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Chapter 1. 

INTRODUCTION 

These lectures concern the dynamics of fermions in strong interaction 

with gauge fields. Systems of fermions coupled by gauge forces have, as 

we shall see, a very rich structure of global symmetries, which I will 

call chiral symmetries. These lectures will focus on the realization of 

chiral symmetries and the causes and consequences of their spontaneous 

breaking. 

From one viewpoint, the study of fermionic symmetries is a classical 

topic in high-energy physics: Some of the earliest applications of 

spontaneously broken symmetry in particle physics, including the classic 

papers of Gell-Mann and Levy Cl1 and Nambu and Jona-Lasinio CZl, dealt 

with the chiral symmetries of the strong interactions, and much of the 

progress of theoretical particle physics in the 1960’s occurred through 

exploration of the phenomenological consequences of this spontaneous 

chiral symmetry breaking. That progress has been summarized in numerous 

reviews (e.g., C31,C41,CSl>. Our understanding of the underlying 

mechanism of chiral symmetry breaking, however, has not advanced so 

rapidly; to a great extent, the elucidation of this mechanism is still 

an open problem in the theory of the strong interactions. 

The past few years have seen a renewed interest in this problem for 

three reasons* reflecting the successes of gauge theories in describing 

the fundamental interactions. First, numerical treatments of strong 
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interaction gauge theories, especially in their lattice formulation, 
--~- 

have been approaching a quantitative calculation of-.the hadron spectrum. 

There is, then, a need for physical ideas about quark dynamics of a 

power to match these numerical calculations. Secondly, the gauge- 

theoretic descriptions of the weak interactions have focused attention 

on the problem of explaining the quark and lepton spectrum. From the 

perspective of the gauge theories, the quark and lepton masses are 

simply parameters of chiral symmetry breaking in the interactions which 

determine the structure of these particles. Dynamical theories of the 

fermion mass matrix thus require an understanding of chiral symmetry in 

systems different from the usual strong interactions; such theories 

often require that chiral symmetry is realized in an unfamiliar way. 

Finally, the viewpoint provided by gauge theories has led to some 

striking qualitative conclusions about chiral symmetry which might form 

the basis of a more detailed theory. With these reasons in mind, I will 

try, in these lectures, to summarize our present understanding of the 

basis of chiral symmetry and its realization. My goal will be to bring 

this theory together at an intuitive level, to indicate what I think are 

its basic elements. I hope that in the next few years we can turn this 

qualitative theory into a quantitative one. 

The plan of these lectures is as follows: I will begin with a brief 

introduction to the basic formalism and concepts of chiral symmetry 

breaking. Then, in sections 3 through 5, I will present some explicit 

calculations of chiral symmetry breaking in gauge theories, treating 

first parity-invariant and then chiral models. These calculations are 

meant to be illustrative rather than accurate; they make use of 
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unjustified mathematical approximations which serve (I hope) to make the 
-I_-- 

physics more clear. In sections 6 and 7, I will discuss.some formal 

constraints on chiral symmetry breaking which will il luminate and extend 

the results of our more explicit analysis. Finally, sections 8 and 9 

will present a brief review of the phenomenological theory of chiral 

symmetry breaking and will discuss some applications of this theory to 

problems in weak-interaction physics. 

These lectures will be intuitive and rather ideosynchratic in tone. 

I should therefore apologize to the reader in advance for what I will 

omit: My presentation will be deliberately ahistorical; because of 

this, I will not review even major papers whose results do not bear 

directly on the issues I will discuss. In particular, I will not 

discuss the interaction between the study of chiral symmetry breaking 

and renormalization theory (e.g., C61) which led to the realization that 

only asymptotically free theories allow chiral symmetry breaking at 

reasonable momentum scales C7,Sl. (This point has been reviewed, for 

the light it sheds on asymptotic freedom, in 193.1 Similarly, I will 

not concentrate on summarizing the most recent results in this field. 

At various points in my presentation I have deliberately oversimplified 

the arguments of papers I review in order to avoid technical 

digressions; the reader should be alert for warnings that this is going 

on. I hope that the streamlining which results from these three types 

of omissions brings the basic ideas more clearly into view. I have 

tried to make these lectures accessible to beginners in the field, 

although I should warn the reader that I address the problems of this 

field with the specific concerns of a particle physicist. I should also 



note that I have deliberately omitted an 

developing aspect of my subject, the rea 

lattice gauge theories, since this topic 

Kogut’s lectures in this volume. 

important and rapidly 

1 ization of -chit-al symmetry in 

is reviewed thoroughly in John 

4 

Here, then, is the theory of chiral symmetries, in its present 

fascinating but incomplete state. I hope the reader of these lectures 

will be moved to develop this theory, and to ponder its lingering 

problems. 



Chapter 2. 

BASIC NOTIONS 

2.1 WHAT ARE CHIRAL SYMMETRIES? 

I will begin this set of lectures by presenting some basic formalism 

and describing, in the simplest terms, the physics I wish to explore. 

First of all, I should introduce the language I will use to describe the 

elements of this physics. 

Chiral symmetries are normally introduced as formal symmetries of the 

massless Dirac Lagrangian. This Lagrangian, including a coupling to an 

(Abelian) gauge field, takes the form: 

L = %i7~(~-igAW)$ i g = JIrro . 

There is an obvious symmetry 

(2.1) 

*+-,i%) , j, + &-ia . (2.2) 

which corresponds to fermion-number conservation. But the massless 

theory has another symmetry, using r5: 

9 + expEiar51$ , j, + j, expCia+l . (2.3) 

The exponentials cancel because (r5,7~) = 0. 

To understand these symmetries physically, it is helpful to choose 

the following representation of the Dirac matrices: I 1 I .i 
7o= - 1 1 ‘I ’ 

yi = 1 1 , 
-ui 1 

75 q ai = p7i = 

-ui 1 
iyOyly2y3 = -[ I- 1 ui l (2.4) 

-5- 



In this representation, the Dirac Hamiltonian 

(2.5) H = ~+‘[:*($+gA, - gA”]Jl 

can be split apart. If we write 

+L 
JI= 11 +R 

then 

H = ~(@R[&(~+g~) - gA’]d’R + +“Lt(-T;) * (;+gh - gA”l+‘,Ll . (2.6) 

6 

Note that the positive-energy states of $R have positive helicity and 

that the positive-energy states of $L have negative helicity: *R and 49. 

describe, respectively, right and left-handed massless fermions. The 

fermion numbers of $a and $L are (formally) separately conserved; this 

is the origin of the extra symmetry. 

The two pieces of (2.6) are not actually of a different form. We can 

write $R as a second type of $L by applying charge conjugation, defining 

J’L2 = 954o2 , & = (IZ$‘R . (2.71 

Then, using the identity e2cict = -oTi and an integration by parts, we 

can rewrite the first term of (2.6): 

+f~+R[:‘($g&) - gA’]g’R = ~$tL2E&l+-g~l + gA”I’hL2 

as a 9LHamiltonian with the opposite sign of the charge. 

(2.81 

This construction is readily generalized to non-Abelian gauge 

theories. In the non-Abelian case, the Lagrangian is built from the 

covariant derivative 

0, = & - igAaPtap (2.91 

where the index a runs over the generators of the gauge group and the 

matrices ta r represent these generators in the representation r to which 

the fermions are assigned. Representation matrices far complex 

conjugate representations are related by 
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t=-, = -(tap)* = taTr . (2.101 

This notation allows us to recast the Hamiltonian for a $Ras that of a 

9’~ in the representation r: 

~&[tb(;+C$t) - gA’-tl’#R 

= S~tL2C(-~).ta+g~.(-tT)) - gA”.(-tT)]qL2 . (2.11) 

In this notation, the most general Hamiltonian coupling massless 

fermions to gauge fields may be written compactly in the following form: 

H = c i’ 
s 

~‘LriC(-~)-(~+g~‘tr)-gA’-trI~Lri . 
reps. r i=l (2.12) 

Once H has been cast into this form, it is easy to read off the global 

symmetries of this system: For each representation r, this Hamiltonian 

is (formally) invariant to the general unitary transformation: 

*Lri + UijJlLrj - (2.13) 

Actually, one of these formal symmetries is illusory. A certain quantum 

correction to this theory, the Adler-Bell-Jackiw anomaly ClO,lll, spoils 

the conservation of the overall charge current 

JIL=c 3, Lri Yw *Lri - 
ri (2.14) 

(In terms of $L and *RI this is the axial-vector current.) I will argue 

in detail, in section 4, that one should simply consider this symmetry 

as broken explicitly. The full global symmetry of the theory is, 

therefore, 

G  = C1 U(np)lAJ(l) . 
r (2.15) 

G  is the group of chiral symmetries of such a theory. 

As an example of this notation, consider the case of the strong 

interactions, which are described by a set of two almost massless Dirac 
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fermions (quarks) coupled in the triplet representation to an SU(3) 

gauge group. These fermions may be written as left:.handed-fermions 

(henceforth, L-fermions), two in the 3 and two in the 3 representation 

of color SU(31. In the limit of zero quark masses* the chiral symmetry 

of this theory is 

G = SlJ(2) x SU(2) x U(l) . (2.16) 

There is, as I have noted in the introduction, considerable evidence 

that the full group G is a symmetry of the strong interactions; however, 

hadrons do not form multiplets classified by G, but only by SU(2) X U(1) 

(isospin X baryon number). A part of G must, then, be spontaneously 

broken. It is our major goal in these lectures to understand why G 

should be spontaneously broken, and in what pattern. To begin, let me 

present a relatively simple intuitive argument which contains the right 

physics and leads to the right conclusion. This argument is due, in its 

original form, to Nambu and Jona-Lasinio C21, who, in turn, borrowed it 

from the theory of superconductivity. The gauge coupling of color SU(3) 

is asymptotically free and becomes strong at large distances. Let me 

assume it becomes arbitrarily strong. Let me think about the change in 

the structure of the vacuum state of this theory as I raise g from zero. 

Imagine that we can integrate over the quantum fluctuations of the gauge 

field; then H takes the form: 

H = tid + tic-d (2.17) 

where Hd is diagonal in the number of quark-antiquark pairs and Ho-d 

changes the number of such pairs. This decomposition is indicated in 

fig. 1. Ho-d is of order g2 and is a small perturbation when g is 

small. In this regime it makes sense to approximate H by Hdi 

, . : ;  ,‘_ ‘, 

I  
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diagonalizing Hd yields a ground state close to free-field vacuum. Now, 
--- .- 

slowly increase g. If the fermions have zero-mass and experience 

attractive interactions, lid decreases as g increases. Ho-d, of courser 

increases. At some value of g it becomes appropriate to treat Ho-d as 

our zeroth-order problem, and Hd as a perturbation. But Ho-d changes 

the number of pairs, so its ground state has an indefinite number of 

fermion pairs. We would still expect the ground state to be invariant 

to Lorentz transformations; hence these pairs must have vacuum quantum 

numbers : zero total momentum and angular momentum. The only pairs one 

can form from 3 and 3 L-fermions and their (right-handed) antiparticles 

which satisfy this condition are those of the form of fig. 2 and the 

corresponding pair of antifermions. The pair shown in fig. 2 carries a 

net charge under the transformations: 

JIL3i -) eia*L3i 9 3LJi + eia*L5i 8 

*L3i + UijgLtj 8 *Lsi + VijJ'LSj - (2.181 

(The indices i,j = 1,2 are isospin labels.) The presences of an 

indefinite number of such pairs in the vacuum breaks these symmetries. 

More formally, we have found that the ground state Ifi> of H has the 

property-that an operator which destroys a fermion pair has a nonzero 

vacuum expectation value. 

Let us assume that In> gives pair annihilation operators the rather 

simple expectation value: 

<RJ*L3i+LSj)R> = A6ij (2.19) 

(where A G 01, corresponding to equal condensation of pairs of each 

isospin. This expression is preserved by the transformations 



*L3i + eia*L3i t $Lsi -) emia$Lgi 

and 

10 

*L3i + Uij*Lsj P *Lsi + $LgjU-‘j i s (2.201 

This is an SU(2) X U(l) group of unbroken symmetries which 

corresponds precisely to isospin X baryon number. The remaining three 

symmetry directions of (2.16) must be spontaneously broken symmetries. 

Goldstone’s theorem requires that each must generate a massless 

Goldstone boson. The three TI mesons have the right quantum numbers to 

be identified with these three bosons. (This may be checked by 

rewriting 1LLsi as a +Ri then the symmetries (2.20) correspond to vector 

currents and the broken symmetries to axial currents.) 

This argument summarizes the basic points of physics that I wish to 

discuss in these lectures. It remains only to carry out this analysis 

more completely and precisely. We will make at least a little progress 

toward that goal. 

2.2 THE EFFECTIVE POTENTIAL FORMALISM 

Our first priority is to learn how to do a more quantitative 

computat-ion of chiral symmetry breaking. Basically, we need to know how 

to test whether the energy of the vacuum is lowered if some fermion 

bilinear acquires a nonzero vacuum expectation value. If the quantity 

acquiring a vacuum expectation value is a scalar field #, one has at 

one’s disposal an object called the effective potential Cl2,131. This 

object is equal to the energy of the vacuum under the constraint that 

the vacuum expectation value of $ has some definite value 90; it can 

also be computed straightforwardly in perturbation theory Cl43. One 
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need only compute this effective potential and minimize it with respect 
--~- 

to $0 to determine the vacuum value of 9. For chiral symmetry breaking 

(henceforth, xSB1 there is a similar construction due to Cornwall, 

Jackiw and Tomboulis Cl51.+ Their construction is set up as follows: 

If chiral symmetry is even formally exact, it will set to zero such 

vacuum expectation values as (2.19). For definiteness, consider 

expectation values of the (Dirac fermion) operator 

gR$L = EaR*L2aqLm (2.211 

where a,B = 1,2 are spinor indices. To produce a vacuum expectation 

value of this operator, we must, in principle, turn on some external 

field (analogous to a magnetic field orienting a potentially 

ferromagnetic system), construct the ordered vacuum in the presence of 

this field, and then see if the order in this vacuum survives when we 

turn the field off. I will try to carry out that procedure explicitly. 

For the sake of familiarity and ease in finding minus signs, I will work 

with $RI$L for the moment and induce <$$> C 0. 

Begin by writing a theory of massless fermions (in Euclidean space- 

time) 

Z = .f,p~ expt-J($DJ, + l/4 F211 . (2.221 

The second term in the exponent is the gauge field Lagrangian; I will 

suppress this term from here on. Add to (2.22) a source K which induces 

xSB : 

ZCKCx,y>l = exp(-W[Kl) = IJ~A expC-~(%!@-~(xl K(x,Y) Jl(y)ll . (2.23) 

*An early version of this formalism appears in Cl63. A very clear 
discussion of it may be found in Cl71. 
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It is useful to take K to be nonlocal; this allows us to adjust K(x,Y) 

so that _ - 

s 

d’k 1 
<-4(Xl~(Yl>~ = p expC-ik-(x-y)1 

(2ll)’ -ik + t(k2) (2.24) 

for any given generalized mass term E(k21. We must now determine for 

which function t(k2) this condition will be stable if we turn off K. 

Let us define S(x,y) = <$(X)$(Y)>; then 

6 6 
S(X,Y) q C-log Z[Kl> = WCKI 

bK(y,x) 6K(y,x) (2.25) 

(assuming <J1> = <$> = 0). 

It would be useful to exchange 1 or S for K as our basic variable. 

This can be done by making a Legendre transformation (replacing the 

Helmholtz by the Gibbs free energy). Define 

r = W[Kl -j’dxdy S(X,Y) K(Y,x) (2.26) 

(2.26) implies that 

or simply 

-a- 
= K(y,x) 

E;S(x,yl (2.271 

S(x,y) can be stable if br/bS(x,yI = 0. I’CSI is called the 

effective action. 

Let us now compute r. Since the fermion propagator will eventually 

be given by the specified function S, it is convenient to evaluate 

(2.23) by taking S as the zeroth-order propagator or S” as the zeroth- 

order action. Rewrite (2.23) as: 
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exp(-WtKl) = $9 expC-J(gS-‘$ + $tI&S-‘)$ + Kfi>l 

= (det S’l)*expC(all vacuum diagrams.11 - - 

= expClog det(S-‘1 + Tr(&S“)S - Tr KS + (diagrams)] 
(2.281 

where, in the last line, “diagrams” includes only those with at least 

one gluon vertex. Then 

w = -Tr log(S’l) - Tr(&S-‘1s + Tr KS - (diagrams) 

I-= -Tr log S-l + Tr(S-‘-3)s - (diagrams) . (2.291 

The diagrams in (2.29) may be divided into two classes as shown in 

fig. 3: Those whose only vertices are gluon vertices (fig. 3a) and 

those which involve the additional P-fermion interaction Cb-S’l-Kl 

(fig. 3b). The diagrams of the second type involve the external source 

K; this source is determined by the condition that the exact propagator 

of the theory should be S(x,yJ. One should therefore adjust K to cancel 

any corrections to the propagator. This adjustment, however, makes the 

two diagrams shown in fig. 3 cancel precisely. One can check that all 

diagrams of the second type cancel against diagrams of the first type, 

leaving uncancelled only those diagrams which have no propagator 

corrections. These remaining diagrams may be characterized as 

“2-particle-irreducible” (2PI1, i.e., as diagrams which cannot be split 

apart by removing 2 lines. Our final expression for l?CSl is (2.29) 

evaluated with only 2-particle-irreducible diagrams. A feu of these 

diagrams are shown in fig. 4. This final expression for r does not 

require the explicit value of the source K; it is simply a function of 

S. Thus, one can readily compute ST&S. 

To get some idea of how this formalism works, we might compute the 

variation GT/SS from an approximate form for r obtained by including 

only the simple diagram of fig.5a in the evaluation of (2.29): 
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6 6 
-r z - (+ Tr log(S) + Tr(S”-a)S - (fig. 5a)) 
bS 6S _ - . 

= s-1 - s-lss-I + (S’1-$) + (fig. 56) . (2.30) 

The sign change in the last term comes from the factor (-11 for a closed 

fermion loop. Thus, in this approximation, W/&S = 0 implies 

S-’ =a- (fig. 5b) . (2.31) 

This is precisely the Hartree-Fock approximation to the equations of 

motion, obtained after integrating out the gauge field. To see this, 

note that if Au,(x-y) is the gauge field propagator, the equation of 

motion for $(x1 may be written as: 

ru(&-igAW)$(x) = 0 

-> W2+,+g2 ,j.d’y A @V(X‘Y) ihYWWY))~(X) = 0 

-> dJlCx> + g2 ldb Y ‘YW A,D(x-Y) <Jl(x)jr(y)> PJI(x) 
Hartree-Fock i2.32) 

which is identical to (2.31). In the theory of superconductivity, eq. 

(2.31) is called the gap equation. 

Let me end our discussion of the effective action by mentioning two 

problems with this formalism: 

First, the formalism is not gauge invariant, because it relies on 

nonlocal source terms. One can fix up the gauge invariance of the 

source term by writing this term using line integrals of A,: 

JK(x,yI $(x1 P(expCigSA,dR~l)~(y), where P denotes path-ordering. Al 1 

the formalism goes through unchanged. But now K must regulate the value 

of <q(x) P expEig~AudR~l~(y)>, and so does not cancel from r so easily. 

I will avoid this problem by choosing a gauge; Landau gauge (bAu = 0) 

is particularly convenient 1181. If the fermion bilinear which obtains 

a vacuum expectation value also breaks global gauge invariance, then one 
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has a worse problem; the formalism is inconsistent unless one also 
-__ 

allows a mass for the gauge boson field. But- this situation can be 

treated by letting r depend also on the gauge boson propagator A(x-~1, 

and insisting also that &r/GA = 0. This produces coupled equations for 

S and A. For example, in the approximation of keeping only fig. 5a in 

r, these equations are: 

s-1 = ‘d - (fig. 5b) 

A-’ = -(bzgrrv - WWI - (fig. 5~) . (2.33) 

Second, and more seriously, the effective action is not bounded 

below. To see this, we can try the following exercise: Start with a 

free-field action L = g(&rn)JI and to solve for the best exact propagator 

S using the effective action formalism. Take S(p) = Ci$+Z(p)l”, for 

simpl ici ty. Then the evaluation of (2.29) gives: 

1 
m (p)3 = -Tr log(-i$+E) + Tr(E-m) 

(-i$+EI 

(E(p)-m)E(pI 
-2 log(pz+Et(p)) + 4 

pZ+EZ(p) J 

br 41 4(E-m+E) (E-m)E2 (E-m) (p2-Ez) 
-=--+ - 8 = 
S>(p) p=+zE= p2+P (p2+Z2)2 (p2+12)2 (2.34) 

The correct value E(p) = m  is a solution to the condition &X/b1 = 0. 

However, there is another solution at E(p) = p. Further, the shape of 

TCiZl is such that, after attaining a local minimum at E(p) = m, it rises 

until 1 = p and then falls off, plummeting to (-aI as 1 + 03. The 

stationarity condition U/&S = 0 does produce the correct solution for 

E, but only if interpreted with care. 
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What can one do about these problems? In these lectures, I will 

simply apologize and ignore them. Banks and Raby Cl.71 suggest a 

restriction to sources K(x,y) which are nonlocal only in space, not in 

time. This solves the problem with boundedness-below, but it sacrifices 

covariance and also does not allow one to get the specific solutions I 

will discuss in the next section. In any event, this formalism is good 

enough to let us do computations with real physics in them; let usI 

then, accept it and proceed. 

I should, however, make note of an alternative, more formal but more 

precise, criterion for xSB. Consider the Oirac propagator, for fermions 

with small mass m, in a fixed background gauge field: 

<~(x>~Cyl> = (fl+m)-l(x,y) (2.35) 

By multiplying and dividing by (D-m) and using 

AA = -(jGrn)(j?Lrn) = (-D2+m + 114 grruVFwy) (2.36) 

one can write 

<Wx)> = -m-AA-’ (X,X) . (2.371 

We can convert this result to a result in an interacting gauge theory by 

inserting (2.371 under the functional integral over Aw. xSB in the zero 

mass theory is equivalent to the behavior: 

<AA- ‘(X)>A 0: mm’ as m  + 0 . (2.381 

Banks and Casher Cl91 have used this criterion to give a heuristic 

argument for XSB in lattice gauge theories; perhaps it can be put to 

more general use. 



Chapter 3. 

EXPLICIT COMPUTATIONS OF xSB - GLUONS 

3.1 A SIMPLE STABILITY ANALYSIS 

In the previous section, I introduced the formalism of Cornwall, 

Jackiw and Tomboulis Cl51 and described a simple approximation to this 

formalism in which we can compute whether xSB is induced by one-gluon 

exchange. In this lecture, I would like to analyze that approximation 

in some detail, to try to obtain a more concrete picture of the 

mechanism of xSB. 

Recall that we had found the following condition for the value 

fermion propagator in the absence of external sources: 

. 6 
- rcsi = 0 
6S 

where 

(3.1) 

r= -Tr log S” + Tr(S”-31)S - (2PI diagrams) . (3.2) 

In this lecture, I will make the truncation: 

(2PI diagrams) = (fig. 5a) . (3.3) 

Let us attempt to stationarize the truncated r and find the propagator 

which solves (3.1). As a first step, I will work within the following, 

very much simplified, framework: First, although renormalization 

effects in non-Abelian gauge theories cause the coupling constant to be 

a function of momentum scale, I will ignore this effect and consider g 

to be fixed and scale-invariant. Secondly, since I expect that, for g2 

- 17 - 
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sufficiently small, the vacuum is chirally symmetric, I will restrict my 
- 

attention to studying the stability of the symmetric vacuum; Finally, I 

will use the Feynmann rules of QED, with one fermion flavor. Let me, 

then, insert into r the trial form 

1 
s q 

-ipl + E(p) (3.4) 

expand r into quadratic order in E, and look for unstable modes. A 

similar computation was done by Banks and Raby in [17]. 

Using the trial form (3.4) 

dCp 
Tr log S-j = - log det(-i#+t(p2)) 

J (2n)’ 

s 

d’p 
= 

(2s)’ 

= (const) s d’p 12 (p) 
+ -2 - + O(P) 

(2lT1’ P2 

Tr(S-l-2IJS = 
f d’p 

J 05 ,,[, (-ijl+E,1 = 1 s pz4:‘I. 

s d’p E=(p) 
-44 + O(P) 
(2Tr)’ P2 

so that 

(3.51 

(3.6) 

r = 12 [z + -es] - (diagrams) . 
(3.7) 

Note that these essentially kinematical terms stabilize the chirally 

symmetric state I: = 0; the interactions must counteract this effect. To 

see how, we must expand fig. 5a in powers of 1; this expansion is 

sketched in fig. 6, in which the double lines represent full propagators 
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and the heavy dots insertions of E. The first term on the right-hand 
--~- 

side is independent of E. The second term vanishes_jf we work in Landau 

gauge (&Au=OI; let us make that choice from here on. This leaves the 

third diagram, whose value is: 

(k-p)u(k-pIv 
gw - 

1 

s 

d’k d”p I (k-PI2 1 
- -(ig)2 ~ - 

2 (2Tf)’ (2n)’ (k-PI2 

g2 d’k d’p 1 

s 

E(p) E(k) 
=- -- ---. 12 

2 (271)’ (2~‘) (k-PI2 p2 k2 

= 2 Idk k E(k) jidp p E:(p) /idO sin20 ~k2 + P2 -12kp cos83 . 

(3.8) 

To evaluate this, we need 

1 11 1 
de sin26 =--. 

(k2 + p2 - 2kp cos0) 2 kp (3.9) 

then 

3g2 
(fig. 6) = (const) + - 

32~~ 

The full term in r quadratic in t is therefore: 

1 co 
r2 =- 

s 
dp p E2(p) - z kk E:(k) bp E:(p) expC-llog k/pi] . 

4s2 0 
(3.11) 

j)k E(k) [ dp t(p) expC-llog k/p11 . 

(3.10) 

To diagonalize this quadratic form, we may exploit the scale- 

invariance of our restricted problem. To do this, set 

P = PO expt?)) , k = PO exp(C) , X(-p) = l/p u(7)) -. (3.12) 
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In (3.121, pe is a fixed reference momentum. With this change of 
--. 

variables (3.11) becomes _ - 

(3.131 

If we Fourier transform in the variables Y)), S: 

(3.14) 

then r2 takes the form: 

1 r2 =- J dq 
- o(q)cr(-q) 

4n2 3a b - [Z] l +‘,,1 - (3.15) 

In this truncation of the effective action, the chirally symmetric 

vacuum is unstable for 

(3.16) 

Apparently, the gauge coupling must become quite strong to induce chiral 

symmetry breaking. 

How does this computation change if we consider a non-Abelian gauge 

theory? For the moment, think only about theories of Dirac fermions. I 

will, for definiteness, consider a theory with n flavors of Dirac 

fermions belonging to some representation r of the gauge group. Let us 

denote the dimensionality of r by d r and the representation matrices of 

the gauge generators by tar. The quadratic Casimir operator, the 

analogue of the rotational invariant L2 for a general Lie group, is 

defined by 

1 tartar = Ct(r1.l 
a (3.17) 
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where 1 denotes the unit matrix. - For future use, I will make a few more 
--~- 

definitions: Oenote by G  the representation in which generators of the 

gauge group lie (the adjoint representation); then ds is the number of 

generators. Define C(r) by 

Tr ta,tbp = GabC(rl i C(r) = d,/ds C2(r1 . (3.18) 

For the group SU(N1, ds = N2-1, Ct(G) = N, and, for the fundamental 

representation N (or N), 

N21 1 
C2(N) =- 8 C(N) = - 

2N 2 (3.19) 

The computation we have just done is readily generalized to this 

context. The kinematical terms given by (3.5) and (3.6) must be 

multiplied by the total number of Dirac fermions (n.d,). Since the 

is mu1 tiplied by 

n Tr tartar =n dr Ct(r1 . (3.20) 

gauge boson vertex now contains a factor of tap, the contribution (3.10) 

Then the criterion for an instability becomes: 

g2C2(r) TT 
>- . 

4u 3 

For quarks, in the 3 of SU(3) 

g2 - 
4n 

A 
>- . 

4 

For the 

it shou 

N of SU(N), as N + CO, (3.20) involves the comb 

d. 

(3.22) 

ination (g2N), as 

(3.211 
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3.2 EFFECTS OF COUPLING CONSTANT RENORMALIZATION 
-- - 

The analysis we have just done ignores all- effects of-coupling 

constant renormalization. In a non-Abelian gauge theory, however, the 

coupling constant renormalization is an essential element of the theory, 

since it insures that phenomena which happen only in the regime of 

strong coupling do indeed occur at some scale. To think about this 

1 limit in which it is easy to study. 

ion in non-Abelian gauge theories is 

effect, we will consider a specia 

Coupling constant renormalizat 

given by the equation C9I 

d g3 
g(P) = R(g) ; R(g) = -b. -+ . . . . 

d log P (4ll12 (3.231 

Using this approximation for B(g), 

go2 
g2(p1 = 

go2 
1 + b. - log(p2/po2) 

(4ll)Z 1 (3.241 

where go = g(pe). If b. > 0, g2 increases slowly as p2 decreases. In 

non-Abelian gauge theories of the type we were considering 

bo -= 
4 

- - n C(r) 
3 I (3.25) 

where the various group theory factors were defined at the end of 

section 3.1. 

Let us study xSB in the following limit: C2(r) + co, so that chiral 

symmetry breaking takes place when g2 is small, but n + 0 at the same 

time so that ba remains fixed. In this limit xSB takes place at a scale 

where g2 is evolving slowly. (I was moved to consider the limit by the 

Monte Carlo calculations of Kogut et. al.C201, who work in this limit.) 



- 
23 

To consider this situation, we should insert a slow evolution of the 

coupling constant into our equation for E. F-or this. analysis, it will 

be easiest to start from eq. (2.311 obtained by variation of the 

effective action. To analyze this equation properly, we should insert 

the most general structure: 

1 
s= 

EZ(p2)*(-ij4) + E:(p2)l 

but I will ignore Z(p2) in the analysis to fo 

acceptable approximation for the results I wi 

because (in Landau gauge) Z(p2) + 1 when p >> 

Let us identify the mass-like terms (terms 

1 actua 

T 

1 

(3.26) 

hat is an 

ly discuss, 

I.1 

without 7 matr 

left- and right-hand sides of (2.311, and integrate out angu 

variables. This yields the equation: 

3g2C2(r) fm dk r k2 

ces) on the 

ar 

1 
pE(p) = 

J 
- kE(k) expC-llog p/k11 = 

8s2 Ok I k2 + z2(k1 I (3.271 

Except for the last factor, this is just the integral equation 

associated with the approximation (3.11) for r. We may introduce 

coupling constant renormalization into (3.27) by considering g2 to be a 

function of momenta, to be evaluated at the largest of (p,k,t). 

By examining eq. (3.271, we can make some statements about the 

limiting behavior of E.(p). 

1. As p + 0, E(p) + E(O), a constant, where 

2. As p + 00) E(p) a l/p2 if the integral 

r ; [k2 +“:,,,,1 k2t(k) . g2(k) 

(3.281 

(3.291 



varying. I wil 

logarithmic sea 

tells us that o 

Let us now study eq. (3.271 in the case of a slowly evolving coupling 

constant. At scales p where g2(p) just satisfies the condition (3.21) 

for an instability to XSB, u(k) = kE(k1 will appear dominantly in modes 

near q = 0 (in terms of q in (3.1411, so (kt(k)l will also be slowly 

1 assume, and check a Posteriori, that u(k) varies on a 

le but does not vary as slowly as g2(k1. But eq. (3.27) 

(k) can vary slowly only if k >> t, so the analysis to 

follow will apply only in this regime. 

Introduce logarithmic momentum variables as indicated in eq. (3.121, 

and take po to be defined as the momentum such that 

3C2(rI g2(p0) 
= 1 . 

4ll2 (3.31) 
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converges. For this to happen, (kt(k)), which was constant in our 

earlier treatment, must be persuaded to tend to zero.as k +-w. The fact 

that g2(k) + 0 will surely help this to occur. (More properly, the form 

for E: which asymptotically satisfies (3.27) self-consistently is 

(log kJa 3Ct(r) 
E(p) 0: 

k2 ’ 
a=- . 

bo (3.30) 

This result was derived carefully by Lane in E213.1 

Then (3.27) becomes: 

J co [ 3C2(r) g2(k or p) 
u(n) = dg exp(-Id-S11 

-co 8ir2 I 
u(F) 

(3.32) 

the exponential factor varies more rapidly than any other factor in the 

integrand; it is therefore appropriate to expand u(t) about V(V)). I 

ignore the corresponding variation of g2. In this approximation: 
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u(7)) = 
I 

2 

dC exp(-Iv&I) 
K:l “i 2 _ - 

‘[U(7)) + (C-7)lu’(7’1 + 1/2(&-3)2rJ”(7)) + . ..] 

If u(7)) varies slowly, we can ignore the terms not written explicitly. 

Equations (3.24) and (3.31) imply that 

3C2 (r) [ 1 1 
g2 (p=poe*) = 

4lr2 

[l + [LnC~~rl)‘] * (3.34) 

Recall that, in our approximation, be << Cz(r). Inserting (3.341 into 

(3.33) we find the equation: 

d2 
- - u(7)) + 

[6irCI:r) I 
‘3 u(n) = 0 . 

d-n2 (3.35) 

This is just the Schrddinger equation with a shallow linear potential. 

u = pE(p) is the wave function: 

u(v) = Ai [ [6mc~~r,)“3v] 
(3.36) 

where Ai- is the Airy function. If bo << Ct(rl, this function is 

indeed more rapidly varying than g2(p). Thus for p > E(p), 

X(p) = $ . Ai [[6~Cb~r]“310g(p,po)] 

D 1 
-- 

p + 1 p (log P/PO)” 
ew[- : [6mc~~rl]“2(log P~Po)~~~] t3:371 

where C and D are constants. This function should describe well the 

behavior of X(p) just above p = PO. For very large pI however, (3.37) 
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falls to zero faster than any power of p; then our approximation (3.33) 
-- - 

is no longer valid and the behavior of E(p) reverts..to that of (3.30). 

A qualitative picture of E(p) which assembles all the information we 

have obtained is given in fig. 7. 

3.3 MORE GENERAL FERMION REPRESENTATIONS 

Before finishing this discussion, I should indicate its 

generalization to situations allowing more complicated forms of the 

fermion condensate. It is not hard to treat the most general situation. 

Label the L-fermions as $ais where a = 1,2 is a spin index and i 

schematically indexes colors and flavors. We can imagine constructing 

the effective action r corresponding to the most general scalar source 

term 

SKij(y,x)C(Eas~ai(xl~~j(y~) + h-c.1 (3.38) 

For the case of Dirac fermions, we can write 9~2 = $+Rut, then 

EaB#L2a$LR + h.c. = %J+ (3.391 

but (3.38) allows more possible patterns of condensation. The only 

restriction on the form of Kij is that it must be symmetric under 

interchange of i and j, as the result of fermion anticommutation and the 

antisymmetry of eaa. The formalism we developed in section 2.2 goes 

through for the source term (3.38) with only the modification that we 

should use a more general class of propagators: 

k-‘JI + $i&‘i + l/2[tijeaR$ai$~i + h.c.1 . (3.401 

Like K, E must be symmetric in its indices. 

To obtain an idea of the physics of this situation, let us carry this 

system through the stability analysis of section 3.1. The discussion 

given there is easily generalized, leading to the result 
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r2 
3g2 1 . . 

a*ij(q)uij(q) + - (U*‘J(q)(ta)i,(ta)j,U~“(q)) 
4a2 (l+qV __ - - 1 

(3.41) 

where uij(q) is the Fourier transform of (kEij(k)). The routing of 

indices in the second term corresponds to the structure of fig. 8. To 

complete the diagonization of r 2, we need to do a little more group 

theory. A pair of indices Ci,j> of 1 corresponds to a pair of L- 

fermions in the representations riarj of the gauge group. Let us 

decompose the product ri X rj into irreducible representations R. Then 

uij may be written: 

0ij = c U(R)k-ckij 
R (3.421 

where k indexes the representation R and Ckij is a Clebsch-Gordon 

coefficient. With this notation, we may compute: 

(tatal irumj = C2(ri)uij 

(tata)jnU in = C2(rj)uij 

II ip6jq + bip(t’) jqlC(t’)p&qn + Sp~(t')qnlU'" 

= (total ta)%ij = 1 c2(Rh(R)k-ckij . 
R (3.43) 

Then, the group theory factors in (3.41) reduce to: 

(tal*(tal = l/2 [C2(R) - Cr(ri) - Ct(rjIl . (3.44) 

The eigenvalues of the quadratic form are therefore proportional to 

392 1 
1 - -- [cp(ri) + C2(rj) - C2(R)] . 

4n2 (l+qZ) 1 (3.45) 

An instability will appear, for sufficiently strong coupling, for any 

representation R in ri x rj such that 

(Cz(ril + Ct(rjl - Ct(R)) > 0 . (3.46) 
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We can check this result against that found in section 3.1. The 
~- 

discussion there corresponds to the special case of_l-fermions in 

complex conjugate representations r and F condensing in a mode uhich 

corresponds to a singlet under the gauge group (R = 1, Cz(R) = 0). In 

this case, (3.46) properly reproduces (3.21). 

It is not hard to see that there is always a representation in 

ri X ri satisfying (3.46): The quantity appearing there is essentially 

the eigenvalue of (tal.(ta) in (3.44). But 

Tr(ta).(ta) = (ta)ii(ta)jj = 0 (3.47) 

so this matrix must have a negative eigenvalue. (Occasionally, though, 

the negative eigenvector is forbidden from appearing in Eij by the 

symmetry of this object.) Usually, there are several possibilities. In 

such a case, the analysis of section 3.2 can be used to suggest which 

mode of condensation is preferred. The critical coupling is inversely 

proportional to the f actor in (3.461. Choosing the minimal value of 

Cz(R) maximizes this factor and thus minimizes the critical coupling. 

The analysis of sect i on 3.2 suggests that, in an asymptotically free 

gauge theory, this c :h loice maximizes the value of the momentum scale pe 

at which-the fermion condensate appears and, thus, maximizes the energy 

of stabilization of the condensate. Our analysis suggests, then, that 

the condensate which will appear is the one which maximizes (3.46). 

Equivalently, the condensate appears in the channel which is most 

attractive with respect to I-gluon exchange. This Maximally Attractive 

Channel (MAC) criterion was first formulated some time ago by Cornwall 

C181; it has recently been revived and popularized by Raby, Dimopoulos, 

and Susskind 1221. 
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For the case of Dirac fermions, the MAC criterion implies that the 

preferred condensate will be a color singlet,- as we-had assumed 

implicitly in section 3.1, and as would be required to produce the 

pattern of chiral symmetry breaking in QCD described at the end of 

section 2.1. More complex systems of fermions, however, may condense 

into nonsinglet representations. I will show some examples of this in 

section 5. I should, however, make one comment on the applicability of 

our formalism to this situation. I had commented at the end of section 

2.2 that if I: breaks the gauge symmetry, it will induce gauge boson 

masses f’l’ab; one must solve self-consistently for 1 and Mr. This change 

in the formalism, however, does not at all affect the conclusions of the 

stability analysis we have performed in this section: Any term in r 

which contains a factor 1 also contains a factor E*. Hence, the most 

general form possible for T2 is: 

I-2 q I*-(G)-I: + M2.(H1.M2 (3.48) 

where G  and H are operators. In this section, we found the 

circumstances under which G  has a negative eigenvalue. Even though H is 

positive definite, the presence of a negative eigenvalue in G  signals an 

instabil-ity in the coupled fermion-gauge boson system. 

I should finish this section by noting a possible application of the 

dependence of the scale of chiral symmetry breaking on the group- 

theoretic factor (3.46). By considering models involving fermions in 

several representations, one can easily imagine scenarios in which some 

fermions condense and gain mass at a scale Al, but others are left 

massless there and gain mass only at a lower scale ht. If our criterion 

that condensation takes place when 92 is small and evolving slowly at 
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this value, it is possible that A2 << Al, so that the theory has a 
.- 

hierarchy of scales. Raby, Dimopoulos and Susskind~..C221- and 

Marciano C233 have offered this mechanism to explain why quark mass 

differences are so large, or why the W  boson mass is so much larger than 

the proton mass. Unfortunately, our estimate (3.21) corresponds to a 

large critical coupling except in the artificial limit used in 

section 3.2. Proponents of this idea must, then, hope that higher-order 

corrections reduce that estimate substantially. There is some numerical 

evidence that this may be the case E201. 



Chapter 4. 

EXPLICIT CALCULATIONS OF xSB - INSTANTONS 

4.1 A PEDESTRIAN INTRODUCTION TO INSTANTONOLOGY 

In section 2.1, I remarked that (when we have written all fermions as 

L-fermions) the symmetry of overall U(1) phase rotation: J, + eiaJI, whose 

corresponding current is that of overall fermion number: 

Ju = 1 $LiYWLi 
i (4.1) 

is destroyed by quantum effects. I should now explain that remark more 

carefully. That explanation will lead us to another mechanism of xSB. 

My discussion of this effect will be brief and concentrate on 

essentials; I will give references to more complete reviews of this 

subject. 

Let me first observe the effect of the diagrams involving Jp shown in 

fig. 9. These diagrams may appear as subdiagrams in any vertex function 

involving Jn. The diagrams of fig. 9 are superficially linearly 

divergent; the divergent part is actually Jd”k/k’+*ku = Cl, but short 

distance effects can influence the residual finite part. Specifically, 

a kinematically allowed term proportional to 

eul’ho(k-p)a (4.2) 

in terms of the notation of fig. 10, appears when one computes these 

diagrams. This term does not respect b&Jh = 0. It may be seen to 

survive the cleverest of (gauge-invariant) regularization procedures 

ClO,lll; one always finds: 

- 31 - 
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(4.3) 

where the trace is over all representations, flavors, and colors. 

Equation (4.3) is known as the Adler-Bell-Jackiu axial vector anomaly. 

The result is actually correct to all orders in perturbation theory 

C241. (A detailed review of the derivation and consequences of (4.3) 

may be found in t251.1 For our purposes, it will be useful to recast 

eq. ,(4.3) in the following way. Let us write 

FF = 112 EpvasFauvFaao (4.41 

Then (4.31 takes the form: 

g2 
blLJW = - (Fr) 1 nr*2C(r) 

32v2 r (4.51 

where n, is the number of L-fermions in the representation r of the 

gauge group* and C(r) is the invariant defined in (3.18). 

The anomaly equation tells us that &Ju s 0. Examined formally, this 

breaking of the conservation of Jp seems not especially efficacious: 

Since one can write (4.4) as 

FP q &C2e~“as{ AaybaAae + g/3 f abcAayAbaAcc)l (4.6) 

(The faKc are the structure constants of the gauge group? which appear 

in F for non-Abelian groups), this operator is just a surface term. 

However, this surface term nevertheless has a strong influence on 

physics throughout space-time, due to a series of miracles. These 

miracles were discovered by Belavin, Polyakov, Schwartz, and Tyupkin 

1261 and ‘t Hooft t271; their effects are reviewed in detail in lectures 

of Coleman C281. 
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If FCLY(x) is to vanish as 1x1 + 00~ Au must tend to a gauge transform 

of A, = 0. Thus, as 1x1 + 00~ _ - 

Aal,,(x)ta + i/g U(x)&Ut(x) (4.71 

where U(x) is an element of the gauge group. The function U(x) is a 

mapping of the (three-dimensional) sphere at 1x1 = Q) into the gauge 

group. For any simple Lie group, such mappings fall into homotopy 

cl asses, characterized by an integer (called the Pontryagin index). One 

can show that 

s 

g2 
n = d’x - Fr . 

32n2 (4.8) 

In the class of fields with n = 1 or -1, one can readily find a 

localized solution of the classical equation of motion in Euclidean 

space 9 an instanton. To solve these equations, we must minimize the 

classical action S, subject to (4.81. To do this, note that 

D < s<F-F12 = J-(F2+r2-2FP) = 2[sF2 - IF’il . (4.91 

Thus, S satisfies 

s 

1 80~ 
s = - F2 2 - - n 

4 g2 (4.101 

and thebound is saturated for configurations where F = $. Belavin et. 

al ., solved the equation F = ri for the case n = 1; they found a solution 

Aall for the gauge group SU(21 which gives 

47) awLvP 2 

gFaUy(x) = 
(x-x012 + p2 (4.111 

where 7)apv is a numerical tensor. Since classical Yang-Hills theory is 

translation- and scale-invariant, the solution has an arbitrary center 

xo and size p. This field configuration may be considered an n = 1 
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solution to F = ‘i for an arbitrary gauge group by considering SU(21 as a 
~- 

subgroup of that group; this construction gives the-.most- general n = 1 

solution for any group. (I should note that the general solution to F = 

P has since been found for any n C291.1 Despite the fact that the 

solution (4.11) appears in (4.5) only as a surface term, its influence 

on physics is clearly localized to a region about the point x0. In a 

configuration with Pontryagin index nr 

I 
. 

(4.121 

In a space-time containing such a gauge field configuration, fermions 

must disappear. It is worth exploring in detail how this occurs. 

One can show that the Dirac equation for massless fermions in the 

representation r in the instanton field has 2C(r) zero eigenvalues. 

This corresponds to one zero eigenvalue for each chiral fermion in the 

representation r = N of SU(N). If the gauge group is SU(21, we can 

write the associated eigenmode (which I will call a zero mode) in the 

following way: 

1 
~oa_*(xl = Eat . 

(x2+p2)3’2 (4.13) 

In (4.131, a = 1,2 is the gauge index, D = 1,2 is the spinor index, and 

E is the invariant contraction. Equation (4.13) satisfies 

0 = pIL90 = C(bo-iAo-t) - Z+t%iX-t>l$c (4.14) 

In Euclidean space DL is not (anti)-Hermitian, so the equation 

CdLl+* = 0 need have no such zero mode. Indeed, it does not. 3, but 

not $, has a zero mode in the anti-instanton field. 
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To see the consequences of these zero modes, expand 3, and 3 in 
e-.- 

eigenstates of pl. In the instanton field - - 

$(x1 = ~O$O(Xl + 1 &i$i(Xl g(X) = 1 +iCXl&ii . 
i i (4.15) 

The eigenfunctions Jli(X1, $i(Xl are c-number functions. Since $(x1, 

q(x) are Grassman (anticommuting) fields, the parameters e, e must be 

Grassman variables. We can represent 

SW q Sdto JIM&i SINEi (4.16) 

The rule for integrating over Grassman parameters if the following E303: 

The most general function of 6 is f(t) = (a+bt), since t2 = 0. Its 

integral is 

Jdg f(r) = b 

This allows us to evaluate 

(4.17) 

J+j expC-J%h3r = Jr,g eXpC-CXiii&Til 
i 

= Jei$ n Cl-XifiC) 
i (4.18) 

If there were no zero modes, this would become: 

(4.18) = 1 Ai = det(IiL) 
i (4.19) 

the standard result of an integral over fermions. In the instanton 

field, however, there is an extra factor: 

Jd.$o-(independent of ~0) = 0 

so (4.18) = 0. However, 

.Jqq expC-JBL*l *(XI = JCjj -PC-1 XiEitil (fo*o+C ti*i) 
i i 

= Det’(DL) .+0(x) 

(4.201 

(4.21) 

where Det’(M) is the product of nonzero eigenvalues of M. 
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Apparently, the instanton creates an extra L-fermion. If the theory 

contains one N and one R of L-fermions (one Dirac fermion),--the 

instanton creates one N and one fi. ‘t Hooft showed that, at distances 

much larger than the size p of the instanton, the instanton has the same 

effect as the operator: 

E+ CaR *+a(N)(Xol *+*(~j(Xol = E* +L*R(Xol (4.22) 

The anti-instanton’s influence is that of Ebb&. Thus, the 

instantons effectively generate a mass term and completely destroy the 

chiral symmetry of this model. Quite generally, the mechanism I have 

just displayed destroys the overall U(1) chiral symmetry and the 

conservation of the total number of L-fermions. It may be seen to 

preserve all other chiral symmetries, since these have no Adler-flell- 

Jackiw anomalies. 

The interplay between instantons and massless fermions, however, 

suggests that instantons can provide a mechanism for the spontaneous 

breaking of other chiral symmetries. I will explain this mechanism by 

showing how instantons can produce mass spontaneously in an SU(NI gauge 

theory of n-(N+fiI L-fermions. MY calculation will be very crude, just 

enough t% see the essential physics. For a more complete analysis 

(including the numberical factors), the reader should consult the 

original papers C31,32,331. 
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4.2 AN INSTABILITY TO xSB 
--~- 

I wish to argue that the chirally asymmetric vacuum state is 

stabilized by the presence of instantons. To do this, let me modify the 

formula (2.29) of Cornwall, Jackiu and Tomboulis by replacing the term 

(diagrams) by (instantons). More properly, I wish to include the 

effects of instantons on the evaluation of ZCKI in the derivation of 

(2.291. The integral over A may be separated into contributions from 

each topological sector n. The n = 1 fields may be expanded about the 

minimum action configurations in this sector, the instantons. Analyzing 

ZCKI in this way, we have: 

Z[Kl = c expC-JKZI Z,,(Z) 
n 

= exp[-.JKEl Ze(Z). 1 + 1 An(Z) 
1 

. 
n6O I (4.23) 

In (4.231, Zo(E:) is the value given by perturbation theory. We will 

call Al(E) the I-instanton amplitude; A-l(Z) = (Al(T))*. A standard 

approximation to (4.23) is the dilute gas approximation [323: 

1 + 1 A,,(X) 
3 

=: expl(A,(Z) + A-,(t))1 . 
nt9 (4.24) 

In this approximation 

l-(E) = (kinematic terms) - (A,(Z) + A-l(T)) (4.25) 

plus the effects of 2PI diagrams, which I will ignore for the remainder 

of this section. 

The value of the 1-instanton amplitude, to leading order in 

perturbation theory, is: 
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I . . . . 
A(n=O) 

dp A(g2) expC-8a2/g2(p)l { 
det o!f+E) 1 1 . 

i=l det(&E) (4.261 

The integral in the numerator should be expanded about the instanton 

field; D in the second line should evaluated in the instanton field. 

Because of the zero mode, the factor in parentheses vanishes when E = 0. 

We can get an idea of the shape of this term by evaluating it for E = m, 

a constant. Extracting from the ratio of determinants a factor which 

depends on the scale f.~ of coupling-constant renormalization, we have 

. 
(4.27) 

I(m) has the limiting behavior: 

I(m) + B-m (m + 0) 

+ expC2/3 C(r) log m2p21 Cm + 00) (4.28) 

B is a numerical constant computed by ‘t Hooft C341 and others 1351. 

The behavior as m + Q) may be understood by remembering that a heavy 

fermion decouples at scales lower than m, so that the coupling constant 

renormalization contains only the factor log(p2/m2) and is independent 

of p. The general form of I(m) is indicated in fig. 11. I (ml, and the 

whole amplitude A,(t), is real and positive in this approximation. 

Now that we understand the form of Al(E), we can construct the 

effective action I’ in the approximation (4.25). For simplicity, let us 

further approximate the determinant for instantons of size p: 
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det B+E I. 1 = I(E(p = l/pI).exp - - C(~rI log (p2~21 
det 2(+X p [ 

2 
. 

3 -_ I - (4.291 

Then the interaction terms in (4.25) are negative and depend on t(p) as 

(E(p))” when E:(p) is small. If n > 2, the origin of the configuration 

space is always stable. However, as p becomes large (or p becomes 

small), g2(p) increases and so the coefficient of (E(p))” becomes large. 

Eventually, the effective action, as a function of E(p), acquires the 

form shown in fig. 12. The strong growth of A,(t) generates an 

instability toward XSB. 

conservation 0’ 

depend only on 

number of ferm 

Two central elements of this argument are more easily understood in a 

more general context. Let me now review them briefly, using the 

notation of L-fermions in which the fermion action takes the form 

I[ 

1 
;jlpILJI + - (Ea*$a$aT + h.c.1 

2 1 (4.301 

E multiplies a term which destroys two L-fermions; thus, if the 

F Ju in (4.1) were respected by quantum effects, r would 

the combination (ESE). The instanton, however, creates a 

ions equal to the number of zero modes. These fermions 

can be d>stroyed only by the mass term; hence the instanton amplitude 

must take the form: 

Al (t) = (Elk f(P+EI (4.311 

where k is half the number of zero modes 

2k =c n,+2C(r) 
r (4.32) 

Equation (4.311 has two consequences: First, the vanishing of Al(E) at 

I= 0 is a general feature of models of massless fermions, and the power 

law with which Al(E) vanishes is given simply by (4.321. Second, the 
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phase of Al(E) may be adjusted by adjusting the phase of E. Thus it was 

actually irrelevant that (4.26) was real and positive; Al(E-3 can aluays 

be made real and positive (making I’(T) maximally negative) by varying 

the phase of 1. 

These considerations make clear that the instanton mechanism of xSB 

applies to a wide class of gauge models, including chiral gauge 

theories. The generalization to chiral models is, however, a bit 

complex. We will discuss it in stages in the next section. 



Chapter 5. 

XSB IN CHIRAL GAUGE THEORIES 

5.1 PATTERNS OF xSB - GENERAL OBSERVATIONS 

We have spent the last two sections investigating mechanisms of xSB. 

Though we have not found approximation schemes which allow quantitative 

calculation, we have found qualitative physical pictures of xSB which 

seem very appealing. One might wish to re-examine the calculations I 

have done and attempt to improve their accuracyI but I will not pursue 

that problem here. Instead I will move to a deeper level of analysis 

and apply the method of the previous sections to examine a more 

detailed, yet still qualitative, question. That question is the 

following: Of all patterns of xSB available to a given gauge theory 

model, which is actually chosen by the dynamics? I will first briefly 

recapitulate what we have learned about this question in models with 

massless Dirac fermions. Then I will examine some examples of chiral 

gauge theories, theories in which the L-fermions belong to a complex 

representation of the gauge group and so cannot be grouped into Dirac 

fermions. In such theories, our simple methods of analysis uill yield 

patterns of mass generation rather more intricate than those of the 

cases we have examined so far. This discussion will furnish us uith 

some phenomena which are curious in their own right and also relevant to 

the discussion from more general principles which I will present in 

section 6. 

- 41 - 
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Let me first say a few words about the pattern of chiral symmetry 
--.- 

breaking in theories with n Dirac fermions belonging to a complex 

representation r of the gauge group. We would urite the content of this 

theory as n (r+?) L-fermions; these fermions are described by fields 

Jl( t-jai *( i-jai (5.1) 

where a = 1,2 is the spinor index and i = 1, . . . . n. As we discussed in 

the first lecture, this theory has the anomaly-free chiral symmetries: 

G = U(1) x SU(n) X SU(n) . (5.2) 

According to the arguments of the last two lectures, this theory has 

spontaneous breaking of symmetry corresponding to the acquisition of a 

mass term 

miJ, = m(eas *( r)a ’ \l(p)Bi + h-c.1 (5.3) 

This term respects the full group of gauge symmetries. Further, if all 

fermions acquire equal mass* this term is invariant to the subgroup 

H = U(1) X SU(n) of G: 

*tr)a’ + U’j *‘(t-l1 i *( F)Bi + 9( F,,j(U”lji (5.4) 

This pattern of symmetry breaking is at least one of the ones preferred 

by the analyses of sections 3 and 4. It corresponds to the earliest 

instability with respect to one gluon-exchange; it also may be seen to 

give the largest coefficient of the one-instanton amplitude. This is 

also the pattern of symmetry breaking observed in the strong 

interactions: 

[color SU(311 X U(1) X SU(21 X SU(2) + [color SU(311 X U(1) X SU(2) 
(5.5) 

so it is sensible also from the viewpoint of phenomenology. Note that 

this pattern corresponds to the maximal global symmetry uhich allous all 

fermions to acquire mass. I will guess that this principle - that 
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fermions retain the maximum global symmetry consistent with dynamical 

mass generation - is one of general significance. Eventually, I will 

use it as a guide. 

On the other hand, the pattern of XSB in chiral gauge theories cannot 

be so simple as the one we have just discussed. To see this, one need 

only note that chiral gauge theories are precisely those in uhich 

fermion mass generation cannot occur without also breaking the gauge 

symmetry: A fermion mass term is generally of the form 

EaPqaAJIBBEAB + h-c. (5.6) 

If the fermions belong to the (reducible) representation R of the gauge 

group; this object is in the representation R X R. If R pt R (the 

feature which defines chiral models), some fermion will be forbidden by 

global gauge invariance from acquiring mass. In models of this type, 

xSB necessarily also induces spontaneous breaking of the gauge symmetry; 

we must, then, work out interlocking patterns of chiral and gauge 

breaking. These patterns are most easily understood by consideration of 

specific examples, to which we will turn in a moment. 

5.2 ANOMALY CONSTRAINTS ON CHIRAL REPRESENTATIONS 

Before beginning a discussion of xSB, however, I should point out 

that there is a strong restriction on the consistency of chiral gauge 

theories. This restriction, due to Gross and Jackiw 1363, is another 

consequence of the Adler-Bell-Jackiu anomaly discussed in section 4.1. 

Let us slightly generalize the argument given there by computing the 

graphs of fig. 9 using for external current one of the gauge currents 

JC Ir = 3iY't'Jli. This calculation could, potentially, yield a term uith 
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the structure of the anomaly; such a term would destroy the conservation 

of J=, and ruin the Hard identities of the gauge theory.- Gte must insist 

that the coefficient of the structure (4.2) should vanish. But this 

coefficient contains only factors of II and g2, and the group theoretic 

factor 

Tr({ ta,tb)tc) (5.7) 

which replaces the factor Tr(tatb) of eq. (4.3). A chiral gauge theory 

is, then, only consistent if it satisfies the group-theoretic 

constraint: 

1 nr Tr(( tarrtbr)tCp) q 0 
r (5.81 

where nr is the number of L-fermions in the representation r of the 

gauge group. 

It is worth spending some effort to simplify the condition (5.81 

c371. The trace indicated in (5.8) is a totally symmetric group- 

invariant tensor with three indices in the adjoint representation; it 

may therefore be written in terms of a standard set of such invariant 

tensors. The W(N) groups (N > 2) have only one such invariant, the 

symbol dabc which appears in the formuia for representation matrices of 

the fundamental representation: 

(ta,tb) = 1 Gab.1 + 2dabctc 
N (5.9) 

Thus, for any representation rr 

Tr(( tar,tbr)tcr) = A(r)d (5.101 

where Act-1 is an overall constant, called the anomaly coefficient. 

Equation (5.9) implies that for r = N of SU(N);A(N) = 1; this is 

essentially a normalization convention. From the relation taF = 

-(tarIT, one can readily determine that 
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A(f) = -A(r) (5.11) 

Thus, pairs of L-fermions in complex conjugate representations give 

cancelling contributions to (5.8); we may say that a Dirac fermion gives 

zero anomal y . The condition (5.8) is a stringent one only in theories 

where the fermions are intrinsically chiral.* 

For future reference, I will quote the anomaly coefficients for two- 

index tensor representations of M(N). In general, the n-index totally 

antisymmetric and totally symmetric tensors form irreducible 

representations of SU(N); I will henceforth denote their representations 

as Cnl and (n), respectively. Cl1 = (1) = N of SlJ(N). Using this 

notation, 

A(c21, = (N-4) , A[( 2)1 = (N+4) . (5.12) 

(The anomaly coefficient for a general representation of SUCN) may be 

found in 1391.) Notice that theories with one C21 and (N-4) 

R representations are anomaly-free and thus consistent (barring further 

unknown difficulties). For an SU(5) gauge group* this corresponds to 

one L-fermion in each of the representations 

10+5 , ) (5.13) 

the content of the Georgi-Glashow grand unified theory C401. This class 

of theories will provide us a useful set of examples for analysis. 

*An additional restriction, which applies to SlJ(2) and Sp(Pn) gauge 
theories, has recently been discovered by Witten C381. 



- 46 

5.3 7SB IN THE GEORGI-GLASHOW MODEL 
-_- 

Let us consider first the Georgi-Glashow SU(5) mmodel,-whose fermion 

content is given by (5.13). Let us investigate what our simple gluon 

and instanton mechanisms predict for the pattern of symmetry breaking in 

this model for strong gauge coupling. To begin, we should catalog the 

possible mass terms which could be included: Denote the two fermion 

fields as: 

5: *aa 10: *aab (5.14) 

where a,b = 1,...,5. Then the possible fermion bilinears are 

E’“d’aa$Bbx ab 

EaR*qa+* bcEabc 

EaB’#aa%‘gCdEabcd (5.15) 

Since Eab must be symmetric in its indices, the first term of (5.15) 

involves a fermion bilinear in the (2) = fi representation of SU(5). 

The second term contains a bilinear in the reducible representation 

5 x 10 = 5 + 45 (5.16) 

The third term contains a bilinear in the representation 

(10 x lo),,,, = 5 + 50 (5.17) 

(Note that 5 = C41.1 Fermion pairs may thus condense in any of five 

distinct channels. We must determine which channels are favored by the 

dynamics. 

Let us first apply our simple instanton model; we must compute Al(E) 

at least we11 enough to examine its behavior for small E: and see which 

of the possible forms of E: leads to an instability. 

We can construct Al(t) for small E by following the prescription 

given at the end of section 4.2. We should first count zero modes to 
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identify the instanton amplitude in powers of 1, using sufficiently many 

E$J, terms to destroy all of these extra fermions. ~._ - - 

To count zero modes, recall that the instanton lives in an SU(2) 

subgroup of SU(5). We may choose coordinates so that this SU(2) group 

acts on only the first two components of a 5-vector.* The 5 of SU(51 

thus transforms under this SU(21 as a 2 and three singlets. Similarly, 

5 + 2 + 3.1 

10 + 3.2 + 4-l (5.18) 

(The second line is the antisymmetric product of two 5’s.) The 

instanton apparently produces one 5 and three 10 fermions; to absorb 

these fermions, we need one factor of the (5x10) mass term and one 

factor of the (10x10) mass term from eq. (5.15). Thus, for small 1, 

Al(E) has the form: 

A,(E) 0: E(5xlO)~E(lOxlO) (5.19) 

However, when we construct Al(E), we must sum over all instanton 

solutions. This sum includes an integral in the group SU(5). This 

implies that A must be SU(5)-invariant, that is, that it must depend 

only on SU(S)-singlet combinations of the 1’s. Equation (5.19) can be a 

singlet-only if we choose a specific mode of condensation from each of 

(5.16) and (5.17): 

Al(t) a t(5xlO + 5).E(lOXlO + 5) (5.201 

By the logic of section 4.2, there is an instability in the effective 

action which allows these two t terms to acquire nonzero values. This 

corresponds to inducing the mass terms 

*There are inequivalent embeddings of SU(2) in SU(5) for which this 
choice of coordinates is not possible. However, these embeddings 
produce solutions to F = r with n > 1 1411. 
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x2CaR$aa%‘BcdEabc& .- 
_ - . (5.211 

The first of these terms allows $ai and $‘,qi5 (i=1,...,4) to pair to a 

massive Dirac fermion; the second allows 9’cij (i,j=l,...,S) to become 

massive. Both terms break the gauge symmetry to SU(4); the massive 

fermions transform as a (4 + 4) and a 6, respectively, of SU(4). One 

fermion, Jlas, is still left massless. 

Now that we have found the pattern of symmetry-breaking induced by 

the instantons, we should ask what pattern of condensates the gluons 

favor. This analysis is much simpler, since we can apply the results of 

section 3.3. The result is precisely the same as that of the instanton 

analysis: Each of the condensations 

5x10 -, 5 10x10 + 5 (5.22) 

corresponds to the minimal Cz(ri) possible for that pair of fermions; 

each of these channels is maximally attractive C22,421. Even though the 

gluon and instanton mechanisms of xSB contain completely different 

physics, they lead to the same qualitative result. That is the first 

surprise in the physics of this model. But there will be one more. 

Now that we have identified the pattern of condensation in this 

model, we should try to identify any residual global symmetries. The 

original model had only one anomaly-free global symmetry, the U(1) 

rotation whose charge Q is given by: 

QJla = 3*$a QPb = (-l).qab (5.23) 

Note that instanton physics conserves this charge: The complement of 

fermions created by the instanton has total charge zero. (More 

formally, this Q satisfies 

0 = TrCQtatbl = bab 1 nr Q(r)C(r) 
r (5.24) 
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so that fig. 9, computed with this charge, vanishes.> 

The symmetry generated by Q is spontaneously broken by the mass 

generation we have discussed. However, this does not mean there is no 

residual unbroken global symmetry. Consider the U(1) charge 

Q= 115 (24 + Q(5)l (5.25) 

where Q(5) is the SU(5) generator 

Q(5) = 
. 

1 
1 

1 
1 

I --1 
(acting on 5) 

(5.26) 

which is also broken by the condensates (5.211. Let us compute the 

action of a on the components of the 5 and 10 fermions. For 

i,j = 1, . . . . 4, 

I (6-119i 
G*a = - [ 1 = 

5 (6+4)+s 

1 *$i -1 2.95 

o.qij 1 (-l).qi5 
Qqab = 

I 0 1 (5.27) 

The condensates (5.21) have total charge g = 0. The fermion $5, 

however,-has charge g = 2; since there are no q = -2 fermions, it may 

not acquire mass without further symmetry breaking. But this fermion is 

an SU(4) singlet; it has no strong gauge interactions at low momentum. 

Thus, despite all the tumult of the SU(5) strong interactions, this 

fermion remains absolutely massless. 
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5.4 ySi3 IN A MORE GENERAL CLASS OF MODELS 

Let us now extend the analysis of the previous section to the whole 

class of chiral gauge models based on antisymmetric tensor 

representations, the models with gauge group SU(N) and fermion content 

121 + (N-41-i (5.28) 

We will see that all of the major conclusions of section 4.3 generalize 

to this whole class of models. 

Let us first analyze the condensates from the gluon viewpoint. The 

maximally attractive channels are: 

121 X ii + N 

E21 x 121 + c43 (5.291 

The second of these condensates breaks the gauge group SU(N) to a 

subgroup in which C41 is an invariant; the largest such subgroup is 

SU(4). (N-4) orthogonal condensates of the first form will also break 

SU(N) to SU(41. 

If we represent the C21 and fi fermion fields by qab and qa,ir 

respectively (a,b = l,...,N; i = l,...,(N-411, we can write the fermion 

mass terms corresponding to the condensates (5.291 as follows: 

t,<anqaa t i*‘Ra( i+r ) 

~zCaR~aab’#~cd~abcds N . . . (5.30) 

Equation (5.30) gives mass to (N-4) fermions in the representation 

(4 + 4) and to one fermion in the 6 of the residual gauge group SU(4). 

Notice that, in (5.301, I have assumed that the (4 + 4) fermions acquire 

equal masses; this is an application of the principle mentioned in 

section 5.1, that the theory should retain the maximal global symmetry 

consistent with fermion mass generation. Despite the fact that this 

symmetry does not rest on a firmer basis, I will make use of it below. 
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We might now try to ascertain whether the instantons also favor the 
--.- 

pattern of condensates shown in (5.11. A first step is to -construct 

A,(E) for small 1. One can count zero modes in all of these examples by 

the procedure of (5.18): Each ii has one zero mode (for a total of 

(N-4)), and the C2l has (N-2) zero modes. It is clear that one can 

absorb the corresponding fermions using the mass terms in (5.30); the 

required terms yield the following form for Al(Z): 

A,(I) 0: tX([21 X ii -+ Nll(N-r) - (I([21 X [21 + [43))’ (5.31) 

Further, (5.31) contains an SU(N) invariant: Combining the factors on 

the right-hand side totally antisymmetrically yields an object in the 

INI of SU(N), which is equivalent to the singlet. The instantons 

therefore do induce the pattern of condensates (5.30). (I have not yet 

argued that they favor this pattern over others; I will sketch that 

argument a bit later.) 

What global symmetries do the condensates (5.301 leave unbroken? The 

original anomaly-free chiral symmetry of the theory is 

G = U(1) x SU(N-4). The SU(N-4) is the group of flavor transformations 

of the N’s; the U(l) symmetry is that generated by the following charge 

9: 

QJta, i = (N-2) *$‘a, i Qqab = -(N-4) -qab (5.32) 

which satisfies (5.24). Equation (5.30) spontaneously breaks all of 

these global symmetries. However, many symmetries within the gauge 

group SU(N) have also been spontaneously broken. As in the example of 

section 5.3, we can identify combinations of chiral and global gauge 

charges which generate symmetries undisturbed by (5.30). Let Qa( w) be a 

generator of the SU(N-4) subgroup of the gauge group which commutes with 
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the residual gauge symmetry SU(4); this is the group of unitary 

transformations which act on the components 5- through N of an N-vector. 

Let Qa be the corresponding generator of the flavor SU(N-41. Then 

-a Q = (Qa+Qa( N)) (5.33) 

is respected by both terms of (5.30). Similarly, let Q(w) be the broken 

SU(N) generator 

I N-4 
N-4 

N-4 
N-4 

Qr Nl = 

I -4 
. 

. 
-4 

and define the combination 

Q= l/N (2Q + Q(N)) 

(acting on NJ 

(5.34) 

(5.35) 

We can compute the ij charges of the various fermions as we did in eq. 

(5.27). For c,d = 1, . . . 4 and i,j = 1, . . . (N-4): 

1 C2(N-2) - (N-‘lIJ$c,i 
Glsla, i = - 

I 1 = 
N C2(N-2) + 4I’J’j,i 

I 

o*JI=d 1 (-1) .qc( i+r I 

&yb = 

I 
(-2).1)( i+Sl( j+5) 1 (5.36) 

The mass terms of (5.30) have zero total charge; thus, they are left 

invariant by the symmetry generated by a. We have now identified a 

complete U(1) X SUCN-4) group of residual global symmetries. In a 

certain sense, no chiral symmetry has been broken. 

Equation (5.36) makes clear that the fermions ‘#i,j and *‘i+‘)‘j+” 

have the right quantum numbers to pair up and acquire mass. Such masses 

are presumably induced by radiative corrections to this leading-order 
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analysis. However, qab is antisymmetric, SO the components of $i,i 
--.- 

symmetric under intercharge of i and j have no natural partners. These 

f ermions, all singlets under the residual group, remain massless. 

We may denote the complete pattern of symmetry-breaking by: 

[SUCN>] X U(1) x SU(4) + [SUt4>] x U(1) x SUCN-4) (5.37) 

The gauged symmetry is indicated in brackets. The fermions transform 

under the unbroken symmetries as 

[2] + (6, 0, 1) + (4, -1, N-4) + (1, -2, [2]> 

(N-4) X ii + (4, +l, N-4) + (1, +2, 1271 + (1, +2# (2)) 
(5.381 

The last multiplet, in the (2) of SUCN-41, is protected from acquiring 

mass by its nontrivial quantum numbers under the unbroken chiral 

symmetry. 

It is remarkable that the gluons and instantons give the same pattern 

of symmetry breaking, especially since, for the gluons, one must look 

channel by channel, while, for the instantons, one must look at the 

global pattern of xSB and induce masses for all fermions seen by a given 

instanton. I might shed a little light on the mystery by noting that 

both schemes require the pattern of symmetry breaking to respect the 

following properties: 

(1) The spontaneous breaking of the original gauge group G5 may stop 

at a subgroup HS only if all fermions transforming nontrivially 

under H5 can acquire mass. 

(2) The condensation of a pair of fermions in the representation N of 

of SU(N) may occur only in the channel N X N + [2], not in 

N X N + (2). 
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The gluon scheme implies (1) because, as we saw in section 3.3, as 

long as there are strong gauge forces coupling masslpss fermions, there 

is always an attractive channel to further xSB. The instanton scheme 

implies (1) because the instanton amplitude vanishes if even one fermion 

in the instanton field is massless. The gluon scheme implies (2) 

because (2) is not an attractive channel. The instanton scheme implies 

(2) because each N has only one zero mode, whereas a symmetric mass term 

destroys two fermions. These rules turn out to be quite restrictive; it 

is straightforward to enumerate all of the patterns of chiral symmetry 

breaking which satisfy them. In the model considered in this section, 

one can check that, among these patterns, the simple one I have selected 

leads to the largest coefficient of the I-instanton amplitude. 

Perhaps this coincidence of conclusions is evidence that the pattern 

of symmetry-breaking I have suggested for this class of models is the 

correct one. In any event, let me emphasize that the question we have 

addressed in this section - the qualitative issue of which pattern of 

chiral symmetry breaking a given gauge model chooses - is one for which 

we have no definitive solution. It is certainly a problem worthy of 

further -attention. 



Chapter 6. 

CAN STRONGLY-COUPLED GAUGE THEORIES LEAVE MASSLESS 
FERNIONS? 

6.1 THE ‘T HOOFT ANOMALY CONDITION 

A surprising aspect of the patterns of xSB I have described in the 

previous section is the appearance of massless fermions - fermions 

protected from acquiring mass by unbroken chiral symmetries. Mass1 ess 

bosons appear in a wide variety of physical systems, as a consequence of 

Goldstone’s theorem, but, in Nature, massless fermions seem rarely, if 

ever, to arise as a consequence of strong interactions. Nevertheless, 

one might be tempted to suggest for these gauge models an analogue of 

Goldstone’s theorem which I might state as follows: If spontaneously 

broken chiral symmetries imply the existence of massless (Goldstone) 

bosons, then unbroken chiral symmetries imply the existence of massless 

fermions. Remarkably enough, a more precise version of this statement 

is actually true. It was first realized, and proved, by ‘t Hooft [433.+ 

‘t Hooft’s theorem has had a wide-ranging importance in the study of 

chiral symmetry, first of all, since it gives a very strong constraint 

on the existence and pattern of xSB, and, secondly, since it is one of 

the few really solid results in this subject. I will, therefore, devote 

this section to a discussion of this theorem and its consequences. 

*Some aspects of ‘t Hooft’s argument were presented also in work of 
Ansel’m C441 and Zee 1451. 

- 55 - 
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Let me first present ‘t Hooft’s beautiful and very simple argument: 
-__. - 

Imagine that I have a theory with chiral symmetry group 6 which has 

strong-coupling dynamics (and perhaps confinement) at a momentum scale 

A. At momenta much greater than A, one can see the elementary fermions. 

At the scale A, these fermions form bound states, most of which have 

mass of order A but some of which might be massless. At momenta much 

less than A, the massive states are irrelevant (in the technical sense) 

to the dynamics, only the massless states contribute. I will assume 

that G is not at all spontaneously broken; however, the conclusions of 

this analysis will also apply to any unbroken subgroup of G if G is 

partially broken. 

Now imagine adding to the theory gauge bosons coupled, very weakly, 

to the currents of the chiral symmetry G. In general, the conservation 

of the gauge currents will be spoiled by anomalies, as I discussed in 

section 5.2. If this is soI invent some new fermions x which couple 

only to the new gauge bosons, and add them to the theory to cancel the 

anomalies. Now look at the therory at momenta well below A. At such 

momentum scales, the theory effectively contains only the G gauge 

bosons,-the fermions xI and the massless bound states of the strongly 

interacting fermions. But nothing has happened to spoil the local gauge 

invariance with respect to G. Hence, the massless bound states of the 

strongly interacting fermions must have just the right quantum numbers 

to cancel the G anomaly of the x fermions. This implies that the total 

G anomaly of these bound states must be equal to the total G anomaly of 

the original elementary fermions. If A(r) is the anomaly coefficient of 

the representation r, defined in (5.10) for any simple subgroup of 6: 



1 A(r) c A(t-B) 
original fermions = massless fermion bound 
representations r state representattons r8.. - - 

This relation is known as the ‘t Hooft anomaly condition. This 
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(6.11 

condition is displayed schematically in fig. 13. If the left-hand side 

of (6.1) is nonzero, either G must be spontaneously broken, or massless 

fermions must appear as a result of the strong interaction dynamics. 

To aid in understanding this result, let me sketch a more formal 

proof given by Frishman, Schwimmer, Banks, and Yankielowicz C461. 

Another argument, which fills in even more details (including a 

demonstration that bound states of higher spin cannot contribute to the 

right-hand side of ‘t Hooft’s equation1 has been given recently by 

Coleman and Grossman C471. Frishman et. al., analyze dispersively the 

vertex function of three G symmetry currents, shown in fig. 14. In 

describing their analysis, I will work directly in the limit k2 = p2 = 0 

(in terms of the kinematics of fig. 14) and in the limit of zero fermion 

masses, simply assuming that these limits are reached smoothly. I will 

also suppress the group indices a,b,c. 

In analyzing fig. 14, we may take two of the three currents to be 

conserved; the third is spoiled by the anomaly. Let the currents JVrJ>: 

be conserved; then this amplitude is symmetric under the interchange of 

(v,k) and (X,p). The most general structure for an (odd parity) 

amplitude with this symmetry is: 

rCrvX = A~(q2).E~,~c(k-p)a 

+ AZ(q21*(q~e~~o~kapo) 

+ Ac(q2)-(k~e~~cekapn - p~E~vaakapa) 

(6.21 
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The value of AI at q2 = 0 is determined by the anomaly. The Adler- 

Bardeen theorem C241 fixes this value to be: _ - 

Al (q2) = -!- 1 Act-1 
4n2 r (6.3) 

This term arises from short-distance dynamics and is therefore purely 

real. Current conservation at the vertex II (kVI’wVx = 0) implies 

-A, (q2) + - As(q2) = 0 
2 (6.41 

We may recast this equation, using a dispersion relation for As(q21r as q2 s disc A+(s) 
A,(q2) = - ds 

2a s-q 2 (6.51 

However, Al(q2) is real, so 

disc A, (q2) = - disc A,(q21 = 0 
2n (6.6) 

Equations (6.31, (6.51, and (6.61 are incompatible unless 

disc Ah(q2) = C b(q21 ; C = J c A(r) 
2* r (6.7) 

Such a discontinuity of a vertex function signals the presence of 

physical-intermediate states of zero mass. However, two different types 

of states can give rise to the behavior (6.7). A single massless boson 

created by the Jw produces a discontinuity of this form, but a current 

can create a single massless boson only if its associated symmetry is 

spontaneously broken. Alternatively, a pair of fermions created by the 

current produces a discontinuity which tends, in the limit of zero 

fermion mass, to the form 6(q2). The coefficient of this delta function 

is given by computing the triangle diagrams which yield the anomaly for 

fermions with the quantum numbers of the physical massless fermions of 
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the theory. Since (6.3) arose from computing the same triangle diagrams 
~--.- 

with the elementary fermions, (6.7) implies eq. (6.1) (or fig. 13) 

directly in this case. Both of these alternatives may be avoided if the 

limit kz + 0 or p2 + 0 is singular, but only if the singularity 

corresponds to the pole of a massless boson created by Jy or J&. In 

either case G must be spontaneously broken, as we have noted above. We 

can conclude that either G is spontaneously broken, or the ‘t Hooft 

anomaly condition, eq. (6.11, holds. 

6.2 ‘T HOOFT’S ANOMALY CONDITION IN QCD 

Equation (6.11, the ‘t Hooft anomaly condition, is an extremely 

powerful constraint on the pattern of xSB. It implies that chiral 

symmetries which protect fermions from acquiring mass must be 

spontaneously broken unless it is possible to form physical fermions 

with the right quantum numbers to match the anomalies of the original 

fermions. Since the quantities to be matched are cubic in charges, this 

condition is not at all straightforward to satisfy, as the validity of 

Fermat’s Last Theorem for n = 3 might remind us. I will spend the 

remainder of section 6 describing several applications of the ‘t Hooft 

anomaly condition, first, to theories of Dirac fermions, and then to 

chiral theories. 

‘t Hooft, in his original paper C431, used his condition to argue 

that chiral symmetry must be broken in the usual strong interactions, as 

described by QCO. I would like to explain the logic of that argument by 

presenting some specific examples. (For the details of the general 

analysis, the reader should consult the paper of ‘t Hooft. Some 
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refinements of this argument have been given in C46,48,491.) I will 
--.- 

first consider the case of an SU(31 color gauge theory with-two massless 

quarks belonging to the 3 of color. In this case 

G = u(l) x SU(2)L x SU(2)R (6.8) 

Let us assume that.color is confined; then any physical fermions 

contributing to (6.1) must be color-singlet spin one-half bound states 

of quarks. 

It is easy to form color-singlet combinations of quark fields; to 

project these singlet states into spin one-half is also straightforward 

if one uses some elementary properties of the Lorentz group C501: Left- 

and right-handed fermions transform according to distinct, complex 

conjugate, two-dimensional representations of the Lorentz group. (We 

used this fact implicitly in the development of section (2.11.) These 

representations may be considered as the spin one-half representations 

of two different angular momenta; all other finite-dimensional 

representations of the Lorentz group can be built up from these by 

addition of angular momenta. Let us denote objects which transform as 

L- and R-fermions by spinor indices u, 13 and ?),A, respectively. Then an 

L-fermion composite state is formed by contracting all 7),h indices and 

all but one a index with the invariant tensors e-A. eaa. In trying to 

enumerate all possible such composite states, one should remember that 

the complex conjugate of any R-fermion composite is an L-fermion 

composite. 

Using the notation described in the previous paragraph, ue can urite 

the left- and right-handed quark fields as 

(6.91 
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where a,3 = 1,2, a = 1,2,3 is the color index, and i = 1,2 is the flavor 

index. The U(1) factor in (6.8) is quark number; it-assigns to both of 

these fields the charge (i-1). It will be useful to refer to the quarks 

in the notation of (6.9) for the purpose of constructing composite 

states. However, it will be easiest to compute anomalies by recording 

the quantum numbers of L-fermions, imagining that R-fermions have been 

charge-conjugated. With this convention, the CL-fermion) quantum 

numbers under G of the fields in (6.9) are: 

((+l), 2, 1) and (C-11, 1, 21 . (6.10) 

By combining triplets of the quarks (6.91, we can form color-singlet 

spin one-half states with the quantum numbers of 

Eabc*aai’hbj*AckE*’ 

and 

Eabc~qai*abj*eck~aR (6.11) 

Both of these objects are antisymmetric with respect to interchange of j 

and k, so that j and k must pair to an SU(2) singlet. These objects 

then transform under G as: 

((+3), 2, 1) and ((-31, 1, 2) , (6.12) 

respectively, in the notation of (6.10). If chiral symmetry were broken 

spontaneously, to U(1) X (isospin SU(211, the corresponding composite 

fermions would have precisely conjugate quantum numbers and could pair 

to form an isospin doublet of massive Dirac fermions. These fermions 

would, in fact, be the familiar proton and neutron. But if G remains 

unbroken, these states are left massless, protected by chiral 

invariance. Does this situation satisfy ‘t Hooft? 



-. 

- 
62 

Because G is not a simple group, we must check (6.1) for all 

combinations of components of G. Some examples of anomalies which must 

in fig. 15. Many of these anomalies, though, be matched are shown 

vanish trivially. S 

the anomaly (a) of f 

ince the 2 of SU(2) is its own complex conjugate, 

ig. 15 vanishes by (5.11) for both the elementary 

and the physical fermions. Since (b) involves only one SU(2)L current, 

its group theory weight contains the factor 

Tr(ta) = 0 (6.13) 

and therefore vanishes. Other anomalies involving one SU(Z)L or SU(2)R 

current vanish similarly. Because the U(1) charges of both elementary 

and physical fermions are paired, (c) must also be zero. In fact, the 

only nontrivial constraint comes from the anomalies of type (d). (The 

corresponding anomaly with SU(2)R currents is equal and opposite, by 

parity.) (d) is proportional to the factor: 

TrCQtatbl = 1 n,Q(r)C(r) 
r (6.14) 

Let us tabulate the contributions to (6.14) implied by (6.10) and (6.12) 

(remembering that the elementary fermions have three color states): 

elementary fermions 

( (l), 2, 1): 

(t-l), 1, 2): 

nr - Q(r) - C(r): 

3. 1 * (l/2) 
sum = 3~2 

3 * (-1) . 0 I 

composite fermions 

( (3), 2, 1): 

(C-3), 1, 2): 

nt- - Q(r) * C(r): 

1 * 3 * (l/2) 
sum = 3/2 

1 - (-3) * 0 (6.15) 

So it is apparently formally consistent to have a theory with tuo 

massless flavors in which G is unbroken and realized with a massless 

proton and neutron. 
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What if there are three massless quark flavors? One might naively 
-__.- 

imagine that simply changing i = 1,2 to i = l-,2,3 in the-above analysis 

would give a consistent solution. Let us check. The chiral symmetry G 

is now u(l) x su(2)L % su(3)R; the elementary fermions nou transform as 

((+11, 3, 1) and ((-11, 1, f> (6.16) 

and the composite states (6.111 as 

((+3), 3, 31 and ((-31, 3, 31 (6.17) 

We have used the fact that, in SU(31, the 3 and 3 are inequivalent and 

c21 = 3. Since SU(31 representations are not necessarily real, ue must 

check the matching of the anomalies (a) and well as (d) of fig. 15; 

(a) is proportional to 

1 n,A(r) 
r (6.18) 

Let us, then, tabulate: 

elementary fermions: 

(+l, 3, 1) (-1, 1, 31 

nr * Ar: nr - Q(r) - C(r): 

3.1 I 3. 1 - (l/21 
3 312 

3 - 0 3 - (-1) * 0 I 

composite fermions: 

c+3, 3, 31 3 - 1 I 3 * 3 - (l/21 
6 

I 
0 

(-3, 3, 3) 3.1 3 - (-3) - (l/21 
(6.19) 

(For the composite fermions, the SU(3)R multiplicity contributes 

nt- = 3.1 The anomaly matching is a disaster. Trial and error indicates 

that adding more complicated color-singlet bound states only makes 

matters worse. 

To obtain a more general result, ‘t Hooft introduces a further 

assumption: One should consider only solutions to the anomaly 



- 64 

conditions for n flavors with the property that, if the mass of any one 
--.- 

flavor is taken to be nonzero, every composite state.containing this 

fermion may acquire mass by pairing with another composite with the same 

quantum numbers under the subgroup of chiral symmetries 

(U(l) X U(1) X SU(n-l)L X SU(n-l)R) which preserves this mass term. 

This condition has been labelled the “Appelquist-Carazone decoupling” or 

the **persistent mass,, condition. It is straightforward to show that 

there are no solutions to (6.1) satisfying this condition for any color 

group SU(N) C43,46,481. 

One might be tempted to conclude from this argument that chiral 

symmetry must be broken in any SU(NI gauge theory with n Dirac flavors, 

if n > 2. However, the question is really far from settled. If the 

mass of one flavor is taken to infinity, it is clear that al 1 composite 

states containing this fermion must become infinity heavy, but if one 

flavor has a nonzero but small mass, the strong interactions might well 

arrange that composites containing this fermion have zero mass 1511. 

Dimopoulos and Preskill have given some examples in which it is 

particularly plausible that massless composite fermions should contain 

massive constituents C521. This method of escape from ‘t Hooft’s 

analysis requires, however, a complicated phase structure: The mass 

spectrum of the theory must change discontinuously as a function of the 

fermion masses. I should also note that relatively few solutions to 

(6.1) are known even for particular choices of the number of colors N 

and the number of flavors n. Weinberg C531 has found a solution for 

N = 5, n = 3; Albright C54l has constructed a rather lengthy catalogue. 

The most striking feature of these particular solutions, though, is 
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their complexity and ugliness; one must, in general, accept a large 
_- 

multiplet of massless fermions in order to maintainchiral -symmetry. 

Coleman and Witten C551 have made further use of the ‘t Hooft anomaly 

condition by combining it with the limit N + 00 to obtain information on 

the pattern of xSB. There are indications from strong-interaction 

phenomenology that PC0 with N = 3 is already rather close to this limit 

C561. Equation (6.1) has no solution smooth in N as N + 00; thus, 

Coleman and Witten conclude, chiral symmetry must be broken in this 

limit. But one can then use another property of this limit, that graphs 

with internal fermion loops are suppressed by powers of N-l. A general 

color singlet mass term may be diagonalized as follows: 

*RitijgLj = 1 ($'Rimi'h'Li) 
i (6.20) 

by making independent unitary transformations on $Ri and $Lj. The 

leading contribution of E to T(E) in powers of NV1 will involve graphs 

with-precisely one fermion loop iwith arbitrary gluon dressing); r(E) 

will therefore have the form: 

l-(E) 1 F(mi) + O(N”) 
i I (6.21) 

Since chit-al symmetry is broken, F must have its minimum at some mo 6 0. 

Then each flavor acquires this same mass mo. Thus, in the N + 00 limit, 

the SU(n) flavor symmetry is not broken; the pattern of XSB is 

U(1) X SU(n) X SU(n) -> U(l) X SU(n) , (6.22) 

as we see in the familiar strong interactions. 
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6.3 ‘T HOOFT’S ANOMALY CONDITION IN CHIRAL MODELS 
--.- 

In chiral gauge theories, ‘t Hooft’s anomaly condition may be 

realized in a more interesting way. As an example of what might happen, 

let us consider again the strong interactions of the SU(5) model of 

Georgi and Gl ashow. In section 5.3, we analyzed this model rather 

thoroughly in terms of possible modes of chiral symmetry breaking. I 

would now like to approach this model from the opposite viewpoint: 

I will assume that both the gauge and chiral symmetries of the model 

remain unbroken and ask whether one can find composite fermions, bound 

by confining SU(5) forces, which can satisfy ‘t Hooft’s anomaly 

condition. 

Let me recall that the SU(51 model contains fermions in the 10 and 5 

representations of SU(5) (eq. (5.14)) and only one U(1) global symmetry, 

whose charge Q satisfies (5.23). The anomaly of the elementary fermions 

with respect to three U(1) currents is proportional to 

Tr Q3 = 1 nr(Q(r)13 = 5.(313 + 10.(-1J3 = 125 
r (6.231 

But consider the following SU(5)-singlet composite state: 

EaR*aa$sa%‘yb i 

this state has charge Q = 5 and thus contributes an anomaly 

Tr Q3 = (5J3 q 125 

(6.24) 

(6.25) 

(Note that the charge q defined in (5.25) has the value q = 2 in this 

state. 1 This example was discovered by Dimopoulos, Raby, and 

Susskind C571. They also gave this example a beautiful physical 

interpretation, which I will discuss in a moment. Let me first present 

their demonstration that this construction works for all the theories 

with fermion content CC21 + (N-41-N) which we considered last time. 
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The fermions of this class of theories are those which appear in 
---- 

(5.32); the global symmetries of these theories are--the SUOW-41 

transformations of the N’s and the U(1) symmetry generated by Q in 

(5.32). I claim that the following color singlet composite satisfies 

the t’ Hooft anomaly conditions with respect to these symmetries: 

EaR*aab(‘k@a, iqyb. j + *ra. i*sb, j) (6.26) 

(6.26) generalizes (6.241, and preserves its property of being symmetric 

in the spins of the two N’s. This state has Q = N and belongs to the 

representation (2) of SU(N-4). (Under a in (5.351, it has charge 

a= 2.1 The anomaly of three SU(N-4) currents is proportional to 

c nr A(r) = N.A(N-4) for the elementary fermions 
r 

= l-A((2)) for the composite (6.26) (6.27) 

These two expressions are equal by virtue of (5.12). The anomaly 

matching must also be checked for three U(1) currents and for one U(l) 

and two SU(N-4) currents. This last anomaly is proportional to 

Tr Qtatb = gab c nr Q(r) C(r) 
r (6.28) 

To check this condition, one needs the values of C(r) for SU(Ml 

represen3ations 

1 
C(M)=- , ctc21, 

2 (6.29) 

With this information, it is a simple exercise (strongly recommended to 

the reader) to see that (6.26) does indeed balance the anomalies of the 

elementary fermions. 
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6.4 COMPLEMENTARITY 

It is surprising that the anomaly conditions may Abe solved so simply 

for the models we considered in the previous section. But this solution 

contains a further surprise which, perhaps, has not escaped the reader’s 

notice: The massless composite fermion which we constructed has 

precisely the same quantum numbers - 4 = 2, (2) of SU(N-41 - as the 

multiplet of massless fermions which emerged from our analysis of 

symmetry-breaking patterns for these models in section 5.4. Dimopoulos, 

Raby, and Susskind [571 recognized that this is not an accident; they 

showed that these solutions follow from an intriguing physical picture 

which I wish, in this section, to explain. 

I will work toward the picture of Dimopoulos, Raby, and Susskind in 

two stages. First, I will show that if, in a theory of massless 

fermions, one breaks the gauge symmetry in such a way that a subset of 

the original fermions remain massless, those massless fermions aluays 

obey the ‘t Hooft anomaly conditions with respect to the unbroken chiral 

symmetries C581. This remark implies that the multiplets of massless 

fermions we found in section 5.4 indeed satisfy ‘t Hooft’s conditions. 

Second, I will argue that we can convert the massless elementary 

fermions we found in section 5.4 into massless composite fermions. 

The proof of the first claim is very easy. Recall that in our 

examples of section 5, the final global symmetry generators qa were 

obtained by forming linear combinations of gauge-invariant global 

symmetry charges Qa and global gauge charges Q(NlaJ as in eqs. (5.331, 

(5.35). The charges Qa were constructed to leave the dynamically 

generated mass terms invariant. In this general context, let us compute 



- 69 

the anomaly of the massless fermions with respect to three ga currents. 

The calculation is indicated schematically in fig. 1.6. Since the 

dynamical mass terms respect the charges aaJ the fermions which acquire 

mass must appear in pairs of complex-conjugate representations of the 

symmetry group generated by the qa. Equation (5.11) implies that each 

pair of representations gives two equal and opposite contributions to 

the anomaly of three qa currents. Hence the sum over massless fermions 

may be replaced by a sum over all of the original fermions. NON we can 

expand 

-a Q = Qa + Qa( N) i (6.30) 

the result of this expansion is indicated in the second line of fig. 16. 

The second term on this line is proportional to the trace of a gauge 

group generator pa(w) and therefore vanishes. The third term vanishes 

if all of the global symmetries Qa are anomaly-free with respect to the 

strong gauge interactions. The fourth term is the anomaly of three 

gauge currents, which must vanish by the considerations of section 5.2. 

What remains is the first term, which is precisely the left-hand side of 

(6.1). Thus, ‘t Hooft’s condition is automatically satisfied. 

I wil now argue that the multiplets of massless composite fermions 

described in section 6.3 and the multiplets of massless fermions from 

section 5.4, which satisfy (6.11 by virtue of this argument, are closely 

rel ated. To see that relation, we should think about the competition 

between chiral symmetry breaking and confinement in this class of gauge 

models. In the analysis of section 5.4, we ignored the effects of 

confinement completely. We found that our simple picture of the 

dynamics gave a vacuum expectation value to a fermion bilinear 

~bi = ~aR*aa, i‘slf3 ab (6.311 
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Such a vacuum expectation value would spontaneously break the gauge 
-e-- 

symmetry. Let us-now consider the opposite situation, by assuming that 

confinement is the dominant effect. Then the vacuum must be locally a 

color singlet. 9bi cannot acquire a vacuum expectation value; it merely 

creates a light fermion pair. In any local region of space-time, the 

vacuum contains pairs of pairs with cancelling color quantum numbers. 

Pairs of the structure (*bi*tib) would break no global or local 

symmetries. 

In such a confining theory, a single elementary fermion $a;r,i could 

not be an asymptotic state. However, one could convert it to an 

asymptotic state by contracting it on its color index with a light pair 

Sbj. Since *bj is a singlet under & this contraction does not change 

the G quantum numbers of the original fermion. The contracted state, 

however, is a color singlet; we may evaluate the quantum numbers of this 

state by replacing lja by Qa. In general, we may convert all of the 

elementary fermions to color singlets by contracting them uith light 

pairs; the resulting composite fermions will have the same quantum 

numbers with respect to the Qa as the elementary fermions would have 

with respect to the lja in an analysis based on XSB through condensation 

of the pairs +. Pairs of these composite fermions with conjugate Qa 

quantum numbers may acquire mass; the remaining composite fermions uill, 

by the argument of fig. 16, satisfy the ‘t Hooft anomaly conditions. 

We have now seen that the same conclusions about the unbroken global 

symmetries and the content of massless fermions in a chiral gauge theory 

may arise from two different pictures of the dynamics - one in which the 

gauge symmetry is broken by pair condensation and the massless fermions 
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are elementary, another in which the gauge symmetry remains exact and 
--.- 

confining and the massless fermions are color-singlet composites. 

Fradkin and Shenker C591 have given examples of lattice gauge theories 

with elementary Higgs fields in which one can move continuously from a 

region of the parameters of the theory in which the gauge symmetry is 

confining to one in which the gauge symmetry is spontaneously broken, 

without crossing through a phase transition point or changing the 

qualitative behavior of gauge-invariant observables. The analysis ue 

have just given implies that this is possible also in cases uhere the 

Higgs field is a fermion bilinear. Dimopoulos, Raby, and Susskind refer 

to this property as “complementarity.” 

One should remember, though, that a chiral gauge theory of massless 

fermions is a unique theory, with no adjustable parameter except for a 

mass seal e. Thus, even if we do not know whether the theory prefers one 

or the other of the pictures just described, the theory presumably 

knows, and follows its preference. This preference should reflect the 

answer to the general question of whether confinement or chiral symmetry 

breaking is a stronger effect in gauge theories with fermions. Perhaps 

the cons?derations of this section will suggest a way to answer this 

question. 

Before moving on to my next topic, I should note parenthetically that 

the solutions to the ‘t Hooft conditions found by Dimopoulos, Raby, and 

Susskind have been generalized by Banks, Yankielowicz, Schwimmer, and 

Bars C60,611 through a beautiful construction involving graded Lie 

algebras. Those readers who have not yet been exhausted by group theory 

should certainly consult these papers. 



Chapter 7. 

xSB IN SUPERSYMMETRIC THEORIES 

7.1 INTRODUCTION AND ORIENTATION 

In this section, I would like to indicate how the physics we have 

discussed so far generalizes to gauge theories with supersymmetry - a 

symmetry which interchanges bosonic and fermionic states. 

Supersymmetric field theories have become a topic of intense interest in 

the past few years; reviews of their general structure have been given 

in E62.631. However, most of what we know about these theories applies 

only to the region of weak coupling. The behavior of supersymmetric 

gauge theories in the strong-coupling regime is not yet understood even 

qualitatively. The problem of how these theories behave is an important 

one - important, I feel, not only to those primarily interested in the 

study of supersymmetry but also to those more generally interested in 

the problem of the realization of chiral symmetries. 

At first sight, supersymmetric gauge theories do not look at all 

unusual j they are, to all appearances, ordinary gauge theories of 

fermions supplemented by the addition of a few innocuous elementary 

bosons. On the other hand, the supersymmetry of these theories provides 

extremely powerful constraints on their dynamics. I would like, then, 

to summarize what is known about the strong-coupling behavior of these 

theories and to attempt to reconcile that with the intuitive picture of 

xSB we have been developing. 

- 72 - 
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The central element in this discussion will be a remarkable result 
-~.- 

proved recently by Witten C641: In supersymmetric gauge-theories 

containing fermions in a real representation of the gauge group, 

supersymmetry cannot be spontaneously broken. This result is not at all 

straightforward, and, when combined with the Ward identities of 

supersymmetry, it yields some unusual consequences. Witten proved this 

result by developing a novel intuitive description of supersymmetry. In 

the remainder of section 7.1, I will introduce supersymmetry through 

Witten’s description and explain the general logic of his proof. In 

section 7.2, I will briefly review the structure of supersymmetric gauge 

theories and explain why Witten’s result is counter-intuitive. In 

section 7.3, I will show that, nevertheless, it is true. Section 7.4 

will then present a set of possibilities for the behavior of 

supersymmetric gauge theories; I invite the reader to puzzle out uhich 

choice is correct. 

We should first ask what, more precisely, is supersymmetry. A theory 

is supersymmetric if it has a conserved charge Qa which converts bosons 

to fermions and vice versa. If Q is taken to transform as an L-fermion, 

Qf transforms as an R-fermion, and the quantity 

(QaQtq + Q’,Qa) (7.11 

then transforms as a spin-l object, with no scalar piece. Nevertheless 

(7.1) is a conserved charge, which, further, can vanish only if Q itself 

vanishes. This would be highly unusual unless (7.1) is proportional to 

pIL = (H,‘P), the energy-momentum 4-vector. In fact, any other choice may 

be seen to forbid nontrivial scattering t651. Thus, we can form a 

Hermitian linear combination of Qa and Qt,, which I will also call Q, 

which satisfies 
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Q2 = H (7.21 
-__._ 

on the subspace a- = 0. Remarkably, many interesting Hamiltonians may be 

represented in this form. Equation (7.2) implies that H is non- 

negative. Further, the fact that H can be represented as the square of 

Q implies that the eigenstates of H appear in boson-fermion pairs: 

Q/b> = Xlf> Qlf> = Xlb> with X = 4E (7.3) 

This pairing of eigenstates holds even in a finite volume where the 

spectrum of H is discrete, as long as the boundary conditions respect 

the conservation of Q. (Periodic boundary conditions have this 

property.) The only exceptions to this pairing are the states 

annihilated by 9; these may be arbitrary in number. In general, then, 

the spectrum of H, in a finite volume, has the form shown in fig. 17. 

We say that supersymmetry is unbroken if the ground state In> of H is 

annihilated by Q: 

Qlfl> = 0 (7.41 

Since H is non-negative, any state which satisfies (7.41 uill be the 

ground state; thus supersymmetry is unbroken if there exists any state 

which satisfies (7.4). Further, if, in any finite volume, there exists 

a state-IQ> annihilated by Q, there will also be such a state in the 

infinite volume limit. Thus, it suffices to examine the spectrum of H 

in a finite volume to show that supersymmetry is not spontaneously 

broken; this is one respect in which supersymmetry differs from an 

ordinary global symmetry. 

If H depends on a parameter g, we might think about the spectrum of H 

as a function of g. As g is changed continuously, the energy levels 

move continuously. But if H(g) is supersymmetric for any gD the energy 
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levels with energy E > 0 must be paired. Thus, zero eigenstates can 
--.- 

move away from zero only in pairs. This means that .a1 1 Hamiltonians 

H(g) which can be reached from one another by continuous deformation 

have the same value of the following quantity, called Witten’s index: 

Tr(-llF = (number of bosonic zero-energy states) 

- (number of fermionic zero-energy states1 (7.5) 

But if Tr(-lJF s 0, a zero-energy state exists and supersymmetry is 

unbroken. The strategy of Witten’s proof is to start from an 

interesting Hamiltonian H(g) and adjust g (which may be, for example, 

the coupling constant or a particle mass) to a value which makes it easy 

to prove that Tr(-lJF s 0. 

I should illustrate this strategy as it applies to a particularly 

simple example of a supersymmetric theory - supersymmetric quantum 

mechanics E661. Let us define 

1 
-Q = = (pCJ’+W(q)a2) 

42 (7.61 

where q#p are coordinate and momentum variables and 01,02are the Pauli 

matrices. Then 

1 1 dW 
Q2 = H = - p2 + ! (W(q))2 + - - ~3 

[ 2 2 2 dq 111 (7.7) 

This Hamiltonian describes a quantum-mechanical particle with spin 

interacting with an external potential V(q) = l/2 W2(q) and an external 

magnetic field. A typical form for W(q), and the corresponding 

potential V(q), is shown in fig. 18. BY analogy to the higher- 

dimensional case, I will call spin-up states fermonic and spin-doun 

states bosonic. 

Near a zero of W(q) 
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(7.8) 

and the potential takes the form of a harmonic oscil.lator. -If the 

nonlinear terms in W(q) are small, we can find the spectrum of states 

near qo by diagonalizing the harmonic oscillator Hamiltonian: 

H = l/2 p2 + l/2 cJ2 (q-q012 + l/2 083 (7.9) 

The eigenvalues of H in (7.9) have the form 

En q nlol (7.101 

where n begins with 0 or 1, depending on the spin. The spectra for 

w > 0 and w <O are shown in fig. 19. If we treat each zero of W in the 

harmonic approximation, there is one zero-energy state associated uith 

each such zero; it is bosonic or fermionic according to the sign of w. 

Thus the difference in the number of bosonic and fermionic zero-energy 

states is predicted to be: 

Tr(-lJF = (number of zeros of W uith w > 0) 

- (number of zeros of W with o < 0) 

i 

l ifW>Oasq+co,W<Oasq+-co 

= 0 if W > 0 or W < 0 for both q + 200 

-1 if W< Oasq+co, W>Oasq+-ao . (7.11) 

In this simple example, we can also solve the equation QJ, = 0 

directly. Since 

Q= 
-i 

J;; 

c d 
- + W(q) 
dq 

d 
- - W(q) 

.dq (7.121 

94’ = 0 if and only if 
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q(q) = exp[-/Idx W(x)] 

or 

(bosonic state) 
_ - 

q(q) = exp[+/zdx WC~J] [+I (fermionic state) 
(7.131 

In general, only one of these states will be a normalizable wave 

function; the condition that the bosonic or fermion state of (7.13) is 

normalizable is precisely the condition given in (7.11) for Tr(-lJF = 1 

or -1. The conclusion of (7.111 is therefore exact, providing a first 

check on Witten’s formalism. This example also provides at least an 

idea of what perturbations of H constitute continuous deformations to 

which Witten’s analysis apply. If W(q) = Aq3, we can change A or add a 

q2 term without changing Tr(-ljF. However, if we change the asymptotic 

behavior of W by adding a term Bqb, we bring in a new zero from OB; this 

must be a singular perturbation. 

7.2 SUPERSYMMETRIC THEORIES IN FOUR DIMENSIONS 

Now that we have some idea of the general structure of supersymmetric 

theories, it is time that we surveyed in more detail the structure of 

supersymmetric theories in four dimensions C62,631. To establish 

notation, let me write the Dirac matrices in the form: 

UD 
yiJ‘= -- [ I 1 + (7.14) 

as we did in (2.4). Then we can write the algebra of Qa and (QaJt = Qr, 

as follows: 

(7.151 
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---- 

1 
Q q -- (Qa+& I for a=9 = 1 or 2 

J2 

satisfies 

Q2 = H (7.171 

on the subspace ? = 0. 

(7.16) 

It is possible to represent the algebra (7.15) by the following 

action on a multiplet of fields (A, $a, F), where A and F are complex 

scalar fields, and 4’a is an L-fermion: 

[Qa,Al = *a 

{Qa~Jls) = EaaF 

[QaaFl = 0 

Equation (7.18) involves anticommutators between pairs of fermionic 

operators. You may check that (7.18) implies that 

(Qapaq) = 2i(iip)Qa& (7.19) 

acting on A, $, F. I u,ill refer to a set of fields such as (A,S,F) 

mixed by the supersymmetry algebra as a supermultiplet. 

For a theory with several supermultiplets, the follouing Lagrangian 

is invariant under the transformations (7.18): 

L = ;jii$L$i + WA’i‘qLAi + FtiFi 

b2V (Al bV (Al 
EaRJla iJ’p j -+Fi- + h-c. 

bAibAj bAi 1 1 
(7.201 

(The indices i,j are to be summed over all the supermultiplets of the 

theory. 1 V(A) is an arbitrary function of the Ai; it must be cubic or 

lower if the theory is to be renormalizable. Fi is just a Lagrange 

mu1 tip1 ier; it may be integrated away. This theory has one complex 
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boson for each chiral fermion and constraints between boson and fermion 
-e-- 

vertices, but it i-s otherwise fairly arbitrary in form. - 

If the system (7.201 possesses a global symmetry, it may be coupled 

supersymmetrically to the gauge bosons AaW of this symmetry group. The 

gauge field belongs to a supermultiplet (Aaw,XasrDa), uhere X is an L- 

fermion and 0 is a real scalar field; all three fields belong to the 

adjoint representation of the gauge group. To couple this multiplet to 

(7.201, change & to D, = ($,-igA,.t) in that Lagrangian and add the set 

of couplings 

LI = g(eaRAtiha’tqoi + h.c.1 + g(AtitaAi)Da (7.211 

and the kinetic terms for the gauge fields 

1 1 
LG = - - (FaBv)2 + ii@LX + - (Dal2 

4 2 (7.22) 

(A,X,D) have rather complicated transformation laws, but the 

supersymmetry transformations of gauge-invariant combinations of (A,$,F) 

are not changed by the gauging. 

If V(A) = 0, the Lagrangian composed of the sum of (7.201, (7.211, 

and (7.221 has a set of global symmetries which straightforwardly 

generalise the symmetries (2.15). If this Lagrangian contains nr matter 

supermultiplets (A,$,F) transforming under the gauge group according to 

a representation r, the Lagrangian formally has the full U(nr1 global 

flavor symmetry. It also has, formally, a U(1) symmetry of phase 

transformations on the fermions: 

Xa + expCiBIXa *i + expCiDl$i (7.23) 

often called R-invariance. The anomaly removes one U(l) symmetry from 

this set of symmetries; the global symmetry of the model is therefore 

G = n U(nr) 1. 

r \, (7.24) 
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If the matter multiplets form complex-conjugate pairs, it is possible to 

break some of these chiral symmetries softly by adding a-mass term 

’ 1 i’ mr ArjAij V(A) = - 
2 pairs j=l 

r,F (7.25) 

The potential in (7.25) gives equal masses m p to the bosons and fermions 

belonging to r. 

In this latter class of theories, an application of supersymmetry 

leads to a rather unusual identity C67,683. Consider the anticommutator 

(Qa,Ar.4'iB) = *ra-4'is + camAr.Fi (7.26) 

If supersymmetry is not spontaneously broken, QalR> = 0 and the vacuum 

expectation value of (7.26) takes the form: 

0 = <ftl$,a-+i,liI> + Eas<RIAr*FiIfi> (7.27) 

The first term on the left-hand side is equal to l/2 eag<$L$R>i thus 

1 
- <fll%j”~IR) = - <RIA,.F+> 

‘2 (7.28) 

However, if V(A) = 0, F-, = 0 by its equation of motion, and therefore 

<ib> = 0. If we try to perform this analysis more carefully by adding a 

small mass term (7.25) and then sending m, + 0, we find F-, = mAtr, so 

that 

1 
- <+t’R> = -m< IA,-/ ‘> 
2 (7.291 

One can check that, if the dynamical parts of boson and fermion masses 

E(p) have the behavior (3.301, the left- and right-hand sides of (7.291 

contain equal ultraviolet-divergent contributions proportional to m and 

are otherwise not ultraviolet-sensitive. We seem to find, then, that 

<q+> + 0 as m is taken to zero* as a consequence of manifest 

supersymmetry. 
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The authors who discovered this Ward identity - Dimopoulos and 
--.- 

Raby E671 and Dine, Fischler, and Srednicki C581 - used it to arguer not 

implausibly, that supersymmetry must be broken in this class of 

theories, since a nonzero vacuum expectation value for $4’ uould follou 

from the (presumably) well-understood dynamics we have studied in the 

past few sections. Thus, it was quite surprising that Witten could 

prove that supersymmetry is not broken. 

I should note, however, that it is not unreasonable that <IAr IQ 

might be singular as m-’ as m is taken to zero. We have already seen 

that the propagator of a related equation has this property:* 

This singular behavior is just what we found in eq. (2.38) for the 

modified Klein-Gordon propagation (2.36). One can plausibly argue that 

the extra (a-F) term in (2.36) and the extra coupling terms for Ar in 

(7.21) are similar, at least in that both have the effect of cancelling 

the additive mass renormalization normally present for scalar bosons. 

I should, finally, remark that there is no corresponding conceptual 

barrier which forbids the pair condensation of the fermions X: 

<Ea”XaaXaB> f 0 (7.30) 

Nilles c691 and Veneziano and Yankielowicz E701 have argued in detail 

that (7.30) can be embedded in a supersymmetric effective description of 

supersymmetric Yang-Mills theory. 

*I am grateful to Giorgio Parisi for calling eq. (2.381 to my attention 
in this context. 
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7.3 WITTEN’S INDEX FOR SUPERSYMMETRIC GAUGE THEORIES 

Now that we have surveyed a bit of the structure-..of supersymmetric 

gauge theories, we should return to Witten’s analysis and compute the 

index Tr(-ljF for these theories. My discussion will present the basic 

lines of this computation, but I will not enter into its many 

subtleties. I strongly recommend to anyone tempted by this discussion 

to study the original paper [641. 

Let us begin by considering the pure gauge theories (7.221, without 

matter fields (A,$,F). The easiest case is supersymmetric QED, the U(l) 

gauge theory; this is actually a free theory containing a photon and a 

neutral fermion X. Let us quantize this theory in A0 = 0 gauge, in a 

finite volume with periodic boundary conditions, and study the spectrum 

of gauge-invariant states. 

What are the zero-energy eigenstates of H? Any state containing 

photons or fermions of finite momentum has energy 2lrn/L, where n is a 

positive integer and L is the size of the box. We may therefore 

concentrate on states containing only particles of zero momentum. Note 

that the zero-momentum component of A cannot be gauged away* since the 

quantity 

exp ig dR-A , 
is 1 P (7.311 

defined on a closed path P which wraps around the periodically connected 

volume, is gauge invariant. However, each component of s may be changed 

by (2a/gL) without affecting (7.31). The action for the zero-momentum 

modes is given by 

JJ dt d3x (7.22) 

(7.32) 



c -. 

83 

The corresponding Hamiltonian is 

1 _ - 
H =-- t&J2 

2L3 (7.331 

where fro is the conjugate momentum to Ao. If we insist that the nave 

function $(A01 is periodic with periodicity (2WgL1, there is a unique 

zero-energy state IO,> of the gauge fields; the next states have energy 

1 921 -- - [I 2 2n L (7.34) 

To enumerate all the zero energy states of H, we must consider adding 

zero momentum fermions to this gauge-field state. There areP in all, 

four zero-energy states: 

190) 8 a++lbo> , a+Al*0> , a++a+4l*o> 
(7.35) 

where the operators at create zero-momentum fermions A. Apparent1 y, 

Tr(-lIF = 0. But all is not lost. The theory has a symmetry of charge 

conjugation 

Au -) -AU , x+-x . (7.36) 

The supersymmetry charge Q is even under C, so finite energy states must 

be paired separately in the C = +l and C = -1 sectors. Thus, a nonzero 

index in either sector indicates that supersymmetry is not broken. The 

catalogue (7.35) implies: 

Tr(c=+,,(-lIF = +2 Tr(c=-ql(-lIF = -2 (7.37) 

SO SupersYmmetry cannot be spontaneously broken. 

Now add matter fields to this theory. Let us add L-fermions 9 in 

pairs (++,$-I of opposite electric charge, so that they pair to Dirac 

fermions and can be given large masses. If the. masses are added 

supersymmetrically, using a potential of the form (7.251, the 
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corresponding bosons A+,A- receive the same large masses. These massive 
- 

particles contribute no new zero-energy states. The. dynamics are sti 11 

invariant to charge conjugation if (7.36) is supplemented by: 

*t 3 9- A+ + A- 

*- + *t A- + A+ (7.38) 

so the counting of zero-energy states is unchanged from (7.37) and 

supersymmetry cannot be broken. One might now tune the matter field 

masses continuously to zero. The indices should still be unchanged from 

(7.371, so that this chirally-symmetric theory has no supersymmetry 

breaking. 

This argument may be generalized to non-Abelian gauge theories. Let 

us consider first the pure supersymmetric gauge theory. We are 

permitted to tune the coupling constant g so that g is small at all 

length scales up to the size L of the box. The fermions X are then 

weakly coupled to the gauge fields. In this situation, we may analyze 

the zero-energy states of the pure gauge system first, then consider 

adding the fermions. As in the Abelian easer we need only consider 

zero-momentum components of A. Each component of xc may be gauge- 

transformed to the form 

Aoiata = AoiCtC (7.39) 

where (tc) is a set of mutually commuting generators of the gauge group. 

(The index c takes the values c = l,...,r, where r is the rank of the 

gauge group; r = (N-1) for SU(N1.1 The various vector components of x-t 

must all be mutually commuting; otherwise we would find 

Fij*t = -igCAi-t,Aj.tl s 0 (7.40) 
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so that this A field would produce a nonzero magnetic field and thus a 
- 

nonzero energy. The components Aoic are defi-ned only modul-a (2+r/gL); 

further, the transformations Aaic -) -Acic and permutations of the 

indices c are elements of the gauge group. We must construct a state 

invariant to all of these transformations. The Hamiltonian on the space 

of variables Aoic is: 

1 
H = -- (nOit) 

2L3 (7.411 

where the lIoiC are the conjugate momenta. This has a unique ground 

state I’P~> with the required symmetry and an energy gap of magnitude 

(7.34) to the first excited state. 

We can create a zero-energy state with fermions from Ilho> only by 

placing fermions A into the zero-energy fermion modes in the background 

field 3-t. For fields of the form (7.391, these modes have the form 

X-t = Xoctc (7.421 

There are 2r such modes. To form gauge-invariant states, however, we 

must populate these modes in such a way as to respect the subgroup of 

gauge transformations which act on the components Xc. Certainly we must 

insist that a gauge-invariant state is invariant to 

Ao ic -, -AoiC xoc + -xoc (7.43) 

and to permutations of the indices c. One way to construct such states 

is to define the gauge-invariant operator 

U = ; a+ C+a+ c$ 
c=l (7.44) 

where the a3 are fermion creation operators, as in (7.35). Then we can 

form the zero-energy states 

190) 9 upo> # uq’po> , . . . , U’lOt)> (7.45) 



U is the only gauge-invariant operator which creates zero-energy 

in more detail. All of the 

hence 

is point fermions; Witten argues out th 

states indicated in (7.45) are 

Tr(-ljF = r + 1 

bosonic; 

-. 
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This series of states terminates because Urtl = 0. It is plausible that 
e-m - 

= N for SU(N) gauge theories (7.461 

As in the Abelian case* we can add massive fermions and bosons in 

conjugate representations (r+F) without disturbing this counting. Then 

we can smoothly increase g and decrease m until m << L” << A, where A 

is the momentum scale at which g becomes strong. This process also 

preserves (7.46) and leaves us with the conclusion that supersymmetry is 

not spontaneously broken in this class of theories. 

It is not known whether this argument generalizes to supersymmetric 

chiral gauge theories. Nilles C691 has presented examples of such 

theories in which condensates such as we discussed in section 5 can 

appear without endangering supersymmetry. But perhaps other theories of 

this type may allow dynamical supersymmetry breaking. I will say a bit 

more on this point at the end of the next section. 

7.4 THE QUALITATIVE BEHAVIOR OF SUPERSYMMETRIC GAUGE THEORIES 

Now that we have established one definite property of the zero mass 

limit of supersymmetric gauge theories, it is appropriate to combine 

this property with intuition and speculation to map out a coherent 

picture of the behavior of these theories. Unfortunately, I do not knou 

enough about the behavior of the theories to be able to present you with 

a uniquely compelling picture. I therefore choose to indicate the range 
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of possibilities still available by presenting two very different 
--- - 

scenarios. The first is rather perverse, but- has a-.-taste o-f 

plausibility. The second is more conservative, but still has a number 

of unusual features. 

The two scenarios are distinguished, first of all, by their 

assumptions about whether the state in which chiral symmetry is broken 

by condensates while the gauge symmetry remains unbroken is a 

supersymmetric state. Let us assume first that it is not, perhaps 

because <IArl’> in (7.29) is nonsingular in the limit m + 0. This 

possibility is not excluded by Witten’s theorem, as Witten himself is 

careful to point out C641. The theorem does imply, however, that there 

must be a supersymmetric state somewhere in the space of states, perhaps 

at a point where some scalar field has a large vacuum expectation value. 

That vacuum expectation value might, in fact, move to infinity as m + 0. 

But, wherever this state may be located, if it is annihilated by the Qa 

it is necessarily the ground state. It is possible, then, that the 

bosons we added to make the theory supersymmetric acquire large vacuum 

expectation values and completely change the qualitative physics of the 

sys terns .- 

The plausibility of bosons acquiring large vacuum expectation values 

is emphasized by examination of the scalar field potential which follows 

from the Lagrangian (7.211, (7.22). If we eliminate the Lagrange 

multipliers Da, we find 

cl2 [ 1 2 
V(A) q - 1 Arta,Ar 

2 r (7.471 



88 

This potential is obviously non-negative, but one can find a sizable 

space on which it is zero. (I will demonstrate this. explicitly in a 

moment. 1 The form of the vacuum energy on this space is determined 

entirely by nonperturbative effects, and everything depends on what 

specifically one assumes about these effects. As an extreme example, 

Srednicki C71l has suggested that the picture of C67,681, in which 

chiral symmetry breaking causes spontaneous supersymmetry breaking, can 

be saved from Witten’s theorem by assuming a potential of the form of 

fig. 2Da. For any finite m, there is a zero of the vacuum energy at a 

finite value of the expectation value of some field 9, separated from 

the state where <#> = 0 by a potential barrier. As m + 0, the barrier 

becomes arbitrarily higher and the supersymmetric state, though it 

exists in principle, becomes inaccessible. 

I prefer, for my first alternative, a scenario suggested more 

directly by the form of (7.47). Let me illustrate this scenario by 

considering an SU(N) gauge theory with one N and one N matter 

supermultiplet. The matter fields are paired, as Witten’s argument 

required. Consider a state in which the two boson fields take the 

vacuum expectation values: 

<AN> = C 

c 1 
0 
0 

<AR> = C - 
. 

(7.48) 

where C is some constant with the dimensions of mass. Since 

tajj = -ttaN)’ (7.491 
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the potential (7.471, evaluated with the field values (7.481, vanishes 
-- - 

for any C. It is known that this property of-the vanishing-of the 

potential persists to all orders in perturbation theory in a 

supersymmetric theory if it is present at the classical level C721. 

Thus, the vacuum energy as a function of C is given entirely by 

nonperturbative contributions. If C is large, I would expect these 

contributions to be small, of the form 

V(C) 0: C’ exp[-(B/gZ(C))l (7.50) 

where A,B are numerical constants and gz(C) is the scale dependent gauge 

coup1 ing. This suggests a potential of the form of fig. 20br a slowly 

decreasing potential with its minimum at C = CO (for m q 0). 

The vacuum expectation values (7.481 break the gauge symmetry SU(N) 

to SU(N-1). The gauge bosons corresponding to broken symmetry 

directions acquire mass and so do their fermionic partners; most of the 

light degrees of freedom in the matter multiplets are sualloued up in 

the process. Indeed, the only particles which do not acquire masses of 

order C are the SU(N-1) gauge bosons and fermions and a boson-fermion 

pair which is neutral under SU(N-11. The massive particles, and the 

neutral -ones, decouple from low-energy physics, so the theory appears at 

energies much less than C to be a supersymmetric gauge theory uithout 

matter fields. This scenario generalizes to accommodate arbitrary 

numbers of (N+R), or (r+F), supermultiplets: Either by eliminating all 

light charged matter fields or by reducing the gauge group to a product 

of U(l) factors, one can remove the possibility of strongly-coupled 

matter supermultiplets by allowing some of their boson fields to acquire 

large vacuum expectation values. 

: 
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The second scenario I will present involves the more conservative 
--. - 

(and, I believe, more likely) assumption that- chiral.symmetry breaking 

can proceed without violating supersymmetry. In this case it is natural 

to assume a supersymmetric generalization of the symmetric breaking 

pattern described in section 5.2: A model containing n pairs of r+F 

matter mu1 tiplets, which according to (7.24) has the chiral symmetry 

U(n) x U(n), should spontaneously break this symmetry: 

U(n) X U(n) -b U(n) (7.51) 

This breaking pattern yields nz Goldstone bosons; supersymmetry requires 

that these be accompanied by n2 massless fermions. 

Closer examination, however, shous that supersymmetry constrains this 

system even more powerfully. To explain this, I must anticipate some 

results which will be presented in detail in section 9. I will argue 

there that the low-energy dynamics of the Goldstone bosons resulting 

from the spontaneous symmetry-breaking G + H is described by a nonlinear 

Lagrangian built from a field whose value is a point in the coset space 

G/H. Zumino has shown that such Lagrangians can be made supersymmetric 

only if the space of values of the field is a Kshler manifold, a complex 

manifold satisfying certain additional restrictions C731. The symmetry- 

breaking pattern (7.511, however, yields 

G U(n) X U(n) 
-= 
H U(n) (7.521 

This is not a complex manifold; indeed, (7.521 does not generally have 

an even number of real dimensions, the minimal requirement for a complex 

parameterization. The only way to make the pattern (7.51) consistent 

with supersymmetry is, then, to enlarge the space of massless particles. 

This requirement has a natural physical interpretation: One can form 
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from the matter particles two different types of light pseudoscalar 
-w. - 

mesons, with the quantum numbers of - 

AriAFj and *ri*Fj - (7.53) 

These would be the Goldstone bosons of chiral symmetry breaking in a 

theory with only bosons or only fermions, respectively. A given broken 

chiral current creates one linear combination of these states; this is 

the true Goldstone boson. However, the other linear combination should 

also be light, and supersymmetry could well require it to be massless. 

In any event, one can show that (7.52) is a submanifold of 

U(2n) 

U(n) X U(n) (7.54) 

which is a Kahler manifold*. Equation (7.541 has 2n2 coordinates, 

so it can accommodate all of the states (7.53); these 2n2 coordinates 

form, appropriately, two adjoint representations of H = U(n). It is 

therefore likely that supersymmetric gauge theories uith matter 

multiplets and chiral symmetry breaking according to (7.51) uould have 

2n* massless bosons and their fermionic partners - twice as many pairs 

as a naive argument would suggest. 

I cannot resist adding one more speculative ingredient to this 

picture. Recently, Ong [741 and Bagger and Mitten C753 have shown that 

when supersymmetric nonlinear Lagrangians whose fields take values in a 

compact coset space are coupled to gauge fields corresponding to broken 

symmetry generators, these Lagrangians show spontaneous supersymmetry 

breaking at the classical level. This indicates to me that strongly- 

interacting supersymmetric gauge theories whose broken chiral symmetries 

*I am grateful to I. M. Singer for shouing me how to do this. 
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are coupled to additional gauge bosons should also show supersymmetry 
---- 

breaking. If the additional gauge bosons could be coupled in such a way 

that the matter fields belonged to a real representation of the full 

gauge group, such supersymmetry breaking would violate Witten’s theorem. 

However, I will argue in section 8.2 that in this case the additional 

gauge symmetry realigns itself (in a sense I will make precise there) to 

remain unbroken. The more general situation, in which the additional 

gauge symmetry is coupled chirally, seems then an attractive candidate 

for a system with dynamical supersymmetry breaking. 
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Chapter 8. 

GOLDSTONE BOSONS AND VACUUM ALIGNMENT 

8.1 COUNTING GOLDSTONE BOSONS 

In all of the previous sections, we have been primarily interested in 

gauge theories with exact chiral symmetries. The main thrust of the 

discussion has been to find the physics which determines the pattern of 

chiral symmetry breaking and to compute what that pattern should be. 

Now I would like to change my emphasis slightly, to study a different, 

but closely related, problem. In the real world (such as ue see it) 

strong interaction theories do not occur in isolation. The fermions 

which have strong interactions also have weak and electromagnetic 

interactions; they also have masses generated by small chiral symmetry 

breaking perturbations. It is then appropriate to pose the follouing 

question: Given a pattern of xSB for a certain gauge system, how is 

this sys.em affected by the presence of a small symmetry-breaking 

perturbation? Host of the physics I will discuss in relation to this 

question was discovered in the 1960’s and is contained already in 

C3,4,51; I will, however, use a more modern language and an emphasis 

which reflects the recent application of these ideas to weak-interaction 

theory C76,77,78,791. 

One usually thinks of small perturbations as having only a small 

effect on the overall structure of a theory. This is emphatically not 

true for systems with chiral symmetry breaking. Systems with exact 

- 93 - 
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chiral symmetries generally leave a large vacuum degeneracy and a number 
--.- 

of massless Goldstone bosons. Important qualitative conclusions about 

the behavior of these systems depend on how the degeneracy of vacuum 

states is broken and what small masses these bosons eventually acquire 

as the result of symmetry breaking perturbations. It is these issues 

that I wish to address. 

As a preface to this study, however, it will be useful to survey 

again the symmetry-breaking patterns we have found in previous sections, 

at least for fermions in real representations of the gauge group* in 

order to make clear the presence of degenerate vacuum states and to 

count Goldstone bosons. In the process, I will introduce some notation 

which will be useful in our discussion of the effects of explicit 

symmetry breaking. 

For a gauge theory containing n multiplets of fermions in paired 

complex representations (r+FJ of the gauge group* the chiral symmetry is 

G = SU(nJ X SU(nJ X U(1). In our previous discussion, ye assumed that 

all fermions acquire equal dynamical masses. The fermions, then, 

acquired a mass term 

. . 
Ea6$oai4’oaJE1j + h.c. (8.1) 

where a is a color index, i,j are flavor indices of SU(nJL and SU(nJR, 

respectively, and 

Eij = zsij (8.2) 

The condensate (8.2) is preserved by a subgroup H = SU(nJ X U(1) of 6. 

Because G is an exact symmetry of this theory, however, we are 

required to consider a larger class of possible condensates. Any 

condensate which can be transformed to the form (8.21 by a 
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transformation in G must be energetically equivalent to (8.2). The 

class of such E’s -parameterizes a manifold of-degenerate-vacuum states. 

We can construct this class of E’s explicitly by subjecting (8.11 to a 

general SU(n) X SU(n) x U(1) transformation: 

pjlJ + e- ia j k*aak (8.3) 

where V, V’ are SU(n) transformations. This gives a mass term of the 

same form, but with 

LEij = (vikv'kj)x = (uij)z (8.4) 

Apparently, the manifold of degenerate vacua is isomorphic to SU(n). 

In general, if a theory with a global symmetry G possesses a vacuum 

state lipo> which respects only a subgroup H of G, the action of G on 

this state generates a manifold of degenerate vacua. Any given state in 

this manifold is unchanged by a group of transformations isomorphic to 

H. Hence the set of degenerate vacua is isomorphic to the coset space 

G/H. For the case we considered above 

G SlJ(n1 X SU(n) x U(1) 
-= = SU(n) 
H SlJ(n) X U(l) (8.5) 

which checks our conclusion from (8.4). Transformations in G/H 

correspond to directions of variation of E in which the effective action 

is level at its minimum. Quantizing the excitations along these 

directions produces zero mass particles - Goldstone bosons - one for 

each orthogonal direction in G/H. 

Let me introduce some notation to describe this situation. Label the 

generators of G as (G=), the generators of H (a subset of the Gg) as 

(Ti)r and the orthogonal generators of G, the generators of G/H, as 

M- Throughout sections 8 and 9, I will use indices a,b,c to denote 
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G's, i,j,k to denote T’S, and xIy,z to denote X’s. Normalize these 
--- - 

generators to _ - 

TrG,Gb = Gab (8.6) 

To each generator of G corresponds a symmetry current 

J’.‘,(x) = ~L+G~+L(x) (8.7) 

I will also use G,,Ti,X, to denote the charges constructed from the 

currents (8.7). 

Let us choose one of the degenerate vacua as a reference point; 

denote this state by IO>. With respect to this state, the (Tf) are the 

generators of G which satisfy TilO> = 0. The set of degenerate vacua 

may then be written: 

(exp(ia,X,) IO>) (8.8) 

Goldstone’s theorem insists that each current involving an Xz can create 

a single massless boson x2 from the vacuum. Let us write the amplitude 

for creation of a boson with momentum p as 

<ny(p) 1 J@“,(O) IO> = -ipbf yz (8.9) 

f,, is a set of constants with the dimensions of mass. For the gauge 

model we discussed at the beginning of this section, the Xz span the 

generators of SU(n) = H. The Xz therefore correspond to a single 

irreducible representation of H, and symmetry insists that f,, should be 

diagonal : 

<x,(p) 1 Jw,lO> = -ip~fribyr (8.101 

The mass fir appears ubiquitously in Goldstone boson dynamics.* 

*My normalization convention implies f,, = 93 MeV in the familiar strong 
interactions. 
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All of the more specific results we have found so far apply to the 
--.- 

case in which r is a complex representation of the gauge-group. What if 

r is real, so that r is equivalent to F C80,811? In this case, the 

system we described earlier may be recast as a system of 2n (L-1 

fermions belonging to r. The chiral symmetry is thus enlarged to 

G = SU(2n). To determine H, however, even under the assumption that all 

fermions acquire equal dynamical masses, it is necessary to consider two 

distinct cases. If r is equivalent to F, there exists an invariant with 

two indices in r. This invariant may be either symmetric or 

antisymmetric. I will differentiate these two cases by referring to r 

as a strictly real or pseudoreal representation, respectively. 

In the case of a strictly real representation, the invariant may be 

diagonal ized to Sab, then the condensate induced by xSB may be written 

CaR+aai#Rbjsabtij + h.c. (8.111 

Eij must be symmetric; for equal masses* 

rij = r.sij . (8.12) 

We can identify H as the subgroup of unitary transformations on i,j 

which preserves (8.121: H = O(2n). The (X,) form a single irreducible 

representation of 0(2n), the traceless symmetric tensor representation, 

so the matrix f,, in (8.9) reduces as before to fx*Gyz. 

In the case of a pseudoreal representation, the two-index invariant 

may be brought to the form 

The mass term 

Eas$aai$RbjEabxij 

requires an antisymmetric Pj; for equal masses* one must set 

IS.131 

(8.14) 
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zij = 1.Eij (8.15) 

H must be the group of transformations on i,j- uhich~preserves E; this is 

the symplectic group: H = Sp(2n). The (X,) form the traceless 

antisymmetric tensor representation of Sp(2n), so that, again 

f YZ = f,-sy,. The case of complex r fits naturally inside each of these 

two cases according to the decomposition: 

SU(2n) 3 SU(n) X SU(n) x U(l) 

O(2n) or Sp(2n) 3 SU(n) x U(1) (8.16) 

All three scenarios have the property that there exists a parity 

operator P satisfying 

P*=l , P Ti P = +Ti p P xz P = -xr (8.171 

so that the symmetry breaking respects parity. (In mathematical terms, 

in each case, G/H is a symmetric space C821.1 This parity invariance 

will be a useful constraint on our later analysis. 

8.2 VACUUM ENERGETICS 

Let us now discuss, in general terms, the effect of a small symmetry- 

breaking perturbation on the patterns of symmetry-breaking described in 

the previous section. Call this perturbation AH, and denote a given 

vacuum state by 

I a> = exp(iaZXZ)IO> (8.18) 

Then, to leading order in perturbative theory, the energy shift of each 

of the degenerate vacua is given by: 

AEta) = <alAHla> q <OlexpC-iaZXzl(AH1 exp[iaZXZJIO> (8.19) 
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This expression generally depends on a and breaks the degeneracy of the 

vacuum states. The minimum of AE(a) obeys - - 

a 
i - AE(a) = <al CX,,AHlla> = 0 

aa, (8.20) 

It is useful to rearrange our coordinates so that the minimum occurs at 

the state IO>, that is, at ay = 0. 

Near the minimum, the effective action curves upward. The effect of 

AH is indicated in fig. 21: Level directions of the effective action, 

corresponding to directions in G/H, become directions uith small but 

nonzero curvature. Since the potential has positive curvature near 

a = 0, the Goldstone bosons acquire a mass matrix of the form: 

a* 
(m2)yz = C- E(a) 

bay&. 

= -c co1 Ex~,CX,,AHII~O> . (8.21) 

It’s not hard to find the normalization factor C, but it is not a one- 

line argument; I will refer you to the paper of Dashen in uhich this 

formula first appeared E831. The result is 

1 
(m2jyz = -- <ol cx,, CX,,AHII 

fl12 
I 0) . 

(8.22) 

In the usual strong interactions , the most important symmetry- 

breaking perturbation is the quark mass term. This perturbation gives 

rise, for example, to pion masses of the form 

(m”+md) 
mx* a 

fV 2 (8.23) 

where m,,md are the u and d quark masses. In theories of dynamical 

breaking of the weak interaction symmetry, the most important 
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perturbations come from weak and electromagnetic (and color) gauge boson 
~--- 

exchange. This latter situation is a bit more interesting -because it 

turns inward on itself: The weak interactions determine their oun 

pattern of symmetry breaking by their choice of a vacuum orientation. I 

will devote the rest of this section to studying the physics of this 

situation. This analysis has been given in full generality only 

relatively recently C76,81,841, though it originated in the classic 

calculation of Das, Guralnik, Mathur, Low, and, Young of the TT+-T~O mass 

difference E851. 

Let me begin by defining the problem a bit more carefully. One may 

couple additional gauge bosons to a theory with global symmetry G by 

promoting some subgroup G # of G to a group of local symmetries. The 

gauge bosons then couple to some subgroup of G. The spontaneous 

breaking of G picks out another subgroup, H. In this situation, we find 

that the relative alignment of these subgroups may have physical 

meaning. The geometric relation between Gw and H is sketched in 

fig. 22. Gauge bosons coupled to charges in region I will be 

undisturbed and remain massless; gauge bosons in region II will find 

themselves coupled to broken symmetries and will receive mass from the 

Higgs mechanism. However, the overlap of GM and H is dynamically 

determined: It depends on which of the initially degenerate vacua la> 

is preferred by the perturbations induced by GM exchanges. Thus, even 

if these additional gauge bosons are weakly coupled, they have a 

dramatic effect on the qualitative structure of the model. I uould like 

to find a criterion which determines the preferred vacuum state, and, 

thereby, the pattern of GM breaking. 

To begin, let me write the G,,, couplings in the form 



6L = Ah&wGA$ = A”,J~A (8.24) 
-e - 

where the GA and, -generally, representation matrices. with capital 

indices, are defined to absorb normalization factors and coupling 

constants. For any given vacuum IO>, I can choose the generators TI so 

that TilD> = 0, then I can decompose each GA into T and X parts. Denote 

this decomposition by 

GA = TIC A) + XZc A) or @A = J~I( A) + JILzr A) (8.25) 

Using this notation, we may write the perturbation due to one-gauge 

boson exchange, to leading order in AAU coupling constants, as 

AH = - ! Jd’x Am" T[J~A(x)JvA(O)I 
2 (8.26) 

where AuP is the free gauge boson propagator. The expectation value of 

(8.26) is the free gauge boson propagator. The expectation value of 

(8.26) in the particular vacuum IO> is given by 

-AH = - 1 Jd’$x Amy <OITJ~A(X)J,A(O)IO> 
2 (8.27) 

To evaluate this, imagine decomposing GA as in (8.25). In the schemes 

of xSB discussed in the previous section, the product of two T’s or tuo 

X’s contains only one invariant. 

currents 

This allows us to simplify products of 

<OITJp,iJyiIO> = <JTJT> 6ij = 

<O)TJK,JVylO> = <JxJx> 6,y = 

The quantities in brackets are H- 

<JTJT> Tr(TiTj) 

<JxJX> Tr(XxXy) (8.28) 

invariant amplitudes; their dependence 

on w,v has been suppressed. To these relations, we may add the 

constraint 

<OITJwiJyx)O> = 0 (8.29) 



102 

which follows from parity (eq. (8.17)). Equations (8.28) and (8.29) 
--.- 

allow us to simplify the expectation value in- (8.27j.as foltous: 

<OITJbAJ,1AIO> = <OITJILUA,JVI(A,,IO> + <O(TJ~Z(A)JYZ(A)IO> 

= <JTJT> Tr(TI( A)TI( A) I + <JxJX> Tr(Xz( A)Xz( A)) 

= <JTJT> Tr(TI(A)GAl + <JxJx> Tr(Xz(A)GA) 

= <JTJT> Tr(GAGA) + <(JxJx - JTJT)> Tr(Xz(A)GA) 
(8.30) 

The first term in the last line of (8.30) is an invariant independent of 

the vacuum orientation. Thus we may rewrite (8.27) as 

E(O) = E. + (l/2 Jd’x AD y <JbTJyT-JbxJyx>)-Tr(Xz( A))* (8.31) 

where Ec is independent of the vacuum orientation. The projection of GA 

to Xz(A) clearly depends upon the relative orientation of GM and H. The 

expectation value of (8.26) in any other vacuum Ia> is given by an 

expression of the same form, but with XZ( A) replaced by the broken part 

of GA with respect to that vacuum. Let me note that the quantity in 

brackets is quite plausibly positive: The positivity of this quantity 

is roughly the statement that the lightest particle created by JUT (a 

vector meson) is lighter than the lightest axial-vector meson created by 

Jux; the point has been argued out with care by Preskill C841, 

Our final result is that the preferred vacuum is the one which 

minimizes 

Tr(Xz( A) )* (8.321 

This criterion has an instructive physical interpretation. Let us think 

a bit about the physics of the Higgs mechanism and the mass generation 

for the GM gauge boson. The G,,, bosons receive mass at leading order in 

perturbation theory if the current-current vacuum expectation value 

shown in fig. 23 has the form: 
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<OITJ,&-k)Jye(k)lO> -> -im*AB-g@v 
__-.- k+O (8.33) 

^ - 

However/this matrix element is transverse; hence, (8.33) implies the 

more complete form C861: k&u 
<OITJ~A(-k)JVs(k)lO> -> -i(m*As) grrV - - 

k-*0 I 1 k2 (8.34) 

The gWu term is generally hard to isolate, but the pole can be produced 

only by a massless particle created by one current and annihilated by 

the other. The only candidate is the Goldstone boson. Inserting fy as 

an intermediate state in the current-current matrix element, we have: 

i 
<O/TJ~AJ~~IO> z <OIJ,A(-k)lDy> -- <VylJys(klJO> 

k+O k* 

i 
= (iku,f, Tr(GAX,)) - (-ikBfn Tr(X,Gs)) 

k* 

k&u 
= i - fm* Tr(Xz( A)xzc 6)) 

k* (8.35) 

so, in any given vacuum, the gauge bosons acquire a mass matrix 

m*hB = fn* Tr(Xz( A)XZ( ~1) (8.36) 

The preferred vacuum is then the one which minimizes Tr(m*). This 

criterion, that the elementary fermions should condense in such a way as 

to break GM as little as possible, is reminiscent of the MAC criterion 

which we discussed in section 2.3. Indeed, a bit of rearrangement shous 

that they are identical E841. 
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8.3 AN AMUSING EXAMPLE 
--.- 

To clarify the workings of vacuum orientation, an.d to-iHustrate its 

potential importance, let us work through an example of the phenomenon 

within a simple model of dynamically broken weak interactions. Let me 

imagine a gauge theory with two flavors of Dirac fermions U,D; the 

corresponding multiplet of L-fermions is 

qA = (UL, DL, Ut,, Dt,) . (8.371 

Let us gauge, with a weak coupling constant, the SU(2) symmetry which 

links UL and DL, so that (8.24) takes the explicit form 

GL = w A&ptG A’# (8.38) 

with 

GA= [g12uA / ,] 
(8.391 

and A = 1,2,3. (For those interested in realism, this is the standard 

model of weak interactions, with sinzGw = 0.1 

If U and D belong to a complex representation of the strong- 

interaction gauge group, the chiral symmetry is 

G = SU(2) x SU(2) x U(1). In this case, Gw coincides with the factor 

SU(2)L of G, and there is no freedom of vacuum alignment. The 

condensate 

E* (&J+DDI = 1. (E~~~UL,U~ ws+DLCID t,,l + h-c.1 (8.40) 

breaks GpI completely; all other condensates related to (8.40) by G 

transformations may be brought into the form of (8.40) by Gw gauge 

transformations. 

With respect to the condensate (8.40): 

l/2 .i 
Ti = 

(8.411 
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where i,z = 1,2,3. The generators (8.39) may be decomposed into 
--.- 

(8.421 

and, using (8.361, we may construct the mass matrix of the Gw bosons 

g2fl12 
m2AB = - GAB 

4 (8.43) 

The three SU(2) bosons become the massive mesons W*w,W-wrWow which 

mediate the charged and neutral currents.* 

If U and D belong to a real representation, there are physically 

distinct possibilities for the vacuum orientation, and we must decide 

among them. Consider first the case of a strictly real representation. 

Equation (8.40) is still a possible condensate; however, we can 

construct another condensate which preserves at least the component 

A = 3 of Gw: 

~-CuR[uL~,DL~b +‘-&d&.sb~b ab + h.c. (8.441 

In the vacuum corresponding to (8.441, W3w acquires no mass. However, 

the components A = 1,2 of Gw are still spontaneously broken. Since 

(8.441 is symmetric under interchange of UL and DL, it represents a 

condensate of isospin 1, while (8.40) carries isospin l/2 under the 

gauged SlJ(2I. One can show that (8.44) implies TI(A) = 0 for A = 1,2; 

this leads to 

fir2 Tr(xz( &)X2(B)) = fm2 Tr(GAGeI = - SAB 
2 

for A = 1,2. Thus 

Tr m2 = g2frr2 , 

(8.45) 

03.461 

*For a more realistic version of this model, see C87,SSl. 
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a larger value than that obtained from (8.43). The condensate (8.401 
-~.- 

still gives the preferred vacuum orientation in this model.- 

If U and D belong to a pseudoreal representation, however, the 

situation is quite different CSl3. The condensate 

T.~aaCUL~aDL~b+Ut,,,Dt~~blE~b + h.c. (8.47) 

is antisymmetric under the interchange of U and 0. This condensate thus 

carries isospin 0; it preserves all of the weakly gauged symmetries. 

Thus, (8.47) allows all three WA, to remain massless. Since, for this 

choice, 

Tr(m21 = 0 (8.48) 

Equation (8.47) represents the preferred vacuum orientation. 

Apparently, this last case, which seems to differ little in its 

construction from the previous two, realizes the gauged SU(21 in a 

completely different way. Whereas the previous two cases may be 

extended to plausible models of the weak interactions, the physics of 

the third case makes this impossible there. 



Chapter 9. 

PHENOMENOLOGICAL LAGRANGIANS AND THEIR APPLICATIONS 

9.1 THE FATE OF THE GOLDSTONE BOSONS 

In the previous section, we began a discussion of the effect on a 

given pattern of xSB of explicit symmetry-beaking perturbations. We 

considered, in particular, the effects of weakly gauging a subgroup Gw 

of the chiral symmetry group. We saw that this symmetry-breaking 

perturbation orients the broken symmetry vacuum; we learned how to 

determine this orientation and showed how the vacuum orientation 

determines the masses of gauge bosons coupled weakly to the chiral 

currents. In this section, I would like to pursue the physics of this 

system further, to study the dynamics of the Goldstone bosons. I will 

f ecus, in particular, on the question of what masses these particles 

acquire from the symmetry-breaking perturbation. At the end of this 

section, I will briefly indicate how this physics generalizes to chiral 

gauge theories with almost massless fermions. 

Let me first discuss the basic systematics of the Goldstone boson 

spectrum. In section 8.2 and in fig. 22, we discussed the overlap of 

the subgroups Gw and H of G, and the physical consequences of this 

overlap. We might also single out another subgroup of G for our 

attention: Let GP be the subgroup of elements of G which commute with 

all the generators of Gw. Then the coupling of-gauge bosons to the 

currents of Gw breaks G explicitly to Gw X GP. The complete pattern of 

symmetry breaking in the theory with Gw weakly gauged is then: 

- 107 - 
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Each spontaneously broken generator of G has associated with it a 

Goldstone boson which is massless to zeroth order in the Gw couplings. 

These bosons are divided into three classes according to the relation of 

the corresponding generators to the generators of Gw and G,; this 

division is indicated pictorially in fig. 24 1761. The transformations 

in regions I and II remain exact symmetries even when the effects of the 

perturbation are included. The Goldstone bosons of region I, however. 

are absorbed by the gauge bosons which acquire mass through the Higgs 

mechanism. The Goldstone bosons of region II remain exactly massless 

bosons in the final theory. The bosons in region III, however, do not 

correspond to exact symmetries in the full theory; these bosons acquire 

masses of order gh, where g is the coupling constant of the gauge group 

Gw, and A is the mass scale of the strong interactions producing the 

original xSB. Weinberg calls these particles “pseudo-Goldstone bosons” 

tS91. 

Let us try to compute the masses of these bosons, to leading order 

in g2. One way to do this would be to use the result (8.31) for E(a) in 

conjunction with Dashen’s formula (8.221. This procedure gives for the 

pseudo-Goldstone boson mass matrix 

1 a2 
m2yz = - - E(a) = M2 

fl12 bay&. I 

a2 
- TrC(Xz( Al )‘]a 
h,hz 1 

where 

M2 = 1 $d’x Asv <JuTJvT - JILXJVX) 
fll 

(9.2) 

(9.31 
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This strategy is worked out in detail in E81,841. I would prefer, 
- 

however, to obtain this spectrum of masses by-a diff.erent route. This 

second technique will not be quite as powerful as the first for this 

particular application; it will only be able to compute the mass matrix 

(m2) yr up to an overal 1 scale. However, this technique will be 

applicable to a broader class of problems than the energetic 

considerations of section 8; it will also give us a different point of 

view from which to survey the dynamics of Goldstone bosons. 

9.2 THE FORMALISM OF PHENOMENOLOGICAL LAGRANGIANS 

In the analysis just given, and in the whole of section 8, we studied 

Goldstone bosons by working out the shape of the energy surface as a 

function of vacuum orientation. I would now like to change my 

perspective slightly, and try simply to write a phenomenological 

description of particles and their interactions in a theory with broken 

chiral symmetries. In constructing this description, I will concentrate 

on the lightest particles of the theory and their interactions at low 

energy. I will also build in the pattern of spontaneous symmetry 

breaking-G + H. I must allow the most general possible interactions 

consistent with these restrictions to appear in the phenomenological 

Lagrangian. But these simple restrictions, properly applied, turn out 

to be remarkably powerful constraints, which fix all of the low-energy 

dynamics in terms of a few easily recognized parameters. The power of 

this approach was first demonstrated some time ago by Weinberg E901 and 

Schwinger C911; the philosophy of the method has recently been discussed 

from a modern perspective by Weinberg [92]. 
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Let us try first to construct one example of such a phenomenological 
--- - 

Lagrangian; we can discuss the question of its uniqueness later. We may 

assume that, in a theory with spontaneous xSB, the only light particles 

in the theory are the Goldstone bosons. These Goldstone bosons may be 

described by fields which are coordinates on the coset space G/H; these 

bosons are, in fact, precisely the quantized excitations along these 

coordinate directions. It is therefore easy to write a Lagrangian which 

has the Goldstone bosons xY as its fundamental fields and which is 

invariant under G transformations; one can simply write 

J 1 
L = d’x- gxz(x/F) $&blLvz 

2 (9.4) 

where gxz(x) is the metric on G/H in the chosen coordinates and F is a 

constant with dimension of mass. F is presumably of order A, the mass 

scale of the strong interactions which induce xSB. For the special case 

of the breaking pattern SU(n) x SU(n) + SU(n), G/H = SU(n) may be 

parameterized by unitary matrices a-t 
U = exp i - [ 1 F (9.51 

where t-is an SU(n) generator. In these coordinates, an invariant 

Lagrangian is given by: 

L = J F2 
d@x - trCqLU 

2 
tmJ1 

(9.6) 

The SU(n) X SU(n) globa 1 symmetry acts on U according to 

u + VL u vg (9.7) 

where VL and VR are unitary matrices corresponding, respectively, to 

SU(n)L and SU(nIR transformations; it is easily seen that (9.6) is 

invariant to (9.71. 
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One should note, however, that the transformation (9.7) (and, more 
--- - 

generally, the action 

TY = 0, as a translat 

7ry + vy + ay + . 

The expansion about TI 

of G on the coordinates vy of ..(9.43) acts, near 

ion of xy: 

. . (9.81 

= 0, then, is an expansion about a state of 

spontaneously broken symmetry. For example, the expansion of (9.61 

about U = 1, or x = 0, respects only the SU(nI subgroup of the full 

global symmetry on which VL = VR. This emphasizes the fact that the 

coordinates B are precisely the right fields with which to describe 

physics at low energies. 

Now that we have written one candidate for a phenomenological 

Lagrangian, let us construct the most general such Lagrangian. For the 

moment, I will restrict myself to the SU(n) x SU(n)-invariant case and 

use the coordinates (9.5). Since U+U = 1, (9.6) is actually the most 

general invariant coupling with two derivatives. Adding terms with 

higher derivatives, we can construct 

trC~UtWJl + A + trC~U+blLUbyU+bvUl 

+ At trCqLUtb~UWJtbyU1 + (6 derivatives1 + *** 
I (9.9) 

Al and At are unknown dimensionless parameters. But consider the 

consequences of expanding (9.9) in powers of (n/F1 and using this 

Lagrangian to compute scattering amplitudes at center-of-mass energies E 

much less than F, or much less than A. Any vertex appearing in the 

second or third term of (9.91 is smaller than the corresponding vertex 

from the first term by a factor 
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Et E2 
--.- 

Ai --- 
F2 A2 _ - (9.10) 

Thus, if E is much less than A we need keep only the first term of 

(9.9); this term restricts the dynamics of Goldstone bosons completely 

once the value of F is specified. 

It is clearly useful to extend this argument to more general patterns 

of symmetry breaking, and to include the effects of symmetry-breaking 

perturbations. To do this, it is easiest to first think more 

systematically about the best choice of coordinates. A beautiful set of 

coordinates, which works for any coset space G/H, was constructed and 

applied to this problem by Callan, Coleman, Wess, and Zumino (CCWZ) 

c93,941. Let me now describe their formalism. (This formalism has also 

been reviewed in C41.1 

To understand the choice of coordinates made by CCWZ, it is useful to 

think about how the underlying fermion fields $ri and $‘pj behave under 

chiral transformations. In general, *ri and $rj have completely 

different transformation laws under G. However, in any phenomenological 

description of the broken-symmetry state, we would like to be able to 

write a mass term 1 inking JIri and $ri. Such a mass term would be 

permitted by invariance under H; however, we would like to construct L 

to be invariant under the full group 6. The problem may be phrased more 

generally, in terms of a general matter field 90 of the original theory: 

If #O transforms according to some representation R of G, this 

representation R will split into several irreducible representations 

Ri Of H. These representations will correspond to particle multiplets 

under H which might be given very different masses as the result of the 
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spontaneous symmetry breaking. To describe the components of #o 
-- -- 

phenomenologically, we must replace + e by a field 9whose transformation 

law under general transformations in G does not mix up the component 

representations RI. 

This requirement seems at first sight paradoxical. However, it can 

be met by defining at each point a local vacuum orientation and 

referring 90(x) to this orientation: Let us represent the local 

orientation of the vacuum by an element of G: 

expEiIfy(xlXyl (9.11) 

where II,(x) is a (dimensionless) field. We will see later that II,(x) is 

proportional to the Goldstone boson field. Using (9.111, $0 can be 

written in the factorized form: 

#o(x) = expCiIly(x)Xyl#(x) (9.12) 

Now we can factor a general G transformation of #O into two parts: A 

motion in H which acts on 4, and which does not mix H-representations 

(9.131 

within 9, and a motion in G/H which changes the local vacuum 

orientation. Represent the transformation 

40 + exp[ia,G,l9, 

by writing 

expCiIf,X,ld + expIia,G,l expCiII,X,l9 

= exp[iIl’,(a,ll1.X,] exp[iui(arlI)*Ti]$ (9.14) 

To obtain the second line, I hve used the fact that a general element of 

G may be decomposed uniquely as a transformation in H followed by 

transformation into G/H. Equation (9.14) suggests that we consider # as 

the field which represents 4 c in the phenomenological Lagrangian and 

assign to this field and the auxiliary fields lly the following 

transformation laws: 
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d + exp[iui(a,lI)Ti]# _ - (9.15) 

This is a nonlinear representation of G which does not mix H- 

representations within 4a. Under a pure H transformation (a,G, = aiTi)r 

(9.15) simplifies to 

lIyXy + exp[iaiTil (ITyXy) exp[-iaiTi1 

4 -) exp[iaiTi]# (9.161 

so that 9,lI transform linearly under H. II, transforms like the charge 

XY. Coleman, Wess and Zumino 1931 have proven that any nonlinear 

representation of G which becomes linear on a subset H may be brought 

into the form of (9.15) by a change of coordinates. 

Because (9.15) is a nonlinear transformation, &II, has a very 

complicated transformation law. We can find an object with a simpler 

transformation law by starting from $& 0, which transforms linearly 

under G. Let me first introduce the notation. 

exp[-iTI.Xl h(exp[iIISXl> = iqLII,(D,,(lI)X, + Evi(IIITi) 
(9.17) 

The quantity on the left is a generator of G; I 

terms of generators, def ining expansion coeffic 

Using (9.171, we may expand 

WO = &(expCiIL*Xl+) 

= expCiII*Xl (( i$JI,D,,(II)X,)b 

+ ( (qL+ihIIyEyi (IfIT i I$)) 

have expanded it in 

ients D(D) and E(D). 

(9.18) 

The quantity in parentheses transforms under G like + in (9.15). It is 

consistent to restrict 4 to be nonzero for only one of the Rip but then 

the two terms in brackets will belong to different H representations in 

R. They must therefore transform independently with this transformation 

law. Thus 
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DILIIz = Z+ulIy*DYZ(II) + (exp[i~iTil)~~(~~~~D~~(X)) 
--. - (9.19) 

_ - 
under (9.. 151, where Tl in (9.19) is taken in the representation of H to 

which the (X,) belong. 

We can now build Lagrangians invariant to G by constructing H- 

invariant combinations of Dug,. Since a transformation in G/H 

translates lly as in (9.8) by a global parameter ayr Ily may not appear 

without a derivative in a G-invariant Lagrangian except as a part of 

D,,(D). Thus, if the 11, belong to a single irreducible representation 

of H (a situation to which I will specialize for the remainder of my 

discussion), the most general invariant Lagrangian containing no more 

than two derivatives is 

1 
L = - f,,2(D,JIy)2 

2 (9.201 

For the moment, simply regard fir as a coefficient with the dimensions of 

mass; I will show later, though, that it is the same as the coefficient 

fx which appears in (8.10). Possible G-invariant terms with four or 

more derivatives are smaller than (9.20) by the factor (9.10) and may be 

ignored. 

It is not difficult to extend the global G invariance of (9.201 to a 

local invariance by applying the trick used in (9.18) to the gauge- 

covariant derivative, (h-iAwAGA)40. Let us define F(D) and H(D) by 

exp[-ilI*Xl(GA) exp[ilI-XI = FAy(lI)Xx + HAi(II)Ti (9.21) 

Then we may decompose 

(%-iAwAGA)4c = eXp[in-Xl (i( $JI,-D,,(lI) - A,AFA,(~))X,~ 

+ (b-iC ***)Ti)4) (9.221 

From (9.221, we can identify the chiral- and gauge-covariant derivative 

9qJI, = (3,Jl,D,,UI> - A~,AFA~(D) 1 (9.231 
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1 

L =‘- f,2(C@ulI,)2 
2 (9.241 

we have constructed a Lagrangian locally gauge-invariant under the 

symmetries associated with the A~A. 

Let us now work out a few terms of the chiral Lagrangian more 

explicitly. It is not hard to see that, to leading order in II, 

D,,(lI) = 6,, + - -. 

F A,(n) = Tr(GAXz) + -*- (9.25) 

If we define 

fY = f,lIy , (9.261 

so that the boson kinetic energy term is conventionally normalized, the 

gauge-invariant phenomenological Lagrangian (9.24) takes the form 

1 
L = - (%Tly - fx Tr(GAXy)A~A)2 + *** 

2 (9.27) 

By setting GA equal to XZr so that AuA couples to the current Juzr we 

can check that (9.27) does yield precisely the expression (8.10) for the 

amplitude that JIlz creates a Goldstone boson. Thus f,, has been 

correctly identified. The gauge field mass matrix (8.36) is also 

displayed manifestly in (9.271. 

The higher-order terms in the phenomenological Lagrangian contain 

multi-pion and pion-gauge boson interactions. In parity-invariant 

theories such as those of section 8.1, these interactions may be 

represented compactly if one introduces a bit more notation. Denote the 

structure constants of G by writing 

EG~,GIJ = tab&c - (9.28) 

We might then define 
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(9.29) 

Equation (9.29) is a representation of (lI*X) in the_adjoint- 

representation of G. Then, classifying the various terms in (9.17) and 

(9.21) by parity, one can verify that 

sin t-II 
D,,tlI> = 1 1 FA,(lI) = (COS t’I!)A, 

t-x yz (9.301 

The matrix functions are defined as power series. Inserting (9.30) into 

(9.23) gives all of the pion-gauge boson vertices of the theory 

explicitly, at least to leading order in Et/AZ. 

The Lagrangian (9.24) is not yet, however, a complete description of 

the low-energy dynamics of the perturbed gauge theory. One important 

effect is still missing: the masses generated for pseudo-Goldstone 

bosons by exchange of the weak gauge bosons AuA. It is true that these 

masses are seen to be induced when one computes radiative corrections to 

the Lagrangian (9.24). Thinking about radiative corrections, however, 

only emphasizes the problem: The radiative corrections to (9.24) 

contain a number of quadradically ultraviolet divergent contributions, 

the first of which are shown in fig. 25. Since these contributions do 

not vanish at E = 0 and do not respect the global G symmetry, they are 

not of the form of any II interaction in (9.24). We should represent 

these effects by a set of counterterms. We need to know, then, how to 

construct such counterterms. 

The one constraint that we have on the structure of these 

counterterms is that they have a definite transformation property under 

G: The graphs of fig. 25 transform under G in the same way as the 

perturbation (8.261 induced by one-gauge-boson exchange - as a symmetric 
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tensor with two indices in the adjoint representation of G. The 
--. - 

philosophy of phenomenological Lagrangians suggests~~.that- we-should 

simply construct all functions of ll with this transformation law 

containing no derivatives; the counterterms for fig. 25 should then be 

an arbitrary linear combination of these functions. To perform this 

construction, we must first answer the following question: How do we 

construct a function of II which transforms linearly under G according to 

a specific irreducible representation R? 

This question is readily answered by making use of the CCWZ 

coordinates C941. Let us first try to construct such a function using 

both II and 4 fields. Imagine decomposing R into representations Ri of 

H. Choose a 4 field which transforms under some particular RI. Then we 

can reconstitute a 40 field by writing 

40 = exp(ill*X)4 (9.311 

If II,4 transform according to (9.151, (9.31) transforms linearly under G 

according to R. But now notice that, if Ri is a singlet under H, 4 is 

not transformed by (9.151, and we may omit it. Thus, if R contains in 

its decomposition a singlet j-of H, the object 

exfYCiII*X1-L (9.321 

transforms linearly under G according to R. 

The product of currents CJ,,,AJ~BI which appears in (8.261 belongs to a 

representation which contains two H-invariants, 6ij and 6,,. However, 

6 i j + sxy = Gab (9.331 

is a G-invariant; X,, acting on (9.331, gives zero. Hence, the most 

general function of II’s which transforms linearly under G like (8.26) is 

c951 
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I(A) and Z(A) denote the decomposition (8.251. Replacing II using 

(9.261, setting K = MZfx2, and writing out the commutators explicitly, 

(9.351 may be cast into the form 

1 
(6L12 = - - (m21yr lryxr 

2 (9.361 

where 

(m2) yz = M2~Tr(Xy~TI(A)r~TI(A~rX~ll) - Tr(X,CXz(~,r[Xz(A)rX~ll)l 
(9.371 
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K 
6L = - (eXpCit*lIlIAi CeXpLit-lIl)Aj 6ij 

2 _ - (9.341 

I have used the representation (9.29) of (II-X). If the vacuum alignment 

is chosen properly (in particular, if (8.20) is satisfied), (9.34) may 

be seen to contain no linear terms in II. The terms quadratic in II are: 

((‘k*a)‘Ai&i I( A) + (ts~)2Aj6jI(A)) + (t*n)Ai(t’a>Aj6ij 1 
(9.351 

This result for the pseudo-Goldstone boson mass matrix may be shown 

C81,841 to be identical to (9.2). The coefficient Hz may then be 

identified with (9.3). Except for the question of determining this 

parameter, the phenomenological Lagrangian formalism has allowed us to 

simply write down the correct result, without the necessity of a 

detailed computation. 

I should make a few comments on the form of (9.37). The first set of 

commutators is just proportional to 

g2C2(rw) (9.381 

where rw is the GM representation to which the Goldstone bosons belong. 

This factor is just what one would expect from one-gauge-boson exchange. 
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The second term is more complex. (It is simplified in C811.1 Each of 
--- - 

the two traces is a positive matrix; thus, if-we interpret fm2),, as the 

curvature of the effective action, we see that unbroken G generators 

stabilize the vacuum, and broken G generators destabilize it, in 

accordance with the physics we discussed in section 8.2. 

The full chiral Lagrangian, (9.24) plus (9.341, contains many 

multiparticle vertices. It is worth asking whether we can use it to do 

higher-order computations. This seems at first sight problematical, 

because the Lagrangian is formally non-renormalizable. Even soI one can 

obtain sensible results from loop graphs if one makes use of the 

presence of a natural cutoff, the scale A. Chadha and I have calculated 

some of the one-loop corrections to the x mass matrix (9.37) in models 

of dynamical symmetry breaking C951. The quadratic divergences in this 

calculation have the same structure as the mass term above and may be 

removed by adjusting K in (9.34). The logarithmically divergent terms 

give new group-theoretic structures. These new structures transform 

like (AHj2. We should, properly, represent these contributions by 

writing terms of the most general possible structure for this 

transformation law, to appear with coefficients of order (g212 in the 

phenemonological Lagrangian. However, the logarithmically divergent 

terms which arise from perturbation theory contain an extra infrared 

enhancement factor of the form 

log(A2/m,2) = log(1/g2) . (9.391 

One can hope that these terms, of order g’+.log(l/g2), are the dominant 

corrections;+ using this assumption, one can predict the leading 

*In doing this, we follow the philosophy of chiral perturbation 
theory 15,961. 
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corrections to the lowest order mass formula. 

9.3 AN EXAMPLE WITH LIGHT FERMIONS 

In addition to providing insight into the dynamics of light bosons, 

the phenomenological Lagrangian method can also be used to explore the 

dynamics of light fermions. We have seen in section 5 that it is common 

in chiral gauge theories for a multiplet of fermions to be kept massless 

by symmetry constraints. By analogy to the physics of Goldstone bosons 

which we have just discussed, one can easily imagine that weak gauging 

of some chiral symmetries in such a model could give these fermions 

small masses. In this section, I will sketch the analysis of a very 

simple model, due to Dimopoulos and Susskind 1971, in which fermion 

masses appear in this way. My presentation must unfortunately be rather 

brief; a more detailed analysis of this model may be found in C981. 

Other models in which light fermion masses arise in this way have been 

discussed by Weinberg C531, Nilles and Raby C991, and Sikivie ClOOl. 

The model of Dimopoulos and Susskind is built upon a strongly 

interacting SUI3) gauge theory containing one 6 and seven 3 

represeniations of L-fermions. The 6 is the (2) of SU(3); according to 

eq- (5.121, this model is anomaly-free. The chiral symmetry of this 

theory is G = SUC7) x U(1). Let me break chiral symmetries and generate 

masses following the methods of section 5. I will assume that chiral 

symmetry is broken by the condensate 

(2) x 3 + 3 

The corresponding mass term with maximal global symmetry is: 

19.401 

Eaa+aab*a, i t&-‘t. + h.C. (9.411 



where a,b = 1,2,3 are color ind 
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ices and i = 1,...,7 is a f lavor index. 

Note that only three of the 3’s acquire mass.- Equation (9 .-41) breaks 

the SU(31 gauge symmetry completely; it also breaks down the 

SUr.7) X U(1) flavor symmetry. But, as in the examples of section 5, a 

considerable amount of global symmetry remains, The SU(4) flavor 

symmetry which acts on the components i = 4,5,6,7 of $,,i is undisturbed 

by (9.41). The SU(3) flavor symmetry acting on the components i = 1,2,3 

Of *'a,i may be combined with global SU(3) gauge symmetry to produce a 

global symmetry which is respected by (9.41). The U(1) charge 

1 
G = - (28 + Q(7)l 

7 (9.421 

built from the anomaly-free global U(1) charge Q and the SU(71 generator 

9~7) given by (5.341, is also preserved by (9.41). The pattern of 

symmetry-breaking is, then (in the notation of (5.37)) 

CSUC3,l x SU(7) x U(1) + SU(3) x SU(41 x U(1) (9.431 

The fermions transform under the unbroken symmetries as 

(2) + c(2), 1, C-21) 

7.5 3 ((n), 1, (+2)) + (CSI, 1, (+211 + (3, 4, (+11) (9.441 

One should recall that Cjl = 3 of SU(3). The pair of fermions in the 

(2) + (2) of SU(3) are given mass by (9.41); the remaining fermions are 

kept massless by symmetry constraints. 

We might now try to break the chiral symmetries which protect these 

massless states by gauging some subgroup of SU(7). A convenient choice 

is the exceptional group G2, which has a 7-dimensional fundamental 

representation. This representation is real, so the theory remains 

anomaly-f rec. 62 is actually the smallest group which contains SU(3) as 

a proper subgroup; the 7 decomposes neatly under SlJ(3) according to 
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7+3+3+1 (9.451 
--.- 

It will also be useful to note that the adjoint representation of Gz, 

which is 14 dimensional, decomposes according to: 

14+8+3+3 (9.461 

The 8 is, of courser the adjoint representation of SU(3). 

The breaking of SU(7) necessarily breaks G2; the most we can save of 

GZ is its SU(31 subgroup. The orientation in which this SU(3) is 

preserved is thus the preferred vacuum alignment. In this orientation, 

the 7 of SU(7) decomposes as follows: 

7 -b (3, 1) + (1, 4) of SU(3) x SU(41 

3 + 3+1 of SU(3) (9.471 

The UC11 charge Q(7) does not commute with Gz; it is therefore 

explicitly broken, and so is i$. In fact, the only symmetry which is 

neither explicitly nor spontaneously broken at this stage is the weakly 

gauged SU(3) group itself. The fermions left massless in (9.44) have 

the following quantum numbers under this SU(3): 

(3, 1, (+2)) + 3 

(3; 4, (+ll) + 8 + 1 + 3 (9.481 

There are no longer symmetry constraints forbidding mass for any 

fermion. 

We have now demonstrated the possibility that small fermion masses 

are generated in this model as effects of weak gauge boson exchanges. 

What we would really like to do, however, is to compute the spectrum of 

these masses. This can, in fact, be done, using the methodology of 

phenomenological Lagrangians. 
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The first step is to write a mass counterterm representing the 
--.- 

effects of one-Gt-boson exchange. To do this; we must construct 

combinations of two massless fermions which transform under H like the 

one-gauge-boson exchange perturbation, and which therefore have the 

structure of fig. 26. One may verify that the 62 currents carry the 

charges tl or 0 under a. Thus, the G2 exchange can absorb only an 

amount of charge &ij = 22. This means that fig. 26 can only produce a 

mass term which pairs the (3, 4, (+l)) of (9.44) with itself. Such a 

term gives mass only to the 8 and 1 in (9.48). There is, in fact, only 

one combination of fermions with the required structure; thus, there 

must be a relation between ml and me. 

The 3 + 3 mass may be computed by constructing the phenomenological 

Lagrangian and computing its perturbative corrections. One can compute 

at least the contributions to this mass enhanced by infrared logarithms, 

as I explained at the end of section 9.2. The leading diagrams are 

shown in fig. 27. The diagram involving a massive G2 boson Ww has a 

logarithmic ultraviolet divergence, which I interpret as 

log(A2/mw21 = log(l/a,l (9.491 

where as-is the SU(31 or GZ coupling constant. The coupling of the Ww 

to the 3 is through the analogue of a vector current and so involves no 

additional parameters; however, the coupling of the Ww to the 3 occurs 

via the axial current and so may have a renormalization factor gr. 

Hopeful 1 y here, as in the familiar strong interactions, this factor is 

close to 1. The graph involving a TI exchange turns out to give zero: 

The coupling of the v to the 3 vanishes by parity. The result of this 

computation is the complete spectrum of light masses: 
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- The perturbation of the pattern of xSB by weak gauge exchanges. 

These are all phenomena of importance for understanding the structure of 

strongly interacting gauge theories of fermions. To varying degrees, 

they are all in need of further theoretical elucidation. They are also, 

at the moment, theoretical mechanisms in need of application, whose role 

in the physics of the fundamental interactions is not at all clear. I 

hope that these lectures might serve as a starting point for 

lying them understand ing these mechanisms more deeply, and for app 

fruitfully 

--.- 
as - 

m3 h - gA m8 log(l/as) 
2R (9.501 

This example, has, I hope, amused YOU. It has also reviewed all of 

the major concepts which we have discussed in this course: 

- The breaking of chiral symmetries by fermion pair condensation. 

- The appearance of massless fermions protected by residual chiral 

symmetries. 
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