499.	14,751,666	12.4	1,953.	247.
1,254,321.	35,365.	3,193,828.	46,323,990.	118,013,000	49.8	7,417.	988.
10,034,566.	281,983.	12,775,310.	370,591,000.	944,106,000	199.	26.557.	3,953.

NOTES :

C69 - The density of balloon skin in Kg/m^2 is based on the average of published data.

C70 - The factor of 0.000435 is derived as follows: The clear half weighs 0.00029 Kg/m² based on yarn density times yarn area using data previously given. The mirror half has twice as many yarns to withstand intensified stresses at the tether using data previously given. The mirror hait has twice as many cable tangency circle. C71 - The factor 0.0075 Kg/m is based on seam tape width of 0.05m. C73 - Does not include collector tubing assembly C74 - The factor 1.1744 is based on the density of dry air. C75 - The factor 1.1423 is based on the density of dry nitrogen. C76 - Above 32m diameter balloons, the balloons are weightless. C77 - The factor 2,482 is based on the density of concrete in Kg/m³. C78 - This is wind force times base height.

.

C79 - This is concrete weight times base diameter over 2.
 C80 - Heat loss factor of 0.29 Kw/m² is derived from formulas on pages 4-68 and 4-69 of "Mark's Standard Handbook for Mechanical Engineers," 8th Edition.

CB1 - Despite the balloon skin subpanel arrangement which permits a clear see-in all the way to balloon equator the last radial 5% is suspect due to bad angle of incidence & multiple bouncing of rays reaching reflector; 10% penalty assessed at this point.

C82 - Heat loss factor of 5.76 Kw/m² is derived as per Note C80.

Table	1F
TUDIC	- -

C83	C84		C85	C86		C87	C88
Net Energy	Collect	tor	Collector	Maximum Temp	erature Ste	el Area to	Vertical Tilt
Collected at 71	7 ⁰ K Efficiency	y at 400°K Eff	iciency at 717°K	Difference Acr	oss Skin Res	ist Shear Su	wivel Diameter
Kω	Perce	ent	Percent	oK		m ²	m
0.9(C37-C82)	100(C8)	L)/C36	100(C83)/C36	C82/0.0072(C	:6) C31	/10,543,983 (1	L.273*C87)**0.5
0.49	74.	6	73.1	2.7	0.	000004	0.002
1.77	74.	6	67.0	2.7	0.	000017	0.005
7.13	74.	6	66.9	2.7	0.	000067	0.009
28.6	74.	6	66.8	2.7	0.	00027	0.018
113.5	74.	1	66.4	2.7	0.	00107	0.037
448.	73.	1	65.5	2.7	0.	0043	0.074
1,742.	71.	4	63.7	2.7	0.	0172	0.148
6,573.	67.	8	60.1	2.7	0.	069	0.296
23,179.	60.	7	53.0	2.7	0.	275	0.59
C89	C90	C91	C92	93	C94	C95	C96
Tracking Mount Steel Area	Tracking Mount Diameter	Tracking Mount Thickness	Tracking Mount Height	Tracking Mount Metal Volume	Tracking Mount Weight	: Weight Tubing Plus Water	Collector Inside Diameter
m ²	m	m	m	m ³	Kg	Kg	m
2(C87)	1.5(C24)	C89/π(C90)	3(C90)	$\pi(C90)(C91)(C92)$	7,831.4(C93)	C51+C67	C24-2(C42)
0.000008	0.02	0.00014	0.06	0.00000546	0.003	0.26	0.01
0.000034	0.04	0.00029	0.12	0.0000015	0.036	0.98	0.02
0.00013	0.08	0.00058	0.24	0.00003	0.24	4.92	0.04
0.00054	0.16	0.00116	0.48	0.00027	2.1	20.5	0.09
0.0022	0.32	0.00232	0.96	0.0024	17.4	100.7	0.18
0.0086	0.64	0.00358	1.92	0.015	108.3	550.	0.36
0.034	1,28	0.00927	3.84	0.15	1,122.	3,357.	0.73
0.137	2.56	0.0185	7.68	1.14	8,967.	22,467.	1.46
0.55	5.12	0.037	15.36	9.18	71,784.	169,339.	2.67

NOTES :

C83 - See Note C81.

.

Cos - See Note Col.
C86 - The heat transfer factor of 0.0072 is derived from the ASHRAE Handbook.
C87 - The 10,5543,983 factor is 75% of 14,058,644 Kg/m² which is the allowable tensile stress of steel.
C90 - The factor of 1.5 is arbitrarily selected.
C92 - The factor of 3 is arbitrarily selected.

Table 1G

C9 7	C9 8		C9 9	C100	C101	
Collector Moment	Tubing Plus	Water Collec	tor Deflection	Maximum	Horizontal Distance	
of Inertia	Unit Weig	ght No Su	in End Support	Horizontal Friction	Per Hour	
m"	Kg/m		m	Kg	m/hr	
0.0491(C24**4~C95**4)	C94/C23	C97(C23**4)/0.1688(10 ¹²)(C96)	0.04(C29)	π(C90)/24	
0.00000008	· 1		0.00003	1.6	0.0026	
0.00000012	2.0	0	0.00006	6.3	0.005	
0.0000002	4.9	9	0.00014	25.1	0.010	
0.00003	10.1	3	0.0003	101	0.021	
0.00005	25.2	2	0.0008	402	0.042	
0.0008	68.7	7	0.0021	1,609	0.084	
0.0124	210		0.0066	6,434	0.17	
0.194	702		0.022	25,736	0.34	
4.17	2,646		0.063	102,944	0.67	
C102	C1 03	C1 04	C1 05	C106	C107	
Maximum	Maximum	Vertical Distance	Maximum	Maximum Electr	ical Balloons for	r a
Rotational Power	Tilt Friction	Per Hour	Tilting Power	Generation at	717 K 16 Mw Plant	t
Kw	Kg	m/hr	Kw	at 40.5% Thermal	Efficiency Number	
(C99)(C100)/367,000	0.04(C30)	0.11054(C88)	(C102)(C103)/367,000	0.405(C83)	16,000/010	05
0.0000001	0.8	0.0003	0.000000005	0.19	98 80,808	
0.0000008	3.1	0.0005	0.00000004	0.7	2 22,222	
0.000007	12.6	0.001	0.0000003	2.89) 5,537	
0.000006	50.3	0.002	0.000003	11.6	1,380	
0.0005	201	0.004	0.00002	46	348	
0.0004	804	0.008	0.000018	181	89	
0.0029	3,217	0.017	0.00014	706	23	
0.023	12,868	0.03	0.0011	2,662	6	
0.19	51,472	0.07 🐋	0.009	9,387	2	

NOTES :

C97 - The 0.0491 factor is #/64.

- C99 The 0.1688(10¹²) factor is 8 (cantilevered beam fixed at one end) times the elastic modulus of 2.11(10¹⁰) Kg/m² for steel. Cambering can negate deflection for balloons at 128m and 256m diameter. Equatorial cabling support would be required for larger diameters.
- C100 Rolling friction is taken as 0.04 times wind drag.
- C102 The factor 367,000 is derived using standard energy units.

C103 - Rolling friction is taken as 0.04 times wind lift.

- C104 The factor of 0.11054 is π times 76^o divided by 6 hours times 360^o. The sun rises a maximum of 76^o in San Francisco vicinity.
- C106 This thermal efficiency is based on the use of a 700°K, 136 atma/42 atma noncondensing high pressure turbine exhausting into a single reheater to furnish steam to a 714°K, 40 atma condensing turbine with 4 stages of regenerative heating which is an AIEEE/ASME preferred standard unit. See Fig. 5.
- Cl07 The 16000 Kw is derived by dividing 0.42 by 0.31, all times the 12,650 Kw rating of the AIEEE/ASME preferred standard 714°K, 40 atma condensing unit. See Fig. 5. The collector field area is constant and collector base areas are 5% of field area so that 95% of land is available for low head room use as for agriculture.

Table	1H
LADIE	T U

4

1 da 1

C108	C10'9	C110	C111	C112	C113	C114	C115
Base Concrete	Collector Tubing	Tether Cable	Balloon Skin Sk	in Reinforcement	Balloon Seam	Tracking Mount	Total Unit
Cost	Cost	Cost	Cost	Cost	Tape Cost	Cost	Cost
USD	USD	USD	USD	USD	USD	USD	USD
353(C22)	13.6(C51)	4.5(C65)	· 7(C6)	6(C70)	6(C71)	2.67(C94)+3,000	See Note
28	3	.01	22	0.01	0.6	3,000	3,054
111	1.3	.1	88	0.1	1.2	3,000	3,214
444	59	.9	352	0.8	4.0	3,001	3,861
1,774	216	7.5	1,407	6.3	9.4	3,006	6,426
7,097	862	60	5,630	50	31	3,047	16,777
28,390	3,452	479	22,519	403	98	3,289	58,631
113,560	13,772	3,834	90.076	3,224	321	5,992	230,778
454,239	58,153	30,669	360,303	25,794	1,038	26,912	956,071
1,816,956	438,170	245,352	1,441,212	206,349	4,306	194,424	4,346,768
C116	C117	C118	C119	C1 20	C	121 C122	
Unit Cost USD at 400°K	Unit Cost Per Collection Area	Unit Cost Per m of Diameter	Unit Cost Per a of Balloon Surf	m ² Unit Cos ace USD/Kwe at	t End 717 ⁰ K Diam	Plate Main P meter Edge I	anel ength
USD/Kwt	USD/m ²	USD/m	USD/m~	USD/Kwe	· • • •	at m (act) -	1
C115/C81	C115/C26	C115/C1	C115/C6	C115/C106	5 1.2	(C24) See	Note
5,655	3,888	3,054	972	15,424	0	.02 0	.79
1,631	1,023	1,607	256	4,464	0	.03 1	.57
485	307	965	77	1,336	0	.06 3	.14
201	128	803	32	554	0	.13 6	. 28
133	83	1,049	21	365	0	.26 12	. 57
117	73	1,832	18	324	0	.5 25	.13
118	72	3,606	18	327	1	.0 50	. 27
129	74	7,469	19	359	2	.0 100	.53
164	84	16,980	21	463	4	.1 201	.06

NOTES:

1

Cl15 - Total unit cost is the summation of Cl07 through Cl13. Additional costs for lightning rod, aircraft warning lights, tether cable anchor plate and its bracing are included in the overall cost. No costs are included for engineering, site work or contingency.

C122 - Eight polar triangles, each having 90° corner angles, are required to enclose the sphere. The main panel edge length is C8/4 for all three sides.

Table 11

C123 Edge Arc Pivot Radius m 1.91(C122)	C124 Equilateral Triangle Leg m 0.516(C123)	C125 Tether Ring Diameter m 2(C90)	C126 Average Strong Back Diameter m See Note
1.5	0.77	0.04	0.0225
3	1.55	0.08	0.045
6	3.10	0.16	0.09
12	6.19	0.32	0.18
24	12.39	0.64	0.36
48	24.77	1.28	0.72
.96	49.55	2.56	1.44
192	99.10	5.12	2.88
384	198.20	10.24	5,76

NOTES :

1

C123 - Obtained graphically.

C124 - When a main panel is flat its points are the points of an equilateral triangle having legs of this length which is obtained graphically. This dimension would be used to lay out main panels followed by striking arcs and cutting the edges. This would be done on a small scale and checked before tackling larger balloons since w is an indeterminate number.

C125 - The factor of 2 is arbitrarily selected.

C126 - The average strong back diameter is selected as 0.72m for C1 = 32m and by ratio for other C1 values.