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An electron beam in a storage ring seems to be a perfect driver for a free electron 
laser. The understanding of storage rings is very well advanced to.project designs 
with high peak current, small beam sizesand short damping times. Since the beam 
is recycled after passage through the optical cavity we can expect a relatively high 
overall efficiency. On the other hand, however the fact that we do want the beam 
to circulate and interact with the laser field every turn puts a limit on the ~11~~ 
able perturbation of the beam due to the laser field. This limits the peak laser 
power we can get from a storage ring beam. The main advantage of a storage ring 
for FEL operation therefore is realized for continuous high power laser generation. 

In this paper we will discuss some of the limitations in storage ring beam parameter 
as they pertain to FEL operation. The interaction of a FEL field with the beam, 
however, is not discussed here. 

1. - BASIC PHYSICS OF STORAGE RINGS 
Before we discuss limitations we will briefly review some of the basic processes of 
particle dynamics in a storage ring. 

A string of bending magnets aligned on a closed loop establishes an ideal design 
orbit *the reference orbit against which lateral positions of all particles are 
measured. An additional set of quadrupole magnets interspersed between the bending 
magnets then produce stable orbits defined by 

uo(4 
dE 

= n(s) l y  

0 

(1) 

This means for every energy E = l& + AE there is a different orbit and the scaling 
function n(s) is called the DISPERSION FUNCTION, since it determines at every 
point s the lateral dispersion due to the energy spread in the beam. The form of 
tl.e dispersion function is determined by the actual position and strength of the 
quadrupoles and bending magnets. It is however always periodic 

n(s) = rl(s + C) (2) 
where C is the circumference of the storage ring. 
be in the horizontal (u. = x0) or vertical (u. 

The orbit function uo(s) can 
= y,) plane depending on whether 

we use the horizontal or vertical dispersion function. Since n(s) depends on the 
bending fields we obviously have ny(s) = y,(s) E 0 if the storage ring does not 
involve vertical bending magnets. 

-. 

In addition to the lateral equilibrium positions defined by the stable orbit we 
also need a reference position.for the longitudinal coordinate. A stable position 
on the longitudinal coordinate is established by the rf system used to compensate 
the energy loss of the particles due to synchrotron radiation and interaction 
with a laser field. The rf-frequency and the revolution frequency have to have an 
integer ratio 

f rf = k ’ frev k: integer 
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In this case the ideal particle circulating around the storage ring on the ideal 
design orbit will always arrive at the accelerating cavities at the same rf-phase. 

Betatron and Synchrotron Oscillation 

Individual particles will not in general have the ideal energy Eo, or ideal 
longitudinal position so(t) relative to the rf-field, or travel exactly on and along 
the ideal orbits x0 and yo. This is acceptable as long as the particles stay close 
to or oscillate about the equilibrium position: 

P,(s,t) - [x0(s), Y,(S), Eo.so(t)l (4) 

Transverse oscillations about [x (s),y (s)] are called BETATRON OSCILLATIONS and 
longitudinal oscillation about [‘Eo, s:(t)] are called SYSCBROTRON OSCILLATIONS. 

The restoring force for the betatron oscillations are provided by quadrupole magnets 
which act as focusing elements for charged particle beams in a similar way as 
optical lenses do for light beams. The deviation u (s) of a particular particle 
from the ideal orbit uo(s) (US or u. stands for xB t 
is described by 

r yB and x0 or y, respectively) 

u (8) 
8 

= a JEG3 cos[$(s) + al (5) 

Here g(s) is the so called BETATRON FUXCTION which depends only on the quadrupole 
strengths and positions and is periodic B(s) - g(s+C) like the dispersion function. 
The phase <l(s) is the BETATROS PHASE and is defined as e(s) t jSdT/8(T). The 
quantity v  = $(C)/2n is called the YLTE or the OPERATICG POINT %f the storage ring 
and its value is equal to the number of lateral betatron oscillations per tune. 
The quantities a and 6 are arbitrary integration constant and are different for 
every particle. From eq. (5) we find for the envelope of an ensemble of many parti- 
cles 

The quantity a;, of a beam is called the BEAM EPIITTANCE. 

In the longitudinal direction it is the accelerating rf-field together with certain 
lattice properties which provides the restoring force. The oscillations caused by 
this force are described by 

T = b sin (Wst + p) 
(7) 

AE = c cos (Wst + a) 

where b, c, p, u again are integration constants, w  is the synchrotron frequency, 
and T is the longitudinal deviation of a particle f!om the center of the bunch. 

The equations for the betatron (eq. 5) and synchrotron (eq. 7) oscillations are 
stable for all amplitudes which obviously is not true in a real environment. In a 
well designed storage ring we find the maximum betatron amplitude to be limited by 
the vacuum chamber and the maximum synchrotron amplitudes limited by the maximum 
voltage in the accelerating cavities. 

-. Beam Sizes 

The actual amplitudes of an electron beam in a storage ring are determined by the 
quantized emission of synchrotron radiation photons and a damping effect for all 
osci.ilation amplitudes. Both quantum excitation and damping lead to an equilibrium 
where all particles of a beam have gaussian distribution in all 6 phase space 
coordinates : 

, 
xs x . Y* Y’, Ah As 
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For such a beam we define: 

ax2/t3, - L horizontal beam emittance x 

ay2/B, - E 
Y 

vertical beam emittance 

aEiEo energy spread 

a* bunch length 

(8) 

What happens if we clip the gaussian tails due to limitations in the vacuum chamber 
of rf-voltage? Obviously we loose the particles in those tails but there is also a 
continuous loss since those tails are being refilled again. These losses will be 
one determining factor for the beam lifetime. This lifetime called quantum lifetime 
can be calculated and is given by /l/r 

(9) 
where T is the damping time and 5 = 

B F 

l/2 n2 with n being the aperture limit in units 
of a , ,a ora. 
ampl?tudxs o 

Typically one needs an aperture which allows oscillation 
at lgast- seven sigma’s: 

n,7 (10) 
in order to get a quantum lifetime of 50 hours or more. 

Damping 

In the previous sections we have made use of a damping effect in an electron storage 
ring. The physics behind the damping of synchrotron oscillations is simple, since 
the energy loss pertum AU due to synchrotron radiation depends on the particle 
energy AU s E4. Therefore a particle with too high an energy radiates more and a 
particle with too low an energy radiates less than the ideal particle. Iii either 
case the energy deviation is reduced or damped. Because energy and the longitudinal 
position of a particle are conjugate coordinates we also have a damping in the 
longitudinal coordinate. 

The transverse oscillations are damped because the emission of a photon in general 
means a loss of momentum in the longitudinal as well as in the transverse direction. 
However, in the rf-accelerating cavity the lost momentum is compensated only in the 
longitudinal direction. We have therefore a net loss in transverse momentum or 
damping in the transverse plane. 

The damping times in a separated function lattice (focusing and bending is done in 
separate magnets) are given by /l/: 

Where 

TE = Tg = E Trev/AU 
(11) 

T = T x Y 
= 2E Trev/AU 

AU(GeV) = El.85*10-5E4(GeV4)/p(m) (12) 
-. 

is the energy loss per turn and p the bending radius. 

The damping times are changed if we have magnets where focusing and bending occurs 
in the same magnet. One example is the wiggler magnet needed for the gain expanded 
FG. proposed by X%DEY / 61. Here we have to modify the damping times like: 
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where 

p = fi (-j + 2k $) d./bl/02ds (14) 

and k is the quadrupole strength defined by k*p = (aBy/ax)By. 

Obviously if 0 = 1 we have lost all damping in the horizontal plane which is 
unacceptable for a beam to be stored for a long time. Conversely if C@I< -2 we have 
lost the longitudinal damping. In praxis we can allow the quantity 9 to vary like 

- 1 L. 8 $0.5 (15) 
For presently assumed parameters for a gain expanded FEL one can easily stay within 
these limits. 

It is, however, not possible to simplify the ring lattice by using combined function 
magnets only, like in synchrotrons. Horizontal antidamping would prevent a stable 
beam. 

Beam Emittance 

The beam emittance is determined by the balancing of damping and quantum excitation. 
In an earlier section'we found that a proper storage ring lattice establishes a 
unique orbit for every energy a particle may have. We also found that each particle 
performs betatron oscillations about its orbit. Now the physics'of quantum excit- 
ation becomes clear. The moment a particle emits a photon. it losses energy and 
therefore instantly starts performing betatron oscillations about a different orbit. 
The betatron oscillation amplitude therefore is changed instantly which leads to an 
increased beam enittance. We can determine the effect of the quantum emission on 
thebeam emittance by the way the focusing lattice is chosen. Specifically we can 
minimize this effect which results in a mininum beam emittance for a socalled FODO 
lattice given by /2/z 

Exo(rad m) = a$g, = l.9*10’6E2(CeV2)*g3(rad)R(m)/p(m) (16) 

Here 8 is the bending angle between quadiupoles, R the average radius and p the 
bending radius of the storage ring. It is obvious that a small bending angle 
reduces the beam emittance at the cost of more magnets and a larger beam circumfcr- 
ence. In eq. (11) we have assumed a flat storage ring. The vertical beam emittance 
in such a ring is determine only by coupling of horizontal betatron oscillations 
into the vertical plane due to rotated or misaligned quadrupoles. The coupling is 
determined by a coupling constant defined by: 

Ex = Exo/(l + K2) 

E = CyoK2/(1 + K2) or 

Kz yx = E/E 

In a well aligned storage ring the coupling can be as small as 

(17) 

K - min - .os to .lO (18) 

II. BE.4.M CURRENT DENSITY LIMITATIONS 

In this section we will discuss the major limitktions on beam current density. 
The beam current limitations are discussed in another paper at this conference /3/. 
To relate the limitations to real storage ring designs we have compiled in Table I 
some parameters for two storage rings. One of these storage rings (Ring I in Table 
I) has been specifically designed for FEL operation. The other example is a design 
by the author for a damping ring to be used to produce an electron pulse with an 
extremely small emittance at a high repetition rate. Here the state of the art 



I 

-5- 

has been pushed to its limits to minimire both emittance and damping time. This 
damping ring is being constructed nov at the Stanford Linear Accelerator Center and 
rill be ready for testing during spring 1983. 

Table I 
Storage Ring Parameter 

Storage Ring 

Energy 

Circumference 

Damping Time 
Beam Emit tance 

FODO-Cell Length 

Bending Anglefxagnet 
Peak Beam Current 

Touschek Lifetime 
(fully coupled beam) 

E(GeV) 

C(m) 

TE(msec) 
Exo(mm-mrad) 

Lc(Q) 

0 (deg) 
i (amp) 

Ttoi) 

I II 
FEL-Storage Ring Damping Ring 

1.0 1.0 

94.56 35.27 

6.77 2.7 
.017 .013 

1.60 1.29 

9.0 9.0 
270 160 

1.0 0.14 

Touschek Effect 14.51 

When two particles performing transverse betatron oscillations collide some of their 
transverse moment’um is transformed into a longitudinal momentum change. -- One parti- 
cle would gain and the other particle would lose an equivalent amount of longitudi- 
nal momentum. Both particles are lost if the momentum change is larger than the 
momentum acceptance of the storage ring. This effect is called the Touschek Effect. 

-If this happens often enough we will notice a reduction of lifetime. Obviously the 
probability for collisions increases with the beam density and therefore limits the 
current density or beam emittance: For a fully coupled beam we have a limitation on 
the instantaneous bunch current (I = I where C is the circumference 
of the storage ring, 

l Cl@iaE, 
af the bunch leng# and I,, = e f,,, N with f,,, the revolution 

frequency and N the number of particles per bunch) 

? (amp) ( 3.8010~~ (19) 

Here E(GeV), is the beam energy,T (set) the desired beam lifetime due to the 
Touschek effect, D(t) a complicatid function with D(E) z 0.2 + .l for most storage 
rings, 151, (AEIE) the maximum energy acceptance and t3 , 0 the average values of 
the betatron func8%ns. For order of magnitude calculatfonsYwe may take zx = By=2 
to 5m, (Fig. 1 and 2). EW(rad m) is the beam emittance. 

It should be noted here that this limitation is a one bunch limitation. As far as 
the Touschek effect is concerned there is no lim!tation on the number of bunches 
that are filled to this maximum bunch current density. From eq. (19) we conclude 
that the peak current depends strongly on the energy acceptance. We assume. that 
the rf-voltage is large enough to provide an energy acceptance at least as large as 
limited by other effect. In most cases the energy acceptance of a storage ring 
will be limited by chromatic and geometric aberrations in a storage ring. 

Like in ordinary light optics the focusing of the beam in a storage ring is not 
independent of the energy (wavelength in light optics) of the particles. These are 
the chromatic aberrations some of vhich can be sufficiently compensated by sextu- 
polar magnets, But there are also aperture or beam size dependent aberrations 
mostly due to the nonlinear fields of the sextupole magnet. A compromise therefore 
has to be made between both kinds of aberrations when a sextupole lattice is design- 
ed for a particular storage ring. Whatever the design will be there is a maximum 

- 

. 
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energy deviation a particle may have to be still stable in a storage ring. In 
particular designs for EEL storage rings (ring I of Table X)-it has been shown that 
this maximum energy deviation can be as large as 

2 (4 to 6%) 

Note that all particles of a gaussian beam have to be within this limit which means 

(“E’E)max I + (.6 to .8X). 

At this point it should be discussed how we can maximize the peak beam current hav- 
ing FEL operation in mind. kben the beam interacts with the laser field we expect 
an increased energyspread in the bean and as a consequence a longer bunch. On the 
other hand during injection we have a shorter bunchlength since the laser is off and 
therefore a higher particle density or a shorter Touschek lifetime. There is 
obviously a bottleneck for the maximum possible peak current at the end of the 
injection process. This bottleneck can be avoided. 
current with laseron or off is given by: 

The ratio of the maximum peak 

z/i1 = (ExoL/ExoI) l (a,/a,,) (21) 

0 PO .o 60 

lb 

IO 

Fig. 1 : Betatron functions of one half of ring I (Table I). On  the left side 
is the straight section for injection, rf etc., followed by the arc 
lattice and ‘on the right is a long undulator for a gain expanded FEL. 
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Fig. 2 : Betatron function of the damping ring (ring II) in Table I. 

where the subscripts “L” r$fers_to laser on and “I” to laser off. We expect 

Z%~@a: ‘E’ 
To make now IL = II uduld mean to manipulate the focusing lattice 
/E 

This manipu?S!’ loi’bf 
< 1 or equal to the inverse of the ratio of the bunchlengths. 

the lattice has ‘to be possible without crossing dangerous beam 
resonances since the beam now would be injected into one configuration and used with 
the laser turned on in another configuration. If the magnet lattice is designed 
properly this can be done (ring I of Table I). In this particular case it is 
possible to change the beam emittance continously by at least a factor of five. 

With this provision the peak current is limited by the bunch volume as determined 
by the intcracticn with the laser. In the storage ring I of Table I the maximum 
achievable peak beam current due to the Touschek effect alone can be as high as 
about 900 amp at 1 GeV. Other effects may set a lower limit. 

Maximum Gain/Pass 

The’maximum gain per.pass of the FEL is related to the beam parameters like /6/ 

(22) 

Obviously this gain will be limited by the desired beam lifetime (Touschek Effect). 
Combining Eqs. (16), (19) and (22) we get: 

- I 

(23) 
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For the storage ring I in Table I this quantity is: 

i: 
y2E E  

= MO8 = 
cm2 

(24) 
XY 

assuming (AE/E) - 2.5%. Higher values can be achieved with the "mismatch" 
scheme describezafn the previous section. 

This is a factor of 100 larger than the expected value for the SLAC LINEAR COLLIDER 
(SLC) /7/ where the state of the art in linacs is employed to maximize this 
quantity. As a matter of fact in order to make the SLC a feasible colliding beam 
facility a storage ring Is employed to reduce the beam enittance due to damping. 
With this danping s_torage ring (ring II of Table I> it is expected to reach a beam 
current density of I/(y2, E ) = 1*108amp/cm2. 
are expected to be perfo$eJ in summer 1983. 

First measurement of this quantity 

Beam Emittance and Damping 

The RESIERI CRITERION ISI relates the maximum laser power PL to the synchrotron 
radiation power.P . The latter however is just the particle energy E divided by 
the synchrotron dfjing t ime T,. We have therefore 

pL (25) 

where N 1s the total number of electrons in the storage ring. This calls for 
a short damping time to maximize the laser power. From eqs. (11) and (12) we get 

-- 

TE(sec) 
w  2.4.1f4 hi%!& 

E3(GeV3) 
(26) 

Obviously a small bending radius p or a small average radius R reduces the damping 
t ime, but doing so we have to watch the increase in beam emittance (eq. 16). We 
therefore calculate the product tXO* TE and get 

E 01 -c x0 E T l R283/E 

with C = 4.5.10 -l 'GeV set/m . 
Again :e find that the bending angle per magnet should be small leading to a big 
ring. Better yet because of the R 2 factor one should design the storage ring with 
very short cells e.g. small distances between the quadrupoles. In this case it is 
also possible to use maximum bending fields or a minimum bending radius to minimize 
TE and still keeping the beam emittance small-. With these criteria in mind the 
following design paraneters have been achieved. Ring I of Table I. 

Ring II of Table 

E l T  - 11.5*10-"rad m  set x0 E 
I 

E l T  E = 3.5*10-"rad m  set 
x0 

If we combine eqs. (25) and (26) and express the number N of particle in the storage 
ring by the total beam current we finally get for the total laser power 

P,(w) = 1330 (o~/E),,,(X) l E4(GeV4)*Iav(amp)/p(m) (28) 

Conclusion 

I 

The basic physics of electron storage rings and some limitations have been 
discussed. We found that the main limitation for high beam current density and 
short damping times comes from the Touschek effect. In spite of this limitation 
‘peak currents of the order of a few hundred amperes per bunch can be expected at a 

. 
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beam energy of 1 GeV. To maximize the total laser power more than one bunch should 
be filled which does not change the Touschek lifetime 11&t; 
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