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ABSTRACT 

Motivated by the desirability of direct observational verification of the large- 

scale homogeneity of the universe, and relying on assumptions deemed to be 

well supported by the existing observational data, we develop local models with 

radial inhomogeneities as a first step toward a detailed framework for com- 

parison with observations. Various observational quantities are expanded in 

powers of the redshift. While the leading terms generally coincide with the 

corresponding Priedmann-Robertson-Walker quantities, the higher-order con- 

tributions are modified by the presence of inhomogeneities. It is concluded that 

in as much as the next-to-leading terms (such as the deceleration parameter) 

in such an expansion are generally poorly determined by present observations, 

the inhomogeneous models developed here are locally indistinguishable from the 

standard homogeneous models. A possible exception may be the measurement 

of redshift evolution, should this become feasible with sufficient accuracy. 
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I. INTRODUCTION AND SUMMARY 

-. 

The standard hot big bang cosmology, founded on the cosmological principle and 

the primeval fireball, provides a remarkably simple and successful description of the 

evolution of the universe (recent reviews include Dolgov and Zel’dovich 1981; Steigman 

1979; a standard reference is Weinberg 1972). Aside from providing a globally consistent 

space-time description which is in accord with cosmological observations, notably the 

Hubble expansion (Tammann, Sandage and Yahil1980), it provides a scenario of primor- 

dial nucleosynthesis (reviewed in Schramm and Wagoner 1977) which is consistent with 

the observed light-element abundances and, more importantly, has received a decisive 

confirmation in the discovery of the cosmic microwave radiation. Recent developments in 

connection with grand unified theories of particle interactions, particularly with respect 

to a mechanism of baryon asymmetry generation in the early universe (Dolgov and 

Zel’dovich 1981), as well as the more speculative schemes (Guth 1982) to account for the 

horizon and flatness puzzles (Dicke and Peebles 1979), have served to integrate further 

cosmology and the standard model into the main body of research on the fundamental 

structure of matter. Needless to say, the standard model is not without its difficulties, 

as can be seen in the various reviews cited above. 

A particularly striking aspect of the standard model, and one which is the concern of 

the present work, is the limited extent of verification which the cosmological principle has 

received from observations, especially in regard to the issue of large-scale homogeneity in 

the deep universe. This is a well-recognized circumstance (see, e.g., Kristian and Sachs 

1966; Peebles 1980; Dicke and Peebles 1979; Ellis 1980), and one which is principally a 

consequence of the meager amount of reliable information that can be extracted from 

difficult cosmological observations. In view of the enhanced significance of cosmology, 

particularly in relation to the physics of very high energies, it seems worthwhile to 

continue the effort toward establishing a more reliable observational basis for the cos- 

mological principle. The pioneering work in this direction is the important paper of 

Kristian and Sachs (1986), and more recent work in the same spirit is described in Ellis 

(1980). 

The present work seeks to examine the large-scale homogeneity of the universe 

within a framework which incorporates only what may be considered to be well supported 

by observations. Thus we are considering a limited region of the universe in our 
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neighborhood, corresponding to a limited range of redshifts, say less than a half or 

so, disregarding thereby the global aspects of space-time structure. It is then ex- 

pedient, as well as adequate, to expand the various quantities of interest in powers of the 

redshift, as suggested by Kristian and Sachs (1966), and to retain only the first correction 

beyond the leading term. Stated crudely, the leading quantities (in each term) will nor- 

mally coincide with those of the Friedmann-Robertson-Walker (FRW) universe, while the 

corrections represent deviations thereof. In this way, one is able to parametrize an im- 

portant portion of the presently observable universe in a fairly model-independent way. 

To implement the above ideas, we first observe that the observational evidence 

supporting isotropy, particularly the isotropy of the cosmic microwave background, the 

source distributions, and the Hubble flow (Peebles 1980; MacCallum 1979), is sufficiently 

compelling to render the assumption of a spatially isotropic space-time (centered about 

us) a reasonable working hypothesis.’ In contrast to isotropy, there is little direct 

1. This is not to imply that isotropy is uniquely implied by the evidence; see Ellis 

(1980) in this connection. -- 

evidence in support of (large-scale, radial) homogeneity, a property.-which is usually 

argued for on the basis of the Copernican principle (Peebles 1980). While the latter 

is a reasonable and aesthetically appealing assumption, it certainly does not constitute 

acceptable evidence. We shall therefore allow for radial inhomogeneities as a diagnostic 

technique to study the issue of large-scale homogeneity. It is perhaps worth emphasizing 

that the use of such essentially local models to confront observations is not to be confused 

with suggestions of anthropocentric global models for which there is neither observational 

evidence nor a reasonable a priori justification. Further motivation for investigating 

large-scale inhomogeneities is provided by the recent discovery of voids (Kirshner et al. 

1981; Gregory and Thompson 1982; Doroshkevich, Shandarin, and Zel’dovich 1982). 

Having thus assumed a spatially isotropic metric in our neighborhood, we add the 

assumption that (the averaged-out) cosmic matter may be represented by a perfect fluid 

obeying a physically reasonable equation of state of the form p = p(p), or p = 0, where 

p and p represent the density and the pressure. These two cases will be referred to as 

I and II. They cover the equations of state usually considered, case II being appropriate 

where pressure is negligible, and case I where it is not.2 Finally, in expanding the pro- 

. 
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2. Note that the pressure-free limit of case I corresponds to a constant density, a 

situation which is neither relevant, nor equivalent to case II. 

perties of the universe in our neighborhood, we are assuming our world line to be non- 

singular and the metric sufficiently differentiable thereabout. 

A number of authors have considered a variety of spatially isotropic, but radially 

inhomogeneous models in the past (e.g., Lemaitre 1933; Tolman 1934; Bondi 1947; 

Dodson 1972; Roeder 1975). With very few exceptions (Roeder 1975), these are proposed 

as global models of the universe. As stated before, the present work differs from 

the above-cited ones in that it relies on spatially isotropic metrics primarily as model- 

independent parametrizations of our observable neighborhood. Indeed we conaider the 

relazation of the assumption of iuotropg and the inclusion of angular inhomogeneitiea a 

logical nezt atep in our approach. 

The conclusions we reach in comparing the detailed results of our models with ob- 

servations indicate that there is no direct evidence excluding large-scale inhomogeneities, 

in accord with general expectations (Kristian and Sachs 1966; Ellis l-980). Indeed the 

changes caused by these inhomogeneities in various observational quantities are to some 

degree manifested by a redefinition of the usual deceleration parameter. Mainly for this 

reason, any probe of large-scale homogeneity will have to rely on a fairly accurate deter- 

mination of this parameter. The possibility of measuring changes in redshifts (Davis 

and May 1978) offers a hope in this connection. 

To illustrate the above remarks, we will summarize here some characteristic results 

of our analysis (see §IIIc for details). The metric forms for cases I (corresponding to any 

physically reasonable equation of state p = p[p]) and II ( corresponding to pressure-free 

-. 

matter) are found to be 

I K 1+ p+ . ..)ZdP+r2(1+ ;++...)h], 

and 
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7” = 42 + 9(t) 
[ 
(1 + br + ...)2dr2 + r2(1 + + + . . . 2dn2 , ) 1 

where cy, p, 7, and 6 are functions of time, and triple dots represent higher-order terms 

in r. For case I, p-37 is the spatial curvature, with d(P - By)/& = -2cuH, where 

H is the Hubble parameter defined in terms of S in the usual way. In both cases, 

inhomogeneity is characterized by a dimensionless function of time C, where . 

(SH)2C1 = -a, ( SH)2Crr = S dS/dt. 

The luminosity distance is then given for both cases by 

dL = ; + &Cl - q - C)z2 + O(2), 

where the deceleration parameter q is defined in terms of S in the usual manner. For 

case I, the relation of C to density and pressure distributions is given by 

q-c’ 3P 2nIl+p, -. ( 1 
where Q is density in units of the critical density, and all quantities on the right-hand- 

side of the equation (as well as of the equation below) refer to measurements by a 

comoving observer at r = 0. In case Ii, the analogous expression is 

c” = - 3 r-(1+@ -- 1 1 6Y-P 
4 l-;T SH ~II dr ’ 

where T is the “age of the universe” in units of H-l, and $l is defined as above. While 

C is in principle an observationally measurable quantity, its actual determination will 

at the very least be subject to the difficulties encountered in the measurement of q. 

The existence of a non-zero C, even as a local phenomenon, obviously has impor- 

tant consequences. For example, the expressions for luminosity distance and density 

distribution for case I illustrate the possibility that the two conventional methods of 

. 
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determining the deceleration parameter q may in fact be measuring two different quan- 

tities q - C and q + C. Since C is restricted only by C’ < q, the significance of the 

existing determinations of q could thereby be drastically altered. 

This paper is organized as follows: In $11 a number of observationally relevant 

results are derived for spatially isotropic metrics in general. Section IIIa is concerned 

with expanding these relations in powers of the redshift, and $IIIb with developing the 

properties of models I and II in a detailed manner. A number of these results are 

summarized in $111~. Finally in §IV a brief evaluation and discussion of these results is 

presented. 

II. OBSERVATIONAL RELATIONS FOR SPATIALLY ISOTROPIC METRICS 

In this section we shall consider a number of quantities related to cosmological 

observations and derive suitable relations for them in the context of a universe described 

by a spatially isotropic metric. Further assumptions appropriate to models I and II will 

not be introduced until the following section, so that the results to be derived here are 

generally valid for a spatially isotropic space-time. The underlying formalism is well 

known (particularly useful sources are Kristian and Sachs 1966 and Ellis 1971), our task 

- here being the application of the general formalism to the case at hand. 

a) Redahift and Related Quatatitiea 

The interpretation of redshift measurements proceeds from the assumption of light 

propagation along null geodesics according to the laws of geometrical optics (as deduced 

from Maxwell’s equations) and properties of the underlying space-time geometry. For 

a spatially isotropic universe, the space-time metric in terms of comoving cosmic coor- 

dinates xp = (t, r, 29, ‘p) may be written as3 

3. Unless otherwise specified, we shall use the notation of Mashhoon and Partovi (1979). 

7= -a2dt2 + b2dr2 + R2d02 9 (1) 
where a, b, and R are non-negative functions of t and r. These metric coefficients will 

be assumed to be sufficiently differentiable functions of their arguments. 

. 
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In the limit of geometrical optics, the propagation of radiation may be described in 

terms of the wave vector k, which satisfies the (null) geodesic equations 

kvk,,, = 0, (kpkp = 0), ~-- (2) 

with the light rays described parametrically by 

dxW ___ = kc”(s), dc (3) 

where < is a suitable affine parameter. 

In the particular situation at hand, equations (2) and (3) will be used to describe 

the radial propagation of radiation from a comoving source S to the comoving observer 

0 located at r = 0. The emission and observation events can be specified by (t8, rs) 

and (to, t-0 = 0), respectively. The redshift z corresponding to radiation emitted by S 

and observed by 0 is given by 

-- 

1+z= @@(xJ 

q(xoPx(xo) 
(4 

where Us denotes the comoving four-velocity at the point x. If we now adopt the 

redshift z as the path parameter for the null rays, we find that the coordinates along a 

radial ray must satisfy 

-. 

and 

d44 a dt(z) -=--- 
dz b dz ’ (6) 

Thus the observer, having detected some radiation at time to to have a redshift equal 

to z, will reconstruct the emission event from the integral equations 

t8 = t*(t(),%) = to - J f & W*Vo, 2)) r*( to, @]/D( to, E) , (7) 

. 
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and 

where 

r3 = r*(to, 2) = I 
oz l~z.[t*(to, 2), r*(to, ~)IID(h ‘)y 

wo, 4 = &W*, r*) - $z(t*, r*). 

(8) 

(9) 
The next step is to determine the luminosity distance of the source as a function 

of to and Z. As usual, the (bolometric) luminosity distance is defined in terms of the 

power output of the source (absolute luminosity, L) and the corresponding measured 

flux (apparent luminosity, e) by 

4~ dL 2 = L/e. (10) 

Using conservation of Ilux (Etherington 1933; Kristian and Sachs 1966), it follows that 

in the present case 

-- 

dL = (1 + z)~ R(ta, ra) . 

- Stated in terms of to and Z, this is 

dL(to, %) = (1 + %J2 R[t*( to, 4, r*( to, %)I . 

(11) 

We have thus arrived at the desired relation between the luminosity distance and the 

redshift, for a given (observer) time to, from which the customary magnitude-redshift 

relation may be derived. 

A related measure of distance, dA, referred to as the angular-diameter distance, is 

defined in terms of the angular diameter of the source. If a source of angular size B has 

a proper diameter d, then dA is defined to be d/B. Since for small 8, d is given by RB, 
we see that 

dA(tO,d = R(t*, r*) . 

Alternatively, assuming a known proper diameter, we can write 

(13) 

8(to, z) = d/R(t*, r*) . (14) 



-. 

A simple calculation shows that for sources of a given proper diameter d, the angular 

diameter (at a given to) reaches a minimum at redshift 2 (corresponding to coordinates 

2* and ?*) where 

1 t=j*, r=p* (15) 
This is the cosmological lens effect considered by Klauder et al. (1958) in the context of 

certain (closed) FRW models. Observational searches for such effects have encountered 

certain difficulties, however (Sandage 1961). 

Equation (15) for the minimum redshift surface may be rewritten, using equation 

(42) of §IIIb, as the condition 

2m(2*, ;*) = R(i*, ;*), (16) 
where m(t*, r*) represents the total mass inside a sphere bounded by sources of redshift -- 
z as observed at time to. The hypersurface represented by equation (16) may be called 

_ the cosmological apparent horizon. This should be compared-with the notion of apparent 

horizon that arises in the study of gravitational collapse (cf. equation 1921 and the 

paragraph preceding it in Mashhoon and Partovi 1979, hereafter referred to as MPl). 

Another potentially useful quantity related to the redshift is its evolution, defined 

to be the temporal change in the observed redshift of a given source. While there is 

considerable uncertainty regarding the feasibility of such measurements, the fact that 

they can provide information free of evolutionary effects makes them attractive enough 

so as to merit serious attention (Sandage 1962; McVittie 1962; Ebert and Triimper 1975; 

Davis and May 1978; Riidiger 1980; Lake 1981). 

Referring to equations (7) and (8), we can fix r* and regard t as a function of to. 

The resulting function z(t6) then describes the redshift corresponding to a given source 

being observed over a period of time. The quantity of interest is dz(to)/dto, which is 

obtained from equations (7) and (8) to be 

Wo) lb*(to, z) W(to, z) -=- 
dt0 at0 

/ 8% - (17) 
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This equation is therefore a differential characterization of redshift evolution for a 

spatially isotropic space-time. 

6) Number Counta 

Here we consider those observations which seek to determine the number of sources 

in a specified range of redshifts and magnitudes. Let n be the (proper) volume density of 

a given class of objects at the space-time point (t,r). Alternatively, the source coordinates 

may be specified by (to, z). Then the number of such objects within the solid angle dw 
with observed redshifts in the interval (z, t + dz) is given by 

where, as suggested by the notation, the quantity in the brackets is to be evaluated at 

the source. Substituting for uP and dH/dz, the above quantity reduces to 

(bR2n)a dw dr(z) = (\/I’ t~)~ dQdp c+-(z) , (19) -_ 

where I’ is the determinant of the spatial part of the metric. 

For definiteness, we shall continue the discussion for optical sources, excluding 

radio measurements (which, however, can be similarly treated). Accordingly, we take 

n(to, zlL)dL to be the (proper) volume density of sources with absolute luminosities 

in the range (L, L + dL). Since the apparent luminosity (= observed flux) from such 

sources will be equal to L/[4ndL 2(to, z)], th e number of sources in the redshift interval 

(x, t + dz) having an apparent luminosity greater than e will be equal to 

-. rdL+41r~dL2(t0,z)]I(to,zlL)dr, (20) 

where 8 represents the step function and 

w4 I(to, zIL) = 4~ (bR2)ax n(t0, zIL) . (21) 
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Finally, the number of sources with a redshift less than z and an apparent luminosity 

greater than e is given by 

N(< z,>q= j-,mdL/omdi+-4~~d,2(to,z)]~(r-~)I(to,~~L). (22) 

We shall consider two particular relations implied by equation (22) (Weinberg 1972, 

pp. 455-457). The first is for N( > e), the number of all sources with apparent luminosity 

greater than t: 

N( > t!) = J,” dL 1”” dz I(to, EIL) , 

where ZM is determined from 

L = 47r t! dL 2(to, zM) . 

(23) 

The second relation is for N( < z), the number of all sources with redshifts less than 

z: 

N( < z) = hw dL /,” dz I(to, zjL) . (25) 
Let us now consider I( to, zl L), and make the assumption (generally not valid, but 

sufficient for our purposes in $111~) that over the range of redshifts occurring in equations 

(23) and (25), th ere is neither creation nor annihilation of sources of a given luminosity 

L. Clearly, this assumption disregards evolutionary effects on source luminosities, a fact 

which we shall make explicit by denoting the corresponding densities by nNE. With 

this assumption the flux of these sources will be conserved, and we have the continuity 

condition 

a 

-v- dXP 
--gnNEtP)=-$(ilFnNE)=O. 

Therefore, we can integrate equation (26) and write 

b(t, r) R2(t, r) nNE(t, rjL) = kd’fjL) , 

P-9 

(27) 
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and also 

f(rIL) = 47r/6 dt b(t, F) R2(t, F) nNE(t, FIL) , (28) 

where we have written the function of integration in a form convenient for later applic+ 

tion. 

Using equation (27), we can write 

I_ df d44 
dr dz ’ 

or more explicitly, 

$0,4L) = -g flr8(t0, 4lLl - 
Finally, using this result, we have from equations (23) and (25), 

-- 

~~~~ < %) = hrn W[r*(to, 44 9 ._ 

and 

NNE( > t) = J,” dL f[r*(to, z~)jL] . 

III. EXPANSIONS IN POWERS OF THE REDSHIFT 

(29) 

(30) 

(31) 

(32) 

In 511 a number of quantities related to observations were derived within the space- 

time represented by the metric (1). Our task here will be the development of an 

expansion of the properties of this metric (mainly in connection with the null geodesics 

and the redshift) about the observer, as well as a similar development based on models 

I and II (introduced in $1) for the detailed properties of the universe. It may be useful 

to point out here that even though we shall ultimately express observables of interest in 

terms of coordinate-independent quantities (mainly the redshift), extensive use will be 

made of coordinate expansions meanwhile. 
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a) Ezpanaion of the Distance-Redahift Relation 

Our starting point here is the development of an expansion in Z, up to 0(z2), of 

the functions t* and r* defined by equations (7)-(g). T o simphfy the notation, we shall 

henceforth use a dot, respectively a prime, to designate differentiation with respect to 

t, respectively r, and also use the subscript zero to stipulate that the quantity involved 

is to be evaluated at t = to and r = z = 0. 

To start, we write from equations (7) and (8), 

(33) 

and proceed to evaluate the second derivatives in the same manner. After some algebra, 

we arrive at 

[$,g]o = -~-(o-2~b”~-b(bo’-a”)i-ab-iD-2[b’D-b(bo’-”’)]}o, 

-- 

(34) 
and ._ 

[;;; ,/ “a:],=q+{ -b~-1~-21~oD-a(boo-ao’) + D-2[a’D-a(bo’-a’)]}o. 

(35) 
With the expansions of t* and r* at hand, we proceed to do the same for equation 

(12). Let us write that expansion as 

-. 

dL(to, z) = dL(‘)(tO) + dL(l)( to)% + f dLt2)( tO)z2 + O(z3) . 

Then we have from equation (12), 

(36) 

dL(‘)(tO) = R. , (37) 

dL@)(tO) = 
dr* 

2R + R*g + R’% 1 0' 
(38) 
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and 

-. 

~$~)(to) = ar* 2R + 4R.g + 4Rta, 

+R 2+R*~+R’~] . 
0 

(39) 
We thus have in equations (33)(39) an expansion to 0(z2) of the distance-redshift 

relation for a spatially isotropic metric. In parallel with customary notation, we define 

d&t) = H-‘(t), Ho = H(to) , (40) 

and 

-- 

dLt2)(t) = H-‘(t)[l -Q(t)] ; &o = &(to) . (41) 

Anticipating later results, we note that while h$ vanishes and H(t) turns out to be 

the same function as in FRW models, the function Q(t) will differ from the customary 

deceleration parameter, the difference being a consequence of inhomogeneity. 

b) Modela I and II 

As stated in $1, the models to be developed are based on the assumptions (a) spatial 

isotropy, already incorporated in the metric form 3 given in equation (l), and (b) a 

physically reasonable equation of state obeyed by the cosmic fluid, p = p(p) for case I 

and p = 0 for case II, supplemented by assumptions of regularity and smoothness in 

our neighborhood. As will be seen below, these general assumptions are rather effective 

in restricting the form of the resulting metrics. 

In developing the models, it is very helpful to bear in mind a general result (Mashhoon 

and Partovi 1980, hereafter referred to as MP2) ensuring that if the assumption of 

shear-free motion is added to those in (a) and (b) above, then the only physically 

acceptable solution is the FRW universe.4 Hence we are assured that the metrics 3’~” 
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4. This is Theorem 1 of MP2; see also the discussion in Section 6 therein. It should be 

pointed out in this connection that the solutions first discussed by Wyman (1946) and 

also arrived at in equations (A14) and (A15) of MP2, are excluded on account of their 

unphysical equation of state. 

to be developed below will differ from FFRW only by virtue of a non-vanishing shear 

in the former. 

We start with the metric 3 given in equation (1). For the corresponding field 

equations, we shall be using equations (8) (14),-(15) (19), (20), and (21) of MPl (for 

electrically neutral matter). These may be written as follows: Let na(t, r) be a non- 

negative function defined by 

(42) 

and interpreted as the total mass at time t interior to radius r. The cornoving coordinate 

-condition may be written as 

and the conservation law for energy as 

-(P + PY d = ; Cn(bR2). 

(43) 

(44 

The remaining gravitational field equations are equivalent to the following “energy 

balance” relations: 

/ = -4xpR2R*, (45) 

and 

na’ = 4rpR2R’. W-9 
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Finally, the Euler equation follows as the integrability condition for the latter pair; 

-(P + P)--‘P’ +a. _- (47) 

To proceed, we use the smoothness assumption to develop the metric coefficients in 

the radial coordinate; 

a(t, r) = a(t,O) + al(t)r + f u2(t)r2 + O(r3), (48) 

and 

b(t, r) = b(t,O) + 6l(t)r + f b2(t)r2 + O(r3), (49) 

R(t, r) = R(t,O) + Rl(t)r + f R2(t)r2 + f Ri(t)r3 + O(r4). (50) 

Clearly, R( t, 0) must vanish since the surface area of a sphere of radius r must approach 

zero as r+O. Also, a suitable choice of the temporal coordinate will render a(t, 0) = 1, 

a condition which we shall henceforth enforce. 

In parallel with the expansions given for the metric coefficients, we may write 

and 

p&r)= p&O) +pl(t)r+ f P2(t)r2 +W3) 7 (51) 

p(t, f) = p(V) +pl(t)r+ f p2(t)r2 + Ok31 - (52) ' 

Consequently, equations (45) and (46) together with the above expansions imply that 

-. 
m(t, r) = r3[m(t) + ml(t)r + O(r2)] . (53) 

At this point equation (42) may be used in conjunction with the above expansions to 

give 

W) = w, 0) , (54 
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and 

-. 

R2(t) = h(t) - (55) 
If these latter results are then used with equation (43), there follows 

al(t) R;(t) = 0. (56) 

Of the two possibilities implied by this last constraint, R;(t) = 0 is unacceptable 

since it will lead via equations (45), (46), and (43) to a static universe, which we exclude. 

Therefore the choice al(t) = 0 is implied, whereupon we use the notation RI(t) = 
S(t), and identify the Hubble coefficient on the basis of equations (40), (38), and (33) as 

H(t) = g en w 7 (57) 

which is the well-known result of the standard model. 

Atthis juncture the two cases 1 and II will be pursued separately, starting with I, 

which is characterized by the equation of state p = p(p). This functional dependence, 

together with equations (51) and (52) implies that 

dP = =pl(t) P% 0) - 
dP r=O PVY 0) PlW - 

(58) 

On the other hand, we have from equation (47) and the vanishing of al(t) the result that 

pi(t) = 0. But th en equation (58) implies that pl( t) = 0. The simultaneous vanishing 

of p1 and p1 in turn implies that in equation (44) 

82 -g-&j en (6R2) = 0, 
t=O 

which in turn implies that 

d R2(0 --= 
dt Rl(t) 

0 
* 

17 
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Therefore b( t, 0) = Rl( t) = S(t) and 61(t) = Rz(t), and together with equation (60), 

these relations allow a redefinition of the radial coordinate, r-v - i (R2/R1)r2, so as 
to render the metric form as follows: 

3’ = - [ 1 + i a( t)r2 + O(r3)12dt2 

+ S2(t) 
u 

1 + f ,8( t)r2 + O(r3)]2dr2 + r’[ 1 + f q(t)r2 + O(r3)]2dn2} , 

(61) 
subject to the condition on the spatial curvature parameter K(t) = p - 37, 

K*(t) = --2H(tMt) , (62) 

which expresses the constraint following from the comoving character of the coordinate 

system. Needless to say, the functions cr, /3, and 7 appearing in 3’ are related to ~2, 

b2, and R3, respectively. 

How does 3’ differ from the corresponding homogeneous metric TFRW? The 

answer can be given on the basis of the general result mentioned before. Since the 

shear tensor for 3’ is proportional to [p’(t) - 7.( t)]r2 + O(r3) (cf. equation (291 of 

MPl), it follows that for p’(l) - 7.(t) = 0, F1 describes shear-free motion to O(r2). 
However, since under the transformation r-w -. cr3, constant c, we have p+p + St, 
747 + 2t, and a-+&‘, the vanishing of p’(t) - 7*(t) may be taken to imply that of 

P(t)-r(t). Th ere f ore the above-mentioned result implies that for ,8(t) = 7(t), the only 

physically acceptable solution is the homogeneous FRW metric to O(r2), implying in 

particular that a(t) = f(t) = c;(t) = 0. Th is conclusion can also be reached in the 

following direct manner. It can be shown that the metric 3’ given by equation (61) with 

the conditions f(t) = 7.(t), c?(t) # 0 imposed thereupon leads to a solution which is, 

to 0( r2), the same as those obtained in equations (A14) and (A15) of MP2 and excluded 

therein because of their unphysical behavior.4 In other words, for ,8*(t) = 7.(t), the 

vanishing of a(t) is the only possibility with a physically reasonable equation of state. 

We conclude our investigation of case I by recording some useful relations. Using 

equations (42), (44), and (47), one can derive the following: 
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and 

K(t) p(t,O) = 1+ ~ [ I sy t) P"(t) 9 

dv, 0) = -3HWIP(4 0) + PV, OI , 

4 p( t, 0) + 3P& 0) = 2 !dt) + ___ 1 1 S2( t) 
PW 9 

(63) 

(64 

(65) 

where the critical density pc and the deceleration parameter q are defined in the usual 

manner; 

pc = ;H2 ; q(t) = -S(t) s-( t)/so2( t) . (66) 

The inhomogeneities of p and p to order O(r2) are given by . 

P2V) = --cr(t)[P(t, 0) + P(4 011 [dPldPlr=o , (67) 
and 

P2V) = -dt)iP(t, 0) + p(t, O)l * (68) 

Equation (63) implies that the density at r = 0 in units of the critical density is 

greater (less) than unity if the curvature of space is positive (negative), in analogy with 

FRW models. Moreover, equation (65) shows that the rate of charge of the curvature 

parameter K(t) cannot exceed -2S”Som. It is of interest to note in this connection 

that a global, shear-free, cosmological model with a time-dependent spatial curvature 

has recently been studied by Krasinski (1982). In this model, the energy-momentum 

tensor is that of a perfect fluid which, however, does not satisfy an equation of state. 

We now turn to case II.5 Here we can set a = 1 by virtue of the identical vanishing 
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5. This is the well-known case of a spherically symmetric distribution of dust, the model 

first discussed by Lemaitre (1933) and later by Tolman (1934) and many others. An 

exact, parametric solution in terms of three arbitrary functions of the radial coordinate 

is well known. 

of pressure (cf. equation [47]), and on the basis of equations (54) and (55) write the 

metric form as 

3” = -dt2 + S2(t){[ 1 + 6( t)r + 0( r2)j2dr2 + r2[ 1 + f 6( t)r + 0( r2)12dR2) . 

(69) 
Clearly, the radial coordinate may be redefined, r-w - 4 6(to)r2, so as to render the 

present value of 6(t) equal to zero; 

60 = iqto) = 0. (70) 

Furthermore, since u’ = 0, equation (43) implies that 

R’(t, r) = G(r) 6(t, r) , (71) 

where G is a function of integration. Substituting this in equation (42), and taking note 

of the fact that as a consequence of equation (45), fi and ml in equation (53) reduce to 

constants here, we find that 

G2(r) = 1 - kr2 - hr3 + O(r4) , (72) 

where 

k = ?f! - so2(t) , w 
and 

h= - $6(t) -3A] - S*(t)-$[S(t)Q(t)] . w 

20 

W-9 



Here k, h, and A are constants, with A = 2m1/3rii. The constant fi is in turn related 
to p as in 

ffl = $93(t) p(t,O) ) (75) 
and the inhomogeneity in p is given by 

PlV) = --2W) - AIPV, 0) * (76) 

To compare 3” to FFRw, we note that shear is here proportional to 6*(t)r. Hence 
the vanishing of 6.(t) (and therefore also of 6[t] since 6[tO] = 0) will, to order O(r), 

reduce 3” to FFRW. To determine S, we first note that S(t) satisfies equation (73), 

and that 6(t) is determined by 

-- 

where 

and 

S*(t) y.(t) + tfi y(t) = e, 
S2U) 

dt) = [6(t) - A] S(t) , (78) 

e= kA-h. 

Equations (73) and (77) may be solved jointly to yield 

b(t) -A = ;[1 - ; (t - hw(t)] 9 

(77) 

(79) 

(80) 
-. where tl is the constant of integration. We choose tl to correspond to the time of the 

primeval singularity so as to make the density contrast pi/p vanish at early times.’ In 

6. While this is a customary and reasonable assumption (Peebles 1980), it does neverthe- 

less represent a certain theoretical prejudice. It will not influence the qualitative aspects 

of our results, however. 

. 
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other words, we take 

(81) 

where T(t) is the age of the universe at time t in units of the Hubble time H-‘(t). Of 

course T may be expressed in terms of H and q (see, e.g., Weinberg 1972, p. 482). A 

useful relation which follows from equation (80) is 

~7Wfw) = ${l- [I + q(t)]rr(t)} . (82) 

c) Obaervational Relationa for Modela I and II 

Having developed the structure of the metric and the associated quantities for models 

I and II, we now turn to a restatement of various observational quantities in the form 
-- 

of expansions in z. 

In §IIIa, t*, r*, and dL were expanded to O(z2). Th e corresponding coefficients can 

now be evaluated for the metrics 3’ and 3”. With the definitions 

C’(t) = -4t)/so2(t), (83) 

and 

c” = s(t) 6.( t)/so2( t) , (84 

and on the basis of equations (33)-(41) as well as (61) and (69), we find for the quantity 

Q(t), defined by equations (41), the expression 

&V) = q(t) + w 9 (85) 
and the corresponding distance-redshift relation 

ddt,Z) = & + ij H(t) l -L [I - Q(t)] z2 + O(z3) , (86) 
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where it is understood here and in the following that these equations are valid for 

both models provided that quantities appropriate to the model in question are inserted 

therein. 

The corresponding expansions for t* and r* read 

1 
t*(t, z) = t - - 

HP) z { 
- f [2 + Q(t)] z2 + O(%“,}, 

and 

1 
r*(t, ‘d = S(t)H(t) ’ - f [1 + Q(t) + A(t)] z2 + 0( z3)} , 

where 

(87) 

(88) 

A’(t) = 0 , A”(t) = G(t)/S*(t) . (89) 

Note that since A’“(to) = 0 as a result of 6(to) = 0, the source coordinates (t*, r*) 
corresponding to measurements performed at the present epoch are coordinate-free 

quantities to O(z2) for both metrics jrrl” (except for trivial resealings). In this sense, 

the coordinate systems adopted for these metrics are canonical at time to. 

The appropriate relations corresponding to source densities at given redshifts are 

At*, r*) = p(to,O) + 
[ 

Pl(0 1 a 
SH - jj at p(t7 0) 

I 
t + W2), (90) t=t 

a 

and similarly for P.~ Substituting the appropriate quantities from equations (63)-(68) 

7. The O(z2) corrections are clearly beyond observational reach and will therefore not 

be considered further. -. 
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and 

d’( to, *)/f-# = 1 + 
-3T 

3 + f 1 -‘(I +” q&.o 1 z + O(z2) , (92) 
where, as usual 

wo, 4 = P@*, r*)lPv) - (93) 

Recall that T-J is the age of the universe in units of Ho1 for a matter dominated FRW 
model; it is expected to be of the order of unity. Recall also that for model II, no = 2qo. 

Proceeding to redshift evolution,8 we use equation (17) to obtain 

8. We do not consider 2 (the redshift corresponding to minimum angular diameter) 

here. This is because its magnitude is typically of order unity, which exceeds the range 

of validity of our expansions. 

-- 

d h z(t) 
dt 1 + Q(t) + A(t) - Q”i’ct;q;(t’ ]z+OV)}. 

For model II, this expression can be reduced to 

den Z(t) [ 1 dt t=to 
I-’ 1 l-t2--qo)To II 

2 “+ii 1-(l+qo)To 
C,)r+O(2)]. 

Finally, we turn to number counts and use the results developed in §IIb keeping in 

mind that in deriving them we disregarded evolutionary effects. Let us parametrize the 

radial inhomogeneities in n NE by 

nNE(t, r-IL) = nNE (t,OIL)(l + K;(tlL)r + O(r2)] . (96) 

Note that although we have indicated a dependence of K upon t, the structure of the 

metric form I (II) in fact excludes (restricts) such a dependence. 

. 
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Using equations (28), (31), and (96), we arrive at 

(97) 
To find the analogous expression for N( > e), we assume that C is taken sufficiently 

large so that the two-term expansion (cf. equation [24]), 

1 - ;tl--Qo) ($r’?,o(s)], (98) 

is adequate. Then we may write from equation (32), 

~~~~~ a) = ;( -&r’2/omdLnNEtto, OJL) L3j2- 
-- 

(99) 
IV. DISCUSSION AND CONCLUSIONS 

The principal inquiry of this discussion is: to what extent are the models investigated 

in this work observationally distinguishable from the homogeneous FRW models? Let 

us consider the distance-redshift relation given by equation (86) and observce that it 

differs from its FRW counterpart only in the appearance of Qo(= qo + Co) instead of 

qo.’ Clearly, the magnitude-redshift data cannot distinguish between these cases, even 

9. Recall that we have defined q6 by equations (66) and Qo by the distance-redshift 

relation. 

if it were possible to extract therefrom a reliable determination of qo free from evolu- 

tionary effects. An independent determination of qo is clearly needed. Furthermore, to 

the extent that the magnitude of Co characterizing the effects of the inhomogeneities 
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could easily be comparable to (or even larger than) q9, a determination of the latter 

from the Hubble plot could be entirely erroneous, if inhomogeneities do in fact exist. 

The inhomogeneities in cosmic matter distribution are--given for the two models 

by equations (91) and (92), both of which reduce to their FRW counterparts upon 

setting Co equal to zero, as they should. Thus a determination of Co from these 

relations requires a fairly accurate determination of the slope of the density versus 

redshift relation. Needless to say, existing observational data do not provide the requisite 

accuracy. More conventional tests of homogeneity, of course, rely on number counts, 

which we consider next. 

The relevant results for number counts are given in equations (97) and (99). Here 

again, observations are essentially limited to the leading term, evolutionary effects 

being a major source of uncertainty in the study of source counts. Contributions from 

inhomogeneities simply confound an already confused situation. 

Indeed without considering the details briefly discussed above, it is clear that in 

as much as next-to-leading effects in redshift are poorly determined by observations, 

models I and II are indistinguishable from a homogeneous universe. By the same token, 

- any method having prospects of improved accuracy in the determination of qo, for 

example, could be a discriminating test of homogeneity in the present context. Thus 

measurements of redshift evolution, should they become feasible, might offer a hope of 

setting a limit on inhomogeneities (see equation [95]). 

Clearly the answer to the question addressed at the beginning of this discussion 

is a negative one; existing data are not sufficient to rule out large-scale radial in- 

homogeneities. We have reached this conclusion (which is consistent with general ex- 

pectations) on the basis of a detailed analysis of models which have been constructed 

on the basis of observationally well-supported assumptions. At the same time we have 

arrived at a number of relations (the observationally more relevant ones being those 

summarized in $111~) that could in principle provide ways of setting limits on large-scale 

radial inhomogeneities. 

A next step in the present program is the inclusion of angular inhomogeneities. One 

would expect to be able to obtain some bounds on these on the basis of the existing 

data on isotropy. One can also anticipate new complications arising from an interplay 
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between the two kinds of inhomogeneity. These complications and the lack of requisite 

accuracy in the existing data notwithstanding, we consider such an analysis a worthwhile 

effort toward the observational verification of the cosmological principle. 
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