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Quark-Antiquark Bound State Spectroscopy and QCD

I. Introduction.

Spectroscopy is the study of the energy levels of aﬂbound system and the
transitions among these levels. frequenty it has not been clear that the
states and transitions being observed were a realization of an underiying
substructure. In this initial phase of study the different particle stales
were organized into "understandable" patterns, e.g., SU(2), Su{3), Color,

which then led to a deeper understanding.

There are at least two important uses of spectroscopic inyestigations.
The first is the search for new substructure. Consider for example, the
emergence of the quark substructure of the hadrons. In the late 1950’s the
AC1238), with I=3/2, had not yet been discovered, and so one finds this
statement in a well knoun textbook published in 1959: "Let us nou see what
kinds of particle types can be formed by various choices of [I], A, and S,
hearing in mind that no experimental evidence has yet indicated the
existence of multiple charges for elementary particles." The fact that the
ohserved hadron charges at that time were 0, %1, was made into a general
rule for interpreting the underlying physics, and orgainizing all states.
Thus, as has been stated by D. W. 6. S. Leith, knouledge of the "chessmen,"
the constituents characterized by their quantum numbers, is one important

aim of spectroscopy.

The second important use of spectroscopy is the unraveling of the



dynamics of.a new substruciure once it has been discovered. This effort
encompasses finding the equations of motion and the forces which govern the
substructure. Its final outcome will be a detailed understanding of the
épectroscopy which led to the postulation of a substruscture in the first
place. The most successful past efforts of this type have used non-
relativistic bound systems to explore the equations of motion and the
forces, e.g., the study of the hydrogen atom. Thus the excitement
generated by the discovery of Quarkonium, g§ bound states in which the
excitations of the constituent heavy quarks is a small fraction of their
rest mass, is clearly justified. Through the careful study of the
spectroscopy of these quark-antiguark bound systems we shall almost

certainly gain a deep understanding of quark dynamics.

II1. The Search For The Chessmen.

a). The Qqarks As We Now Know Them. After almost four decades of intensive
work the properties of the constituents of hadrons can with fair certainty

be enumerated as showun in table 1.



Flavors d u s c b
Quantum #
I i 3 0 0 0
I -1 : 0 0 0
Q -1/3 273 1-1/3 273 1-1/73
S{Strangeness) 0 0 -1 0 0
C(Charmness) a ] 0 i 0
B(Bottomness) 0 0 0 0 1
Approximate
Constituent 350 350 5060 [1500 (4900
mass (MeV)

Table 1. The quarks

Each quark listed in the table comes in three colors, red (R}, blue (B),

and yvellow (Y). Thus the table repesents 15 quarks.

expected, but has a mass

symmetry, and the GIM model? for charm, leads one to organize the quarks

as wWe now know them.

18.5 Gev'.

tonsideration of quark-lepton

and leptons into three groups or generations.

The top quark is also



Generation 1 Generation 2 Generation 3

Table 2. The three generations of leptons and quarks.
NHote that the three generatiens contain 24
elementary particles. ? is presumably the
top quark, t.

Some remarks are in order. The organization shoun in tahle 2 into three
generations of pairs of [SU(2) x U(1)] doublets (ueak isospin) seems
fundamental. The success of uweak isopspin implies that strong I-spin
symmetry, SU(2)+¢, is an accident of nature resuliing from the almost
degenerate masses of the u and d quarks. Also, the approximate validity of
SU(3)¢ is due to the closeness of the s guark mass to the u and d quark
masses. Thus, the old way of viewing the s%rong interactions is not
fundamental from the perspective of QCD. SU(4) s and SU(5)§ are even less
fundamental given the large mass differences of the b, ¢, to the u, d, and
s quarks. What makes SU(n) ¢ work so uell is the apparent flavor
independence of fhe qq force for mesons and the qgq force for baryons. The
flavor independence of these forces is certainly fundamental (if true).
However, the flavor independence of inter-quark forces is called into
question in the beautiful lectures given by H. Harari at the S.L.A.C.
Summer Institue of 19773. As stated by Harari, "There is no explanation
whatsoever for the w - e, ¢ - u, and s - d mass differences. Mhile the ve
- e and p - d mass differences may uell be of electromagnetic origin, the

Vy - K and ¢ - s differences are larger by 2 - 3 orders of magnitude. The



Ve - e and u-d differences are essentially comparable order of magnitude
and equal in sign. the vy -~ 1 and ¢ - s differences are of different orders

of magnitude and of opposite signs."” In the context of present ideas, this

suggests a new force which is flavor dependent.

b). The Classification of Ordinary Mesons in Terms of Constituent

Quarks.

In these lectures we will concentrate on the qf system. There are at
least two reasons to do this. Firstly, the qf system is a two body systenm
and so its dynamics can be modeled with relative ease. This is not true for
the qgq system which is a three body system having uell knoun calculational
Vdiffiéﬁ]ties. Systems uwith more than three constituent quarks present even
graver difficulties. Secondly, in recent years mucH has been learned about
the qq system through the discovery of the ¢ - and b - onia, as well as
through many discoveries of new particle states of the light mesons.
Progress With the gggq spectrum has been much slouwer. Thus I refer the

interested reader to the literature for a review of the gqqq system®.

Given the bias of history uwe begin with the "non-fundamental” group
theoretical approach in considering mesons whose constituents are pairs of
u, d, and s quarks and antiquarks. These are the "ordinary" mesons. The

spin 1 q and § lie in a 6 and 6 representation of SU(6) (u, d, s x 2 spin

states). For a qq system,

6® 6 = 1 & 35 (11-1



«The 1 and 35 representations of SU(6) can be decomposed inte SU(3)¢ and

SU(2)gpin components where we use the notation,
(SU(3) ¢, 2s+1), (11-2)

s being the spin of the particles belonging to the SU(2)gpin
representation. We then obtain the Hecomposition into irreducible

ik

representations shown in table 3.

su(el (SU(3) ¢,28+1)
1 (1,0
35 (8,1),08,3),(1,3)

Table 3. SU(B) » SU(+ P SU(D spin

Also, for each (SU(3)§, 2s%+1) representation, there are orbital excitations

and radial excitations (V{r) from QCD).

A considerably more transparent way to obtain the same result is to take
the qq model seriously. Figure 1 shous the essence of the model considered
here. The q and 9 are bound non-relativistically by a potential, V(r).
Part a) of the figure shous the singlet spin state configuration, part b)

shous one of the three iriplet states.

In approximating the structure of mesons using this simple model, the
strong forces hetueen the gq and q arise from color eleciric and color
magnetic fields. There is no knoun uay to apply an external field of these
types, so the consideration of the magnetic quantum number , m, can be
dropped when uriting the uave function for the system. Thus, the uave

function for the system can be uritien as follous.
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Sq Sg Sq Sg
XK} Or XX
r : r
_S’:*q +-——
=0 - i S= |
Singlet (52)=5(S+1) Triplet 2
(a) i=1+5,; (b) %

" Figure 1. The non-relativistic quark model for mesons.

a). Singlet State. b). One of the Triplet States.



|49 « Rnlr) B (cos8) l2s+1,8,> V5 Yo, (11-3)
where n is the principle quantum number, 2 = 0, 1, ...{(n-1) is the orbital

angular momentum quantum number, s = 8, 1 for singlet and triplet states

respectively, sz =0, %1, j = & + s, is the total angular momentum quantum

number, Y: is the SU(3)+ factor in the wave function (for ordinary mesons),

and ¥, is a color SU(3) singlet as dictated by quark confinement,

e

Yo = (RR + BB + YY)/Y3 , Co(1I-4)

The spin eigenstates, |2s+1,83z>, are given in terms of the individual

quark and antiquark spin eigenstates by,

singlet: (0,0 = (|{.Dali-Pg - [1.-Dall a2
1 Dalibs (11-5)
Triplet: 1,55 = LDl -+ [ -Dqalt. D2

The label of the state in spectroscopic notation is,

n2s+1g;PC (11-6)

where we shall use the standard speciroscopic notation, £ =0, 1, 2, ... 2

S, P, D, ..., and again, s = 0, l,and, j = & + s,.

As can be shown®, the parity, P, and charge conjugation, €, of the q@

system are given by,

el
it

-{-1)% (11-7)

= (-1)R+s

«
1

(11-32



Except for flavor, this simple model yields the following set of states,

9 9
Singlet: n'gi-(-1) s (=1 ’ (11-9)
; PN g
Triplet: n3g, .4-(-1r (-1 s
Q 2+
3 ~(~1) s1-1) e
n ﬁi ,

!
nsﬁxﬂ-(-nﬁ,(-n’“‘

As we shall see, essentially all the known mesens can be classified in

this way.

The flavor content of the wave function can be determined in tuo ways.

The old fashioned way is to use SU(3)¢ as is shouwn in table 4.

meson generic Quark Flavor SU(2) ¢ SU(3)§
type states representation representation
mt )Wo y T de(uﬁ—da)/JZ,ua 3
K¥ , KO u§ , d§ 2 8
KO,k sd, su 2
70 (ut+dd-2s3) /6 1
7’0 (uT+dd+s8) /3 1 1

Table 4. SU(3)f Multiplets for the ordinary hadrons.

Houever, the singlet SU(2)+ states, of the SU(3)s 8 and 1
representations, frequently mix (magic mixing) to make the physical meson

states almost diagonal in quark flavor; i.e.,

-10-



'
'

(uu+dd+sE) A3 Cuu+dd) A2
MIX (11-10)

(uTi+dd+s8) 6 5§

SU(3) 5 states Physical states

g

This experimental fact, coupled with the structure of SU(6), has led

to the grouping of the 8 and 1 representations of SU(3)¢ into "nonets" of

. mesons.

Another, more physically motivated, way to obtain the flavor uwave
functions is to use the inferred masses of the light quarks, i.e, my 2 mg <
ms. Using our simple 9§ model of meson strucure, ohly the following 9

flavor states exist for the ordinary mesons:

ud da sl
_ B 9 flavor
ud dd  sd (I1-11)
states
us ds 5%

~

Since my = myd, and we have at least approximate flavor independence of
the QCD forces, ue expect uu and dd to optimally mix, and so the physical

states involving ul and dd will be,

(Ul + ddd)A/2 , (ul -dddAj2 . (11~12)

~11-



The s35 state typically uwon’t mix since mg is quite a bit larger than the
u and d quark masses. We then use SU(2)¢, and strangeness (observation) to
assign particle types to the appropriate flavor wavefunction. The results

obtained using SU(3) s + magic mixing are thus duplicated in a somewhat less

"magic! way.

Using all the elements of the simple model we have developed, a
clagsification of all the chserved ordinary meson states can be attempted.
The results of such an attempt by Roger Chashmore® (slightly modified) is

shoun in figure 2; it is quite successful. Most of the cobserved ordinary

mesons c¢an be classified using the simple qq model I have described.

The search for masons whose quantum nﬁmbers don’t satisfy the (£, s) -
(P, Cy relationships of equations (II-7) and (I1-8&), so-called exotic
mesons, has not vielded any convincing candidates, also, exotic mesons of
the type having § = ~1 and @ = 1 have not been found. However, there may
exist evidence for a deviation from the simple qg classification in the 0%*

 mesons specirum. At present the follouing 8** ordinary mesons have been
identified: §(1300,300), £(1425,160), x(1500,22%0), $(330,narrow),
€{(=300,large), S$*(=990,narrou), where the first number in the parentheses
is the mass of the state in MeV and the second entry is the width. These
states are all 2°Pg** candidates (shoun as 'needs confirmation™ in figure
2). The n3P;** states should be close in mass, for fixed n, for a non-
relativistic qg system. This is because the spin-orbit interac{ion of the
qq is the mechanism for this mass splitting, and it is supposed to be a
small perturbation in the mass, i.e., fine structure. The first three
states 1isted satisfy the eriterion of small splitting from the other 27°P;

and 2%pP; states, and so are very likely qq states with 2°Pg. However, the

~-12-
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Figure 2. The observed ordinary meson spectirum classified
using the non-relativistic qd model developed in
A vs n (Principle quantum number).

the text.
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last three states listed lie much lower in mass than the other 2°P; states,
bm/s<md> = 0.35; for charmonium the 2°%P; states satisfy Ams/<m)> = 0.02. The
explanation for this is presently controversial. My feeling is that the
ordinary mesons are really quite relativistic qf systems and thus the non-
relativistic ireatment of the spin-orbit interaction, and other non-
relativistic approximations made, are not applicable to these states
(garbage in, garbage out). Others, such as Jaffe and Tou®, believe a more
acceptable explanation requires the existence of a neu set of qfuqg states
which they have predicted. They call these 0** qfqg states "cryptoexotics.™
Note that the cryptoexotic states are a complication, rather than a

reformaticon, of the qg model.

¢). Hidden Charm States and Charmed Mesons.

With the discovery of the ¢€ system, charmonium, the predictive pouwer of
the simple non-relativistic g§ model can finaly be tested under realistic
conditions. This can easily be seen through the application of tuwo hasic
principles, the virial theorem and conservation of energy. For a non-
relativistic system, where the binding force can be expressed through a

potential, the virial theorem can be stated as,

2¢Ty =(F-TV(r))> . S (11-13)

The conservation of energy is given by,

(T> + (¥> = Ey (ri-14)

—14-



In the above equations, T is the kinetic energy of the system, Y(r) is
the potential betueen the g and § separated by r; Ep is the binding energy.

For V(r) & r (confining potential which we discuss later), we cobtain,

24T> ird>, (I1-15)

and so,

3¢T> = Ep, or, mg(vi> = Ep/3, (11-18)

where v2 is the square of the q (@) velocity.

For ordinary mesons, states are quasibound at the 1Sy level,

Ep = m(1389) - m(1'Sy) = 600 Mev, ' - (r-17

{vZ> = $00/1050 =0.6. (11-18)
The full calculation using,

Vir) = klog(r/rg) (11-19

yields, <v2> = 1. The general formula for the potential (1I-19) is7?,

{v®> = k/2mg, k ¢ 0.75 (11-203

In the case of hidden charm states, ¢€ threshold is at the 3°D4 state,

and our simple analysis yields,

-15-



tr

Ep 2 m(33D4) - m(1'Sp) = 800 Mev, (11-213

or, {v2> = 800s/4500 = 0.18. (11-22)

Equation (II1-20) yields, <v%Z> = 0.25. Thus the c¢ system can be treated
in reasonable approximation as non-relativistic, uhili ordinary mesons are

clearly quite relativistic systems.

Predicting the states for charm is straightforward (measuring them is
another question). Either SU(4)¢ can be used, as shoun in figure 3, or cne

can simply quark count.

The hidden charm and charmed meson spectrum is shoun in figure 4 a, b.
As ue shall discuss later, mosi of the low-lying states which have been

predicted have heen observed, and at cleose to the predicted masses.

d). Add Bottom Quarks.

In the case of the bb system, with mp ¢ 5 GeV, the non-relativistic

approximation is quite goeod. For this case, the bound state spéctrum

extends to the 433, state,
Ep # m{43S54) - m{1'50) = 1200 Mev, (11-23)

and, <vZ> = 1200,15000 = 0.08, the value also obtained using equation

(I1-20). We will discuss the bb system in some detail later in these

—16-
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Figure 3. The hexadecimet of the pseudoscalar mesons.
Charm is plotted along the z-Axis , Y and I
along respectively the y-Axis and the x-Axis.
The 7%, % and %’/ mesons are denoted
by the open circles at the origin, 7¢ by
the black circle.
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}ectures..Fjgure 5 shows the incredibly rich bound state spectroscopy (all

states below 4s are probably bound) which should exist.

? II1. The Interquark Forces and the Particle Spectrum.

&
&

a). The e*e” Bound System, Positronium, a Model for qq.

Positronium was predicted in 1934 by the well known Croatian (astro-)
physicist, S§. Mohorovicic®. 1t uas first ohserved in experimenis performed
by M. Deutch'® in 1951. The %P; states were first seen by Mills, Berko and
Cante;}' in 1975, and the 235, - 29P; fine structure was measured. This

“measurement verified the QED predictions of Fulton and Martin'Z made in

1854, The time scale of charmonium looks instantanecus by comparison.

Positronium is a non-relativistic QED bound state of an e* and an e~;

that it is non-relativistic is easy to shou. Far positronium,

Vir) = -asr, Ep" = -6.8/n% eV, (I11-1)

Using equations (II-13) and (11-14) we find,

24Ty = KV(r)Y, > (v2>=6.8/5.11x105 = 1.3x10°5. (111-22

; Even though positronium is super non-relativistic, a variant of the

E Dirac eguation plus other relativistic corrections are needed to obtain the

~19-
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Figure 5. The bb spectrum together with the
experimental .values of mass differences.
the theoretical predictions of J.R.
Richardson® are in parentheses.
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fine structure and hyperfine structure in louest order. This is because
the fine structure splitting of the nS -~ nP states involves spin-orbit
interactions including the so called "Thomas precession" term (a
relativistjc kinematic effect which is linear in v). Also, the hyperfine
splitting of the n3S; - n!Sp states involves an annihilation diagram in

positronium, beside the usual spin-spin interaction.

3
*

The equation used is called the Groutch-Yennie-Dirac equation'3. This
equation is basically the Dirac equation modified by 6-Y fo include
relativistic two body kinematics'*, With this equation accurate fine-
structure splitting is obtained. The hyper-fine splitting is obtained by

including as a perturbation the diagrams shoun in figure 6.

Note that the f-s obtained is, f-s/QE, ¢ 4x10°¢,-while the hf-s is

larger for positronium, hf-s/AE, 2 1075, (this is reversed for the hydrogen

atom).

The decay pattern of positronium into photons is determined by the jPc

of each state'S,

n‘So - 27
n3sy - 3v. (111-32
n3P2: n3P° > 27

n3py = 4y, (n3pq > v + (n-13384(37))

The 'Sy decay is easy to calculate; referring to figure 7,

—21-
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Figure 6. The diagrams used to calculate the hyper-fine
splitting for positronium.
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Figure 7. Diagrammatic representation of the decay
‘So - 27.

-2 3-



o T(18g = 293 = {probability of e*te” contact)
*(U'y'y(Vre]_ > D))
*¥(flux factor) (111-4)
¥{statistical factor)

The first factor in (1I11-4), the probahility of e*e” contact, is just
|¥¢0)]2, the square of the wave function at the origin. The second is the
e*e” annihilation cross section to 2v taken in the ligﬁt of small e?

relative velocity, vrel,

Syy(Vrel 2 0) =W ra2/mee?)/Vrel (111-5)

The flux factor is just vyeel, and sc, Gyy X vrel is the transition
probability for the annihilation process with the "beam" normalized to one

particle per unit volume at the origin,

The statistical factor has the value 4, since oyy has been obtained as
an average over the initial e~ and e* spins and only the 1S, and not the

three ?S; states contribute to the 2y decay of positronium.
The result of combining all the factors of eguation (III-4) is,

F(1Se » 2y) = 16ma?|¥(0)|2/m5? (111-6)

The 'S5 = 3y decay is more difficult to calculate. The rate of this
decay is much lower than (III-6) due to two factors. The first is an extra
factor of a due to the emission of a third photon; this louwers the rate hy
a factor of ¢ 137. The second factor, of ahout another 8 reduction in rate,

comes from the smaller available phase space of the three photon (as

—24—



compared toc the two photon) final state. The formula for this posiironium

decay is given by'S,

T35y > 37) = 64(12-9)a3|¥(0) |2/ 9me52 (-7

Comparing (III-6) to (I11I-7) we find,

T(3sy » 39) = 8.98x10°"T(!'Sq » 2¥) (111-8)

Figure 8 shous the calculated energy levels and values of 1/T for the

n=2 levels of positronium.!5

The features of the spectrum shoun in figure 8 relevant to the case of
charmonium are:
- The size of the splittings relative to the principal quantum
number energy differences.
-+ The relative size of the fine and hyperfine splitting.
- The pattern of the splitting.

+ The Tifetimes of the ¢ = + vs. ¢ = ~ states.

The last three features bear an uncanny resemblance o charmonium. One
gshould note, however, that the center of gravity, cog, of the 23P; states
is shifted below the unperturbed value of 1/8 Ry. This is-not the case for
the hydrogen atom, and is currently assumed not to be the case for the qq

system.

-25-



n=2 LEVEL SPLITTING FOR POSITRONIUM

23s,
3
23P,
2'p,
2P,
. 2%Pg
2's,
SINGLET (52=0) TRIPLET (52=2)
10
i 235, (+7,413+232)
T(3y)=L|pS
X
o
X
~ I/8 Ry :
5 © 23P, (-981+1)
T —
= T(2y)~100us }
2'P (-3,536-3) t(23p,—=135,) ~3.2ns
>
7{3y)~3000pus
¢ { | N 23p, (- 5,360-5)
w (2P —=1lsy)~3.2ns
z T(4y)~3000us }
l;J T(23P|—’I3S|)N3.2 ns
=
< -10 |- 23pP, (-10,835-16)
o T{2y)~100pus }
t(23Pg—=135;)~3.2ns
2'55(-186,135+357) 4,14 X107° eV/MHz
(2y)~Ins Ry=13.6 eV
-20 - 12 - 81 423341

Figure 8. The n = 2 level structure of positronium., The
numbers in parentheses represent the 0(ah)
(fine structure) and 0(a%) (radiative
corrections) to the Bohr energy level (1/8Ry).
Thus for example, these corrections in 2'P,
are -3536 and -3 MHz, respeciively.
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b). QCD =and its Foundation in Experiment.

Quantum Chromodynamics is the candidate theory for the strong
interactions'®. 1t is a gauge theory under the group SU(3)eolor . We thus
believe that the color quantum number of the quarks is the charge of the
new force uwhich is generated by a local gauge group, iu(3)°°1°r . QCD is
non-abelian, i.e, the transmitters of the color force, massless spin one

gluons, also carry the color charge.

There are several reasons based on experiment to believe that there is a
global SU(3)color Symmetry:

« The rate for 1% » 2v. The calcula{ed decay rate

~is wrong by a factor of 9 without color; with color included,
Texp = 7.86%0.54 eV'7, compares uell to the
theoretical value of, Fiheory = 7.3 eV18,

+ The baryon wave function. With color, the ground states
of baryons can be understood in the quark model, without
abandoning the connection betueen spin { and Fermi-Dirac
statistics. In the case of the -, for example, there
are three s quarks in an orbital £ = 0 state with all )
spins aligned. This spatial-spin configuration has a
symmetric wavefunction, and, the 1~ can’t have a 372
spin (as it does) if consistency with spin-statistics is
required. With three colors, however, overall anti-symmetry
can be restored to the wavefuncition if the N~ is made
a color singlet; happily, the color singlet wavefunction

of three quarks is antisymmetric.

-27-



- Rh T.04ptlere” = hadrons)/elete” = pip-).

Using the free quark model without color, RR? is just the

sum of the squares of the qguark electric charges, e.g., at

Eem 2 7 GeV, Rp® = 20(1/3)2 + 2(2/3)% = 10,9, 1f

we add the color charge, Rp = 3 x RR? = 10/3. The
experimentally determined value at = 7 GeV is'?

R = 4.0 & 0.32. Clearly, the color charge is ggain

needed to obtain reasocnable agreement with experiment.

These experimental comparisons don’t check the local SU(3)color Sauge

invariance, they just check a global SU(3)cplor symmetry.

1t is generally

harder to check the local gauge symmetry, since experimental effects

invoive higher order QCD (quark "structure™). Ry can be used as a check of

the local gauge invariance because higher order QCD affects Rh2°,v(there

are quark structure effects due to quark-gluon virtual

second order,

where,

n¥
320:2 C1+agls) /m+Cylagls)/n) 2+ +)
i=1

R

Hi

s = Eem?, nf = & flavors above threshold,

C, = 1.98 - 0.115n; ,

asls) = ag(8)[1-B1ag®(s)Inin(s/A?)/4uBo+- -]

@s°(8) = 4n/(Byin(srA?)),

Bo = 11 - 2/3n1, By = 102 - (38/3)n)
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The above expressions have been obtained using QCD with the Ms
renormalization scheme??, and ny is the number of light quarks (3 in the
case of the energies shoun for Rp). A is an undetermined scale parameter in
the theory. Thus S{3)¢olor @s a local gauge theory does have ohservable
effects, even though they are difficult to observe, ARy & 10%. Figure 9

shows a summary of Rp measurements vs the predictions of equations (III-9) —

(111-13).

Another place to test QCD is in deep inelastic lepton hadron scattering,
4 + N » L% + X, wuhere only the final stateilepton (L%) is detected. This
process is viewed as the scattering of the high energy lepton from the
quasi-free quark constituents of the nucleon. HNeglecting QCD the quarks
would gct as point charges; the higher order effects of QCD cause a
smearing of the quark charge and the scattering devjates from point like
‘behavior which implies scaling violations. Again the scaligg viclations

are relatively small effects over the range of data available, and are

difficult to interpret?2.

There are some experimental directions which now seem more promising as
probes of the g and gluon-gluon force, and so are tests of the local
SU(color gauge symmetry. One direction is the one We will discuss in
these lectures, namely guarkonium spectroscopy. Others are gluonium
spectroscopy?3, and gluon bremsstrahlung?%. These last three processes are

depicted graphically in figure 10.

In all the experiments we have mentioned, an important goal of the
experiment is typically the determination of ag(s); what is ag(s)? Each

experimental situation can yield a someuhat different definition due to
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Figure 8. Ry from various experiments and comparison with QCD.
o+ has been subtracted. The data are radiatively
corrected.Only the statistical errors are shoun,
systematic errors vary between 6 and 19 percent!?.
QO MARK I, & MARK 1I, M PLUTO, 0 XTAL BALL(1879),

® XTAL BALL(1981). The QCD theory is Shoun 45 wmm
for 0.2<A{0.45 and was ohtained from
Reference 21.
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Figure 10. Promising directions for prebing SU(3)color local
gauge symmetry. a). Gluon Bremssirahlung.
b). Gluon~Gluon Force (Gluonium).
c). Quarkonium (qf Forcel.
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higher order effects. In the case of quarkonium, to lowest order, the color

charge is given by,

qii‘_ = Afijag(s) (I1I-14)

Where the A'J are the familiar SU(3)¢color matrices, and the 4§ interaction
15251

i

Q5 -

> V(32) = -(4/3ag(g2)s/§2 (111-15)

—
v +

-

Where, q% = (§; - aj)z; is the three vector momentum transfer.

Note that for QED,

V&

v
g
-+

¥

> V(§?) = -asg2 {111-16)

4
154

=

Where in this case a * 1/137.

Thus we obtain the important substitution rule?5 relating tqed and ag

for single gluon exchange,

tged @ (47Dag(q?) | (I11-17)
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S6 combining equation (III-11), for as(s), with our interpretation of
as(az), given by (11I1-15), we find that the strength of the qq interaction
is characterized by ac(32) = 0 as q2/A2 = large, as is the case for heavy
quarkonium states. This result is called asymptotic freedom (AF)'®. Also,
given that quarks are confined in hadrons, uwe must have as(g2)>> 1 for az £

(1 fermi)-2; this feature of the theory is called infrared slavery (I1S)'%,

P

Equations (I111-15) and (I1I1-16) look a lot alike, particularly uwhen
as(ﬁz)zaqed. This is the source of the analegy which led to the original
ansatz?% that charmonium uith s = 10GevZ >> (1 fermi)~2? should have
characteristics much like positronium. However, as figure 11 shous,
as(106eV2) = 0.2 >> 1/137. Even at the T, ag = 0.17 and so the simple

coulomb-like potential is only part of the story.

¢c). The charmonium model.

In 1974 Appelquist and Politzer?® made the QED~QCD connection for s = 10
GeV? and suggested that cT bound states might exist in the region 3.0 < Ecn
¢ 4.0 GeV. However, uwhat really started serious consideration that the cC

system could have a non-relativistic bound state spectrum was the discovery

of Js¥ and ¥/ in 1974. (See Figure 12.)

The case for a new charmed quark uas clinched with the dicovery of
charmed mesons in 19763%, The masses of these mesons supported the idea
that the charmed quark mass was about half the mass of the Js¥. Thus the
way was clear to take the non-reltativistic charmonium model quite

seriously.
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Figure 11. ag{s) vs. s as calculated from (I11-11) with Ans = D.16 Gev.
The measured values for ag obtained by experiment at the J/v
and T are also shoun. PETRA experiments2® have obtained
a5(900GeVZ) = 0,1720.02+0.03 by analyzing the gluon

bremsstrahlung process shoun in figure 10, while the theory
yields about 0.12 at s = 900 GeV.
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a). The Observation of the J at BNL?7. The Figure shous the
ete~ effective mass spectrum from the Feaction pBe - ete"X. b).
The observation of the ¥ at SLAC28. The Figure shous the Energy
Dependence of the Cross Sections e¥e” - hadrons, ete” > ptu-
and efe~ = e*e- in the vicinity of the ¥. ¢). The Energy
Dependence of the Cross Sections ete~ - hadrons, e‘te” = ptu-,
ete- » e¥e~ and the Foward-Backward Asymmetry in p pair
production in the vicinity of the ¥7. This Figure is
essentially from reference 28.
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In order to explore the consequences of the non-relativistic cc bound
state hodél ue use the Schroedinger equation!® (in contradiction to the
experience uith positronium where a reiativistic formulation of the theory
has been used). There are three aspecis to the model uhich uwill be
considered, and later compared to experiment:

Calculation of energy levels and wavefunctions.

Calculation of the ufdths of the states.

Calculation of the photon transitions betueenustates.
First we must find the masses of the states and their wavefunctions. To
accomplish this a potential, V(r) is needed. Initially potentials uere

constructed which separately included AF and IS.

HY = E¥, with initially ) (111-18)
H = p2/Mc + V(r), (I11-19)
V(r) = x/r + rsa? (I111-20)

Where the first term on the right of (I11I-28) is an attempt to include AF,
and the second term approximates IS'®, M. is the mass o¢f the charmed
quark.x and a? are parameters. Agreement uith experiment is spotty using
(ITI-18) - (III-20) as we will discuss. Houwever, in the Tast feu vears,
more sophisticated potentialis have been used wuhich have been derived more

closely from QCD. These neuer potentials have had greater success.

To describe the quarkonium spectroscopy, the spin-orbit (f-s) and spin-
spin (hf-s) potentials are also needed. These can be obtainedifrom an
"Instantaneous Bethe-Salpeter Kernal consisting of vector and scalar
interaction terms related to single gluon exchange with renormalization

improvement."'63 Given by,

Vooul(d2)vMyay + Vo (qBTH(q)Tenlq) + Va(q2)Icls (111-21)
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v

Ie (I2) is the unit matrix in Dirac space, q is the four momentum of the

gluon,

Tulq) = vy - (iX/2Mdopy q¥, (111-22)

where, oyy = (1/21)0yy,¥pl, A is the anomalous color magnet moment of the

quark. Note that V,(&2) is a vector like potential while V<(g?) is a scalar

potential. “

Taking the spin-independent, non relativistic limit of (I11-21) we find

that the potential 1is, in configuration space,

Vo = K/ + r7a2 = Vegul ¥ (Volr) + Velr)) (111-23)

It is usually assumed that,

Vv(r) = nr/az > Vs(r) = (1‘7))r/a2| (111-24)

The—actual spin-dependent potential is obtained through anafogy to QED in
the reduction of the Bethe-Salpeter Kernal into the Breit Interaction'®?,
Vepin(F) = (172Mc2)[4k/r3 + 4140 (1/r)dVyszdr - (1/r)dvo/dr]t-§

+2/3Mc2[4TKE (F) + (1+A)202v,(r) 15 Sg

+1/3Mc203%x/r3 + (1/r)dVesdr - d2V,/dr2lS.T (111-25)

Sex = 3(5.-1)(8z-F) - 5688, £ = T/, (I111-26)
and éc(ga) is the spin operator for the c(c). The -(l/r) dVes/dr part of

the first term arises from the Thomas precession effect.

For the potential of equations (111-23,111-24),
Vepin(F) = 1/2Mc2[3%/r3 + 1/ra? (n(3+42) - (1-a01L-8
LN
+2/73M2 04K (F) + 2%/ra?(1+X)21S.-S¢

+1/3Mc2[3k/r3 + n/ra? (14A)2]18c% (111-27)
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For the simplest case, A = 0, n = 0, and we find,

Vepin(F) = 1/2Mc2[3x/r3 - 1/ra?ll-§ 13
P -
+2/3Mc2[4nk8(F) 1S Sz [2]
+1/3Mo2[3k/r31Sc5 [3] (111-28)

Terms [1] and [3] contribute to the spin-orbit f-s, with,

i | a5 | Sew>
241 2 —20/(20+3)

) -1 2
2-1 -2+ 1) —2(+ 1)/ (22-1)

Table 5. Spin-orbit f-s matrix elements

Term [2] contributes to the hf-s only.

5.8z = -3/4(singlet), 1/4(triplet) : —(I11-29)

Then

H = PZ/Mg + Vg + Vepin (I11-30)

Now that the masses and wave functions are knowun (in principle) we also
want to calculate the widths of the states. To accomplish this we use QED
positronium results plus the substitution rules ¢qagd™ = (color factorlag™.
Thus using equation (II1I-6) and aged® = (2/3)ag? (see reference 16b), we
obtain,

I'(ne » gg(>hadrons)) = (3/3) ag?|R(0)|2/M%y, (I111-31)

2 Y
Where ue definelR(D)|=l@(0)l4n, the radial part of the wavefunction at the
origin. Using equation (ITI~-7) and dgqed® = (5/1%)ag? (see reference 16b),

we obtain,

T(Jsy » ggg) = (40(nZ-9)1/81mM)ag?|RI0) |2/ M2y (111-32)
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'

Also, (see reference 25),

Ty = R*87) = 4a2Qe2/M2y R0 |2, (111-33)

Finally, ue would like to calculate the ¥ transition rates betueen
charmonium states. We use old fashioned perturbation theory, and assume

that relativity is not important.

Electric dipole, Eis, transitions, e.g., 238y = ¥ 23P; » ¥ ¥ 135,.

T(S <-> P) = 4/9[(2j¢+1)/(25;+1)10c2aE ;] 207, (I11-34)

where © is the v-energy, j;(j§) the total angular momentum of the initial

(final) state, and,

0

; Eqjg = Jrzdr[wi(r)wf(r)r] (I11-35)
0

Magnetic dipole, My, transitions, (allowed M1), e.q., 135S, > ¥ 1!S,.

T3Sy ¢=> 'S4) = 16/3 (23++1)(Qe/2Meda| My ¢] 202 (111-36)

where,

o ,
Mif = Jrzdr[wi(r)?f(r)jo(wr/ZJJ (111-37)
0

Myt 2 1 since ¥i=¥s and jgolwrs2 <{1) = 1.

My transitions, (hindered), e.q., 2355 > ¥ 1'Sy. HNeglecting relativistic

effects and 2984 - 3%D4 mixing,

F'tn3sy » (n-1)'Sy) = 0, (111-38)
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oW
since, Mjf « ~Jr2dr(w2/24)[Wi(r)Wf(r)rz] << 1. (III-39)
0

d) Comparison of the charmonium model to experiment.

Using the theoretical developmeﬂt of the last section, ue can nou make
some detailed comparisons with experiments. ¥, a? and“M. are adjustable
parameters so three constraints are needed to fix these constants. Also, as
we move from the ¢ to bb quark systems ue expect Me » Mp, Kp ¢ Ko» (AF),
and ac? & ap?. Our comparison of iheory to experiment will dicuss:

- The masses of the charmonium and bottomonium systems.
n2*! 2;PC Classification of observed states.
The~hadronic and leptonic width of states.

The rates of ¥ transitions between states,

and the multipolarity of the transitions.

Mass of states:

A number of techniques are available to establish the onium state
masses. First, the storage ring energy, which is typically knoun to 0.1%,
can be used to measure the n32;"" masses with high precision. An example of
such a measurement is shoun in figures 12 b), ¢). Second, the hadronic
decays of the states not accessible to direct production can be used to
measure their masses with a somewhat limited accuracy of abhout 1% -2%. The
lTimit in accuracy is due to the limit in momentum and angular resolution of
most detectors presently operating. An example of such a measurement is
shoun in figure 13 for D% mesons. Finally, the photon transitions betueen

the states can be used inclusively, or exclusively in fits using hadronic
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information, to determine the masses of the bound n3P;**, and n'Sp~* states
to high accuracy once the n3S;-~ masses are known. This is because the ¥
energies for the transitions are typically less than 10% of the mass of the
states. In the case of inclusive photon measurements, as shoun in figure
14, accuracies of about 0.2% - 0.4% are obtainable. For exclusive fits

somewhat more accurate results can be achieved, depending on the detector.

&

Fine Structure and Hyper Fine Structure:

A number of attempts have been made to fit the f-s and, until recently,
to predict the hf-s. Though the models have had some qualitative success,
none has been able to accurately predict the f-s, and hf-s. Most models
have had a lot of variability in their predictions due to the large number
of parameters (5 or 6) available to them. For example, before the X(2830)3%
uas shoun not to exist,3% it was taken as the me. Thée large hf-s of = 260
MeV presented by this assignment uwas eventually fit by most models. Only a
few calculations denied this possibility3¢, and these uere estimated to be
good to only 2 302 of the transition ¥ energy. Table 6 shows recent
experimental values for the charmonium f-s and hf-s splittings as uwell as
tuo sets of predictions of the type discussed in the previcus theory
section'®®, For both sets of predictions XA, the guark anomalous moment, is

taken as 0 since little evidence exists for a non-zero value.

Theory 1: x=0.2, 1/8%=0.18, M=1.6 Gev, =1, A=0.

Theory 2: k=0.8, 1/a2=0.18, Mc=1.6 Gev, 7=0, A=0.
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Figure 14. The inclusive ¥ spectrum obtained from = 1.7M hadronic ¥’
decays in the cyrstal ball detector. The louwer insert shous the
bound state charmonium level diagram, except for the 2'p,*+-
which can only be seen as a ¥ transition frem one of the other
P states (if the energies are right) and so should be very
weak. All the transitions shoun in the level diagram appear as
lines in the spectrum. The weaker transitions to the m¢3' and
Ne’>2 are shoun in blouups of the inclusive ¥ spectrum in the
regian of the respective lines. The left upper corner contains
the n¢” spectrum ,the right upper corner the %o spectrum. For
details of the measurement, including a careful discussion of
this new n¢’ candidate, see reference 33.
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Mass Difference Experiment Theory 1, Theory 2

1My = Mpe C(hi-s) 111 % 5 Mev(33) 70, 95 MeV

2IMx2 = Mxq (f-s) 45.5 *0.70(38) 87, input

3)Mx1 - Mxo (f-s) 85.5 i0.9(38) 63, 80

4)My” = My (hf-s) 91 #5(32) 58, --
Table 6. Comparison of experimental f-s and hf-s to two charmonium

models.'® Note: AMf.g = 2)/3) = 0.48 %0.01)eyxp, while,
Mg = 1.38) thearyts = 0.57) theoryz. Thus theory 2 which
has Vg dominant, uhich is equivalent to a large Thomas
precession term,-1/ra? (1-9)L-S/72M2, in first line of
(IT1-27)2, is able to reproduce the observed AMs.5 by
canceling off a large part of the L-5 term. The tensor part
of the f-s interaction then dominates.

Classification, n? *'2;PC,

A number of pieces of information must be combined to determine the jPC
of a state. The n38;"" states are relatively easy to identify since they
are produced directly in e*e” annihilation. The observation of an
interference with other annihilation channels, e.g., see figure 12 ¢,
unambiguously assigns a state’s jFC as 1--. The n3p;tt states, called the
X states in the charmonium system, pose a more difficult problem. Tuo types

ot information have been used to assign these states.

An analysis of the cascade process,

V' > ¥y X > ¥ v Iy >y v R LT (111-40)

yields the j of the state only, not P (ue know C = + because of the first

decay of (III-40)). An angular correlation analysis®? is done which fits
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the v and final state lepton angles to a probability disiribution,

WjCcos8’,47,c0808yy,c086,%,D); ' (111-41)

e.g., for j=0,

Wo = (1 + cos26’)(1 + cos?8) (dipole only for j=0) (I11-42)

where the angles are defined in figure 15, and p indicates the multipole
content of Wj. For & spin j’x state there are 23j+1 multipole amplitudes for
the transition ¥/ » ¥ Xj, and another 2j+1 amplitudes for %35 = v J/¥. These
are usually called dipole, quadrupole, octupole, ..., amplitudes and in
louest order are electric dipole (E1) for xj; parity + or magnetic dipole
(M1) for xj parity -. The angular correlation analysis alone cannot
determine whether electric or magnefic amplitudes are operative, i.e., as
mentioned previously, the parity of the X; state is not determined in this
analysis. In the non-relativistic charmonium model, lowest order is assumed
to be dominant. Thus, only the dipole contribution is considered, c.f.
equations (I1I-34) and (I11-36). This is an assumption which has been
checked experimentally, as ®ill be shoun later. The results shoun here are

a partial summary of those presented in reference 38.

Before considering the full spin analysis, much c¢an be learned (and
historically was) by examining the hadronic decay modes of the various %
states, and by analyzing the distribution of the first ¥, in cos8’. This
knowledge of the initially emitted ¥ in the cascade is abtained, along With
the hadronic decay information, from a common 1-C kinematic fit in the case
of the Mark 129 and Mark 113° detectors. Similar information is obtained
frem the Crystal Ball detector by observing all ¥ decays of the x states,
e.g.; xo+ﬂoﬂo,a 3-C fit in this detector. The x(3.55) and x(3.41) both

decay into tuo pseudoscalars, nm or KK, while the %(3.51) does not2%.39
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cascade reaction
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This.is illustrated using recent Crystal Ball data in figure 16. Thus the
¥(3.55) and x%(3.41) must have jPC = g*+, 2+* _, using P and C conservation

in the decays.

The %(3.51) is observed3? to decay into KKn? (three pseudoscalars) and
thus 0* is not possible for this state. The absence of a prominent decay
into 2y for such a narrou state (it is narrouezrthan the x(3.55) as ue
shall discuss), strongly indicates, though does not prove, a spin-parity
assignment 1% or 1°. (A massive spin 1 object can’t decay into tuo

massless spin 1 objects, or Yang’s theorem.)

Figure 17 shous the projection on cos8’ of the data of references
38(crystal ball), 29(SLAC-LBL). The;e is a good indication for a j = 0
assignment for the X%(3.41); the x(3.51) is clearly not j = 0, as we already
knou. For a conclusive j assignment of %(3.55) and %(3.51) the full
correlation analysis is needed. HNote that the rate for (I11-40) for
%¥(3.41) is very small and so a full analysis cannot be done to determine j
for this state with existing data which come from = 1.7M ¥/ decays. The

likely assignment of 0** for %(3.41) is thus commonly accepted.

A maximum l1ikelihood fit over all angles and multipole coefficients
establishes the spin assignment with certainty uhen sufficient data are
available as is the case for data obtained by the Crystal Ball38 for
%(3.55) and x(3.51). These fits favor x(3.55) having j=2 over j=1,0 hy

many standard deviations, also X(3.51) has j=1 by a few standard deviations

{=24) over 3=2,0.

We thus conclude that,
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Figure 16. a) v¥/-3¥ or Yu%n® as observed by the Crystal Ball Detector.
¥(3.41) and %(3.55) shou prominent signals while, %,(3.51) does
not. b) ¥7»3y (after n° removal). A strong signal still
appears for %;(3.55) (though smaller than in figure 16a), while
none appears for %0(3.41). Thus we conclude, x(3.41) and
%(3.55) both decay to n°n®, uhile %(3.51) does not. Also,
%(3.55) has an observahle decay to ¥y. HNote that the last peak
on the right in both parts of the figure is just the QED
process, e‘te >37y.

—48-



(a) MARKI (b) CRYSTAL BALL

X——41, X—KKTT I | T I

I ! [

X(3550)

N
=
Z 10 |-
>
)
O

4 - 75

X(3510)

0 I l | 0 l l [ |
-.0 -0.5 O 0.5 |0 O 0.2 04 06 0.8 10
/
. cosf |C0591| 4233A15
Figure 17. a) Data from the Mark 1 129) detector for ¥/-»yx , x»21*2n" or

K*-n*w-. The angular distribution in cos8’ of the transition
v is shoun for each % state. %x(3.41) is consistent with a 1 +
c0s28”’ distribution while the octher X states are not. b) Data
from the Crystal Ball detector 98 for ¥-yx - yyJdsy = yyL*4-,
Again the angular distribution in cos8’ of the first ¥
transition is shoun for each % state. Also, Monte Carlo
resulis for various spin assignments are shoun. x(3.41) is
consistent with a 1 + cos?8”’ distribution, (j = 0). Based on
a) and b) plus the arguments in the text, a 0%' assignment for
X0(3.41) is most likely, and is commonly accepted.
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23p,** = %(3.55) = %,
23py¥t = %(3.51) = xq(parity not directly measured) (III-43)
23Pgtt = %(3.41) = ¥,

just as one expects from the charmonium model. The 7c(2980) and 7o’ (3592)
have C=+; however, the determination of jFP for these states needs further
experiments (transition ¥ cos8’ distribution, Yy and hadronic decays spin

analysis).

Hidths of States. The leptonjc branching ratio of the Js/¥ can he used to
estimate ag(My?). To form this branching ratio we use (III-32) and
(111-33) as uell as,b0
TW/y » ygg) = 32797 (nZ-g)aszach|é(0)|2/M¢2 (111-44)
we then find, in lowest order,
Br(dsy » eYe”) = Bridsy - ptp)

TWrdy > ete”) (I11-45)

sy > gag) + 2I(Jrsy » ete”) + TWI7Y = vgg)

or,
Br{J/y > ete~) = a2Qc?
(111-46)
10(m2-9)/811 ag® + 2a2Q:% + 8/97 (72-8Yag?aQe?
Numerically with Q. = 2/3,
Br{Jsy > ete~}) = 2.368 x 10°°5
(111-47)
3.417x107°% ag3 + 4.736%10°5 + 7.983x10 " %ag2
which is a cubic equation for as.
Experimentaliy,!?
Braoxp(Jds7y = ete”) = 7xix10-2 (111-48)
solving (I111-47) using (II11-48) we find,
ag(Mp?) = 0.197 *0.010 (111-4%)

-50-



where this result is for first order QCD, i.e., a<%(My?) has actually been

determined.

A recent evaluation®! using the Js¥ - n. mass difference as input yields
Ams = 0.16x0.02%0.07, which implies to second order in QCD (Ms
renormalization scheme),

ag(My?) = 0.18 (111-50)
or to first order QCBD,

a®g(My?) = 0.24. (ITI-51)
For our purposes here, We wWill use,

as({My?) = 0.2 * 0.02. (I11-52)
Using equations (II1-31) and (111-323,
T(J/4239)/T{ne>29) = ag{My?2)[5(n2-9)/277]

= (1.0 £ 0.1) x 10°2 ) B (I11-53)

By using the experimental value 17

TFiotlds¥y) = 63 + 8 Kev, (I11-54)
and removing the partial widths, [(J/7¥2¥28°3 and T(J/¥>vag) (c.f. (I11-33)
and (I11-44)) which have the values about 8.8 KeVY and 6.3 KeV respectively,

we find,

IF'inl{ne2ggthadrons)) = 4.7 * 1.2 MeV. (11I1-55)

Using the inclusive ¥ spectrum from the J/Vv the Crystal Ball

tollahoration has obtained 33,

Fexp{nerhadrons) = 12.4 * 4.6 MeV. (I1I-56)

Thus,

TinTexp(ncrhadrons) = 0.38 * 0.17, (111-57)
where the error in the ratio is obtained from a Gaussian combination of the

errors in (III-55) and (I1I1-56). Depending on one’s standards this is good
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or poor agreement. After all, a first order theory is being used, and tuo
quantities are being compared which are a factor of 100 different. Thus,
obtaining agreement to a factor of 2-3 is somewhat gratifying. 1st order
RCD also gives the x state widths in terms of the first derivative of R(r)
at the origin'®, i.e., |R7(0)]%; For example

[(2%P,>hadrons) = 128/5 as? [R7€0) |2/ My, (111-58)
and, -
T'(23Pg>hadrons) = 96ag?|R7(0) ]2/ Mot . (111-59)
Thus the ratio is a simple quantity,

I'(23pP;~hadrons)/T(23Pg>hadrons) = 4Mye" /(15 My2"*) = 0.23 , (ITI-60)

Using a combination of Crystal Ball results from the inclusive ¥
spectrum from the ¥/ 33 and cascade decays from the ¥/ to the J/¥3%, the
hadronic widths of the %o and x; states can be determined. Figure 18 shous
the_resu1ts obtained for the widths of the states from the cascade decays.
Averaging the results from references 38 and 33 for the %, width ue find,

Also, 37

Fixz»yJdsy) = 330 = 170 KeV (111-62)
and so, subtracting (III-62) from (I1I11-61),

T'(xz»hadrons) = 2.7 * 1 MeV. (I111-63)
From the inclusive v spectrum from the ¥/33 (I'(xe>yJd/¥) is negligible),

T(%p=hadrons) = 16% 4 MeV {111-64)
and thus we find,

Fexp(23P,>hadrons) /T ayp(23Pp>hadrons) = 0.17 + 0.08 (1I11-65)

or less than lo below the theoretical ratio (III-60). We thus again find
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a) The spectrum of the first photon in the cascade

Y/ ryx2yyd /Y (AYL") from the Crystal Ball Detector 38. The
spectrum is fitted by a convelution of the Nal line shape for
the detector and a Breit-Wigner line shape. The datted line is
the Nal line shape. The solid line is the full fit. bl The
confidence levels as a function of the Breit-Wigner full uidth,
T, for %4 and %,. The horizontal dotted lines show the 890%
C.L.), and the %1 ¢ error limits for %z (4.1 £ 0.9 MeV). The
width measurement is clearly a tricky one.
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gqualitative, though not convincing quantitative agreement hetueen the first
order theory and experiment. The absolute values of the widths are much

worse; the R7(®} obtained from an early charmonium model %3, yields,

F(23Py,4,2 = hadrons) = 2 MeV, 0.1 MeV, 0.5 Mev.

Rate and Multipolarity of ¥ Transitions.

L=

To compare the charmonium model ¥ transitions rate predictions to
experiment, We must first be sure that the model applies in principle. MWe
have already checked aspects of the model in the previcus sections.
However, the non-relativistic approximation also demands dipole dominance
for the ¥ transition matrix elements, i.e., that equations (III-34) -
(I11-39) apply. That the dipole matrix elements dominate the radiativé
transitions has been checked using the cascade process (III—_AU). As
des;ribed earlier, the jFC of the x states has been determined by using the
cascade process and other inputs. In reference 38 fits of the form
(111-41) were made to the cascade data for %, and X2; dipole and quadrupoie
amplitudes uwere included in the fits. Figure 19 shous the results from the

fitting process, and dipole amplitudes are shoun to dominate.

Nete that the radiative transition matrix elements measures the wave

function at relatively large distance.

From the 7 cascade analysis we compare I'(23Sy»v23P;) I'(23P;»7138,) to

he coupled channel Cornell Model (CCM)BZ,
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Figure 19,

11-81 4219816
The multipolarity content of the transitions for a) %3, and b) %,. The
result is shoun in terms of a likelihood function plotted as a function of
bldipole) and Q{quadrupole) amplitude content for ¥/=¥xj, and Xxj>vJ/¥
transitions D is pure dipole, Q is pure gquadrupole, D+Q is equal mixture
Wwith positive relative sign, B~Q is equal mixture with negative relative
sign. The likelihood products for the data samples shown behave gaussianly
in the region of the peaks; uwe thus plot contours of the likelihood
function in 1 ¢ cells, with each cell below the main peak corresponding to
successive 1 ¢ deviations from the best estimate. The resulis cobtained are
compatible with dipole dominance. See reference 38 for details.



state I{x=»all) F-T(CBYaxp T-TC(CCM) th

{KeV)Zx102 (KeV¥)?x102

23P, 2164 MeV 20%8 56
23p, <2 <102 87
23p, 3+ 81+33 84

Table 7.Comparison of experiment 33,38 tg theory"? of the ¥ cascade
transition rates. We use Ty’ = 21540 KeV'7.

Agreement is surprisingly good given the non-relativistic approximations

which have been made in the CCM.

Given the results for the first ¥ transition rates the agreement seen in
table 7 is probably an accident. Results published in 1977 from the MP2S3D

collaboration®3 for the first ¥ transition rates are,

T(¥’>7xp) = 15.5 * 5.0 KeV
T(y7»y%4) = 15.3 = 4.1 KeV * 194 (systematic error) (I1I-66)
T(yryx,) = 0 % 4.3 KeV ] (from [y’ uncertainty)

Again, using I'y7=215240KeV.

Neu, preliminary numbers from the Crystal Ball Colilaboration are discussed
in detail in reference 33,

T(¥>v%p) = 20.8 £ 1.3 % 3.4 KeV
T(¥7=yx4) = 18.9 £ 1.1 £ 3.0 KeV * 19% (systematic error) (111-87)
T(yr>yx,) = 16.6 £ 1.1 * 2.5 KeV (from 'y’ uncertainty)

when the first error shoun is point to point and the second is an overall

systematic uncertainty.
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The agreement betueen the old and new experimental results is within the
relative systematic errors (excluding the overall error on the I'¢’);
houwever, the Crystal Ball numbers tend to be larger. Within the point to
point errors there is an indication for an increase in rate from X2 to Xg
transitions for the Crystal Ball data. Since,

T(yr»yx;) « (234+Dw;3, (I111-68)
c.f.(I111-34), we expect,

Ty -»yxg) 703 @ T{¥/9¥xy )/3w43 ¢ T(¥/5¥x,) /50,3 = 1:1:1 (111-69)

The Crystal Ball experiment yields: 1 # 0.07 : 1.05 % 0.08 : 1.37 & 0.11.

However, as table 8 shous, the absolute comparison is somewhat wuorse.

state Theory(CCM) Exp. (% full error)
T(y’=yx) 43 KeV 20.8%4.5 KeV

T4/ yxy) 34 18.9%3.9

F47-yx) 24 16.6%3. 6

Table 8. Comparison of the absclute rates for ¥ » yx5. Theory is
reference 42, experiment is from reference 33. The full

systematiec errors of the experiment have been included for this
comparison.

The M1 transitions should be easier to calculaté since M;; = 1
{c.f.CI11I-37)), (only spin flip is involved),
T'(n331*n1Sp)7wn & 16/3{Qc/2Me)2 & 1275 KeV/{GeV)3(CCM) (111-70)
Thus, using wy = 111 £ 5§ Mev, and (111-54),
Brin(Jdsy»yne) = (2.6 *0.5)% (Ir1-713
The Crystal Ball has measured this branching ratio3®3 to be,

Brexp(J/¥ = ¥yme) = (1.20 *0-53 4 )% (111-72)
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Thus again, the agreement betuween the CCM and experiment is reasonable

given the limitations of the model.

We may conclude after our somewhat cursory comparison of the charmonium
model to experiment (actually only tuo or three non-relativistic models
were compared), that agreement is suprisingly good considering the
approximations made in the modelis. The charmonium syszgm does have
important relativistic corrections, and higher order QCD corrections33.
Houwever, the bottomonium system should be better in these respecis and

theory awaits crucial tests as the exploration of this unique system

progresses,
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IV, Uhat is' Teft to learn?
a) Questions about Bottom
As we saw in Section II, bottomonium is quite non-relativistic with
{vZ> = 0.08. Thus ue expect to learn a great deal about quark
dynamics through the careful observation of the bottomonium system.
In particular, the following topics should prove to be illuminating.
. Leptonic widths ©
n?Sy; mass splitting
23pP; cog
23p; fine structure and classification
T(T’-¥3P3)

T - mp mass splitting

a) The discovery of the Y system:

The ¥ uas discovered at Fermilab using the process, P + Be » A*2" +
X. Figure 20 shows the results from Fermilab and the confirming

results from DORIS I.

Figure 21 shous results from the Cornell storage ring CESR, on the T

system.

The rates for T system production in e*e” collisions are
considerably smaller than in the Js/v system case, and thus make the T
system much more difficult to study. This is due to a number of
factors. Considering the case of the T/, first, g(ete” » ¥/} a

Qp2/MyZ, which drops the cross section by a factor of = 36 from the
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O Columbia- FERMILAB-Stony Brook Collaboration (Tokyo, Aug 78)

® NaI-Pb-Glas Detector/DESY (DORIS) “DESY-Heidelberg -
Hamburg-Munchen - Collaboration (Aug 78)
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Figure 20. Columbia-Fermilab-Stony Brook and DESY-Hamburg-Heidelberg-
Muenchen Collaborations: The YT family produced in hadronic and
e*e” reactions.
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Figure 21. a) The T, T/ and T’’ states observed in e*e” reactions at CESR
using the CLEC magnetic detector**. b) The T7/ and ¥7/”
states observed at CESR using the CUSB Nal(TA&) detector®S.
Note that the T’’’ is wider than the machine resolution
signaling the production of B(B) mesons.
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¥7. Second,

gle*e” » ) @& 1/8Epeams Where AFEpesm 15 the energy spread of the
storage ring. For SPEAR and DORIS (both machines have about the same
magnetic radius),

8Fheam & 2107 YEp? (GeV). (Iv-1

Thus SPEAR at the ¥/ gains another factor of = 7 over DORIS at the T/
due to the beam energy resolution, and o a total factor of about 250
is lost. All is not lost however, DORIS I11%€ has a much greater
Tuminosity at the T/ than SPEAR has at the ¥/, and the production rate
is proportional to the luminosity. About a factor of 10 more
integrated nb~'/day is expected for DORIS II at the T/ as compared to
SPEAR at the ¥/. At SPEAR aSout 20k ¥7 events are collected per day.
Thus at DORIS II wue expect about 800 T/ eventssday. HNote that CESR
should also collect about 808 T’ eventss/day. The luminosity of CESR
is Tower than DORIS II at the T/, but the machine energy resolution is

about a factor of tuo smaller due to the greater magnetic radius of

the machine.

What is obviously needed is a machine with 10 times more

.

luminosity. Machine physics is a grouth industry‘

b) Leptonic widths and the determination of Q.

Figure 22 shous T(13S4y - e*e~), equation 111-33, divided by the
square of the average quark charge, e.g., for the p,

(2C;Q3)2 = (12 273 + 1Af2 1/3)2 =

Nl
.
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Figure 22. The leptonic decay widths of the 1334 vector mesons divided by
the square of the average quark charge as a function of the
meson mass.
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As is seen from the figure, and using (I111-33),

(135, > e*e”) [r(0)]|2

= . = 5.6x10% (I1v-2)
402 (5Q;C;22 M(35432

for the mesons with mass below the T. 0On Choosing Qp% = 1/9, we find

[RYCO)|2/Mp2 = 5. 4x10%, (1v-3)

while Qp? 479 yields a value 4 times smaller. Thus it is natural to

assign Qp = ~1/3. There are more sophisticated arguments? based on
potential models which support the 1/3 assignment; houwever, these
depend on general assumptions about the nature of the bb potential.
Measurements"® of Rpsd for Ecm < My’’’, and Ecm > My’’’ also confirm
consistency with Qp = -1/3. It is interesting to note the regularity
for IR(U)I2 implied by equation (IV-Z); No commonly accepted
potential is able to reproduce this simple relation; indeed, due to
_the involvement of the p w and ¢ its explanation is somewhat

mysterious.
c) The mass splitting of the n®S; states.

Initial predictions*® of the My’ - My = AMy used the standard

potential of section 111,

V(r) = x/r + rvsa? (1v-4)
where the My’ - My,y Wwas used as input and no "flavor tuning” of the
potential was attempted. There initial predictions gave values of &My
30 to 80 MeV smaller than the experimental values. This failure of
the potential (IV-4) led to the development of a series of potentials
with considerably different asymptotic characteristics all of which
are able to reproduce the observed AMy = 560%3 MeV, as uell as the

other n3S; masses for the T system (c.f. Figures 4 and §). The
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» characteristics of these recent potentials are reviewed in detail in
reference 16¢. Briefly, the reason that potentials with such diverse
asymptotic behaviers are able to reproduce the n®S; mass splitting is
that much of the bound state wave function is located at values of r
where V(r) is neither dominated by 1/r or r behavior. As is shoun in
figure 23, the average radii of the states studied lie in the region

of transition betueen the tuo postulated %symptotic behaviors.

d) The center of gravity (cog) of the masses of the n3Pj states.

The potentials which are nou used to describe quarkonium are
clearly not coulombic in the région of greatest influence on the
system. Thus the original motivation of Appelquist and Politzer in
predicting bound states, and the analogy to positronium, has been
somewhat blurred. 1In particular, the n? energy degeneracy of the
coulomhic central potential, which gives the n35, and n3P5 states the
same mass, is no longer true. All recent models predict a shift in
the mass of the n3P5 cog with respect to the n3S4y uwithout including a
spin-orbit interaction, where,

2

MN3P;5) cog = 179Z(23+1IMN3P;). (1v-5)
j=0

e) n3P; fine structure and classification

The fine structure for the quarkonium system, in the present
models, does not shift the cog of the P states (uhich is not the case
for positronium). For simple potentials, the fine structure mass

splitting terms scale like?
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Figure 23. Force [Tons] vs r [Fermi] for the coulomb force (lower curve),
and the Richardson potential!®, The mean square radii for the
Js¥, v/,Y, and T/ are also shown. See reference 16¢c for an in
depth discussion of the properties of many of the potentials.
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(1/Mg?) (d2Vsdr?) + (1/Mg2r) (dV¥zdr) o Mg (3v+2)7(v+2) (1v-6)
where,
V = tcer?, (-¢ for v ¢ 0). (Iv-7)
Thus, for a coulombic potential, V « 1/r we find AMf.g & Mg 373, uhile

for v = 0 (log(r/rgl), OMs.g @ Mg~ ',

Experimentally determining M(n®Pjlcog and 4M¢.s is thus an

important check of the general characteristics of the quarkonium

potential models.

0f course before a detailed comparison can be made, the jP of the
Xp states must be determined. 1In principle, this can be accomplished

the same way it was for the x. states, e.g., forn = 2,

T2 » vxp = yrT = ¥v&*R° (1v-8)
_can be analyzed to obtain j, while the exclusive hadronic decays of
the Xp states can be examined to determine P. Houwever, as we shall
discuss, the branching ratio for the process (IV-8) is projected to be
quite a bit lower than for the J/¥v system, and as ue have seen, the T’
production rate is much louer than the ¥/ production rate. Also the
average charge multiplicity, <(ndc, is <(nd>¢ = 8 at the T/, while (N> ¢
4 at the ¥7. The expected branching fraction into nw or KK for the
jP=0%,2*%* states, is thus substantially louwer for the X, states as
compared to the X. states. Thus the prognosis is for rather slou
progress on these questions, unless some suprises are in store. I
expect that substantial information about even the simplest quantity

to measure, M(23Pj)coq, Will be tuo years in coming, i.e., the summer

of 1883.

) Branching ratios for T7 > ¥Xxp35, and the ¥ cascade reactions.
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Many theoretical estimates have been made for the partial widths,
F(Y’ » yxp;) for bottomonium'®, 1In order to obtain branching ratios
the full width of the Y/ is also needed. There has been some

uncertainty in I'y” due to lack of knowledge of the mn transition from

the Y/ to the T. Theoretically50,

|14

10, (1v-9)

Ty’ > Jrdmm) [(rw’2>]2
s » Tam

{ryfed

if the gluon has spin 1. Thus the accuracy of this prediction is crucial
in the theoretical determination of I'v”. In the case of the ¥7,
T(y’»um)=iTy’. Recently the LENA collaboration at DORIS reportedS? the
first measurement of Br(¥’ - nw¥n-T). Measurements of this branching ratio
have also been made by the CLE0S? and CUSBS3 detectors at the CESR storage
ring. The average of the three measurements yield, assuming isotopic spin
invériance in the decay,

Br(T’/ - wn¥) = (28.8*3.9%, (Iv-10)

In order to obtain T¢’, the LENA group had to use a complex argument
since a direct measurement of I'v’ has not yet been accomplished due to the
large amount of running time needed. Let us nou make a slight diversion

and reproduce the LENA argument here; its validity saves a lot of machine

time.
Iys « T(Y’ » 3gthadrons)) + T'(T7 » 29T (Y
2
+ 3 T(Y’ = ¥%p;) + Ten(Y” > hadrons) (Iv-11
3=0
also,
Ty 2 T(T » 3g (hadrons)) + Ten(T = hadrons) (Iv-12)

uhere ey is the process shoun in figure 24,
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Figure 24.The diagrammatic representation of the process which yields I'an.

-69-



Both T34 and Iap are proportional to I'ge (for the T, Teel(T) = I'(T » ete™)).

and,

(Ty/TeelT)) 2 (TCT7 > 39) + Ten(¥’ » hadrons))/Taee(T’) (Iv-13)

letting,
BeelT) = Teal(Y) /Ty (1vV-14)

we find,
T(T” > 39) + Ten(T’ > hadrons) = Teo(T7)/Bea(T) (IV-15)

alsoS59,
(> 2g7) 2 Br(T’ » wnT)ly’ (1V-16)

combining, (IV-11), (IV-15), and (IV-16), ue obtain,

2 .
[TealT/)/BeelT) + IT(TY > yxp;)]
. 3=0
Ty?r = (Iv-173
1 - Br(Y’ -» 7n?)
using the LENA values forS"
TeelT?) = (0.5620.08) KeV (1v-13)
andS!
BeelY) = (3.2%0.8)Y (1Iv-19)
we obtain,
TFeelT’)/Bee(T) = 18%6_5 KeV (Iv-20)
and finally,
2 .
Ty’ « 26%3 KeV + (1.4220.02)3T(T’ > ¥yxp;) (Iv-21)
3=0

The width of the T has been obtained®$,
Ty = 40 +13-9 KeV.
In order to estimate the effect of the ¥ transitions, we can use scaling

laus? using (I11-34),
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T(T7 = yxp;)/T(P > ¥Xe5) =
(Ab/0c) 2 (wpjrwe;)? JEisln2/7|Eis] e (1v-22)
For a potential of the form (IV-7),
(b570c5)2 |Eit]b27|Ei¢lc? 2 (mpsme)-3V+27(V+2) (1v-23)

Then, for v =2 0 (log(r/rg)l,

T » v¥p;5) 2 (/) (W/3IT(Y » ¥Xej) (1v-24)
and33, “
2
LTy > v%e3) 2 60 KeV ' (1v-25)
j=0
and so,
2
T T > yxpj) ¢ 5 KeV (1V-26)
=0
using this value,
Ty” 2 33 10 KeV = Ty. ) - (av-27)

This is certainly not the case in the Js¥ system where I'y’ = 3T,,v. 0Of
course the relatively narrouwer uwidth of the T/ as compared to the ¢/ is an
important boost to the observation of the ¥ lines, since their observation

rate is proportional to Br(Y’ - ¥Xp;). We can estimate using (IV-26) and

(IV"27)7
2
I Br(T’ > ¥¥pj) = 15%. (1V-28)
i=0

How such lines uwould appear in the Crystal Ball Detector using 125k T’

decays is shoun using a Monte Carlo simulatien®® in figure 25.

Figure 26 shows the data sample obtained for the ¥ cascade process using a
different Monte Carlo modelS®, and a different theoretical model®®, than

used for figure 25. 120 cascade events are obtained from 125 k ¥/ decays

3!

-71~



Fr T T TT] T

500

2500 [ -
W 2000 F E
L — ]
© - ]
32 1500 ]
N - _
‘>; l()()() Ef' ,{E

-

0 L | N R B
40 |00 200 400 1000
12-81 E)’ (Me\/) 4233A12

Figure 25. A Monte Carlo simulation of the T/ inclusive v spectrum in the
Crystal Ball Detector. 125k T/ decays are shoun. Acceptance
cuts, pattern and overlap cuts and a 1° subtraction are in the
Monte Carlo as described in reference 56. The model of Quigg
and Rosner was used®7?, which has Br(I’ = ¥Xpz) = 8%, Br(I’/ -
YXp4) = 6.0%, and Br(T’ = vxpo) = 4.3%.
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Figure 26. A Monte Carlo simulation of the ¥ cascade process from the
decay of 125k T/ in the Crystal Ball Detector. A diagrammatic
representation of the cascade i1s shown at the upper left of the
figure.
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after all cuts. Tuo or three times this data sample (iuo or three years of
running at DBORIS II) would allow a spin analysis to determine the j of the
states. Thus the prospects look reasonable that within the next three to
four years many of the interesting questions we have pondered in this

section will have substantial experimental input.

g) Hyperfine Splitting, the 7p.

Estimates for the #y, mass'® place it about 46 MeV below the T. Given
the w® factor in the formula for the M1 transition, (111-36), the rate will
be highly suppressed. Also, the observation of a # 50 MeV photon in the
large backgrounds present around that eneréy in the T inclusive ¥ spectrum
makes the measurement exiremely difficult. It thus seems that the most
likely uway to observe the mp is through the hindered M1 transition, where
the photon has about a 600 MeV energy. O0f course this possibility depends

on how hindered the transition actually turns out to be.

V. On to top.

Figure 27 shous a recent compilation of threoretical predictions as to
where tt threshold is to be found. Within tuwo vears PETRA uill have

extended its energy to well over Ecm = 40 GeV. Is there life beside the

207

iy



PREDICTIONS /(4 GeV)

12-81

Planned
Petra Max

Emm.

Present Petra
Energy Limit

A

[

25 Predictions
Data Supplied by
R.S. Stroynowski

5> 70 Gev

70
80
100
150
<250

30 40
Mz

50 60
(GeV)

" Figure 27. Mti vs # Predictions/4GeV.

-75-

70

423387



o
.

10.

11.

12.

13.

14.

15.

16.

17.

18.

18.

! REFERENCES
Most recent limit from a number of PETRA experiments.

S. L. Glashow, J. Iliopoulos, L. Maini, Phys. Rev. B, 2, p.1285
(1870).

H. Harari, Proceedings of SLAC Summer Institute, SLAC Report
$204,p.204, Editor M.C.Zipf, (1977)

R. J. Cashmore, Lectures given at 16th International School of
Elementary Particle Physics, Kupui, Yugoslavia, Oxford University
Nuclear Physics Laboratory Report #1481, (1981).°

J. J. Sakurai, Advanced Quantum Mechanics (Addison Wesley, Neuw York,
1861).

R. L. Jaffe and F. E. Low, Phys. Rev. D, 19, p.2105 (1979).

T. Sterling, Nuc. Phys. B 141, p.272 (1978).

J. L. Richardson, Phys. Lett. B 82, p.272 (1879).

S. Mohorovicic, Astr. Nachr. (Berlin), 253, No. 6052, p.93, (1934).
M. Deutch, Phys. Rev. 82, p.455 (1951},

A. P. Mills Jr., S. Berko, and K. F. Canter, Phys. Rev. Lett. 34,
p.1541 (1875),

T. Fulton and P. ¢. Martin, Phys. Rev. 95, p.811 (1954).
H. Grotch and D. R. Yennie, Rev. Mod. Phys. 41, p.350 (1969).
S. Brodsky, private communication.

An excellent recent review of Positronium Research is in,
A. Rich, Rev. Mod. Phys. 53, p.127 (19813,

For comprehensive reviews, see:

a) T. Appelquist, R. M. Barnett, K. Lahe, Ann. Rev. of Nucl. and

Part. Sci. 28, p.387 (1978);'55 M. Krammer and H. Krasemann, DESY
Report 79720, (1979);

¢) W. Buchmuller, S.- H.H.Tye, Phys. Rev. D24, p.134 (1981).
Particle Properties Data Booklet, Rev. Mod. Phys. 52, (1980).

G. Bellettini, et al., Nuovo Cin. 6BA, p.243 (1870); V.I. Kryshkin
et al., J. Exp. Theor. Phys. 38, p.1037 (1870); A. Brouman gt al.,
Phys. Rev. Lett. 33, p.1400 (1974).

E.D.Bloom, Proceedings of the XVIth Recontre de Moriond, Les Arcs,
France, March 15-27, 1981 (1982); also SLAC-Pub-2779 (183812,

76
-76—



20.

21.

23.

24.

25.

26.

27.

238,

29.

30.

32.

33.

34.

35.

37.

38.

39.

R. M. Barnett, M. Dine and L. Mclerran, Phys. Rev. D 22, p.5%4 (1980).
R. M. Barnett, private communication.

H.B.Atwood, Proceedings of the Summer Institute on Particle Physics,
SLAC Report #224, p1, Editor A. Mosher (1880).

M. Chanouitz, Proceedings of the SLAC Summer Institute on Particle
Physics, SLAC Report #245, Editor A. Mosher (1982).

6. Wolf, DESY Report 80,85 (1380).

J. D. Jackson, Proceedings of the SLAC Summer Ins%itute, SLAC Report
#198, pl147, Editor M.C.Z1ipf (1976).

T. Appelquist, H. D. Politzer, Phys. Rev. Lett. 34, p.34 (1975).
J. J. Aubert, et al., Phys. Rev. Lett. 33, p.1404 (19743,

J. E. Augustin, Phys., Rev. Lett. 33, P.1406 (1974).

6. Feldman, Proceedings of the SLAC Summer Institute on Particle
Physics, SLAC Report #198, p81, Editor M.C.Zipf (1976).

6. Coldhaber,

et

al., Phys. Rev. Lett. 37, p.225 (1976).

_R. Partridge, et al., Phys. Rev. lLett. 45, P.1150 (15980).

C. Edwards, et al., SLAC-Pub-2814, (submitted to Phys. Rev. Lett.}
(1981).

F. Porter, Invited talk, SLAC Summer Institute on Particie Physics,
SLAC Report £245, Editor A. Mosher (1882); SLAC-Pub-2796 (1880).

W. Braunschueig, et al., Phys. Lett. 678, p.243 (1977).

R. Partridage et al., Phys. Rev. Lett. 45, p.959 (1980).

M. A. Schifman, A. I. Vainshtein, M. B. Voloshin and V. 1. Zakharov,
Phys. Lett. 77B, p.80 (19783},

G. Kari, 8. Meshkov and J. Rosner, Phys. Rev. D 13, p.1203 (1976).

M. J. Oreglia, PhD. thesis, Stanford University, SLAC Report #226
(13880).

T. M. Himel, Ph.D. Thesis, Stanford University, SLAC Report $#223
(1978).

-77-



48.

49,

50.

51.

52.

53.

54.

56.

T.Appelquist, et al., Phys. Rev. Lett. 34, p.365 (1975); €. 6.
Callan, gt al., Phys. Rev. Lett. 34, p.52 (1975); M. Chanouitz,
Phys. Rev. D 12, p.918 (1975); L. okun, M. Voloshin, Moscouw Report
ITEP-95-1876 (1976); S. J. Brodsky et al., Phys. Lett. 738, p.203
(19782,

M. Buchmuller, g% al., CLNS 81,487 and Fermilab-Pub-81,/46-THY (19881).
E. Eichten et al., Phys. Rev. D21, p.203 (1380).
C. J. Biddick et al., Phys. Rev. Lett. 38, p.1324 (1977).

D. Andreus et al., Phys. Rev. Lett. 44, p.1108 (1980);

D. Andreus gt al., Phys. Rev. Lett. 45, p.219 (1980).

T. Bohringer et al., Phys. Rev. Lett. 44, p.1111 (1830);
G.Finocchiaro et al., Phys. Rev. Lett. 45, p. 222 (1930).

K. Wiile, DESY Repert 81-047 (1981).

J. L. Rosner, €. Quigg and H. B. Thacker, Phys. lLett. 748, p350
(1978). .

J. Lee-Franzini, Cornell Report No. CLNS 81,483, Submitted fer
Publication to Surveys High Energy Phys., (1931).

E. Eichten, et al., Phys Rev. D17, p3090 (1978).

K. Gottfried, Phys. Rev. Lett., 40, p598 (1978); 7. M. Yan, Phys. Rev,
B22, p1652 (1980).

B. HNiczyporuk, et al., Phys. Lett, 1008, p%85 (1981).
J. J. Muller et al., Phys. Rev. Lett. 46, p1181 (18381},

G. Mageras et al., Phys. Rev. Lett. 46, p1115 (1981).

B. Niczyporuk, gt al., Phys. Lett. 89B, p1569 (1981).
H. Schoder, DESY Report 80-61 (1680).

Cystal Ball Collaboration, Propesal for Investigating QE Spectroscopy
2% DORIS II Using the Crvsial Ball, DESY PRC 81,09, (1381).-

~-78-



