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ABSTRACT 

A variable span scatterplot smoother based on local linear fits is 

described. Local cross-validation is used to estimate the optimal span 

as a function of abscissa value. A rejection rule is suggested to make 

the smoother resistant against outliers. Computationally efficient 
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subroutines are presented. 
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1. Introduction 

A smoother is a procedure that operates on bivariate data 

(X,,Yl)... (x,,y,) and produces a decomposition 

Yi = S(Xi) + ri, i=l...n. (1) 

Here s is a smooth function, often simply called the smooth, and the ri 

are residuals. It is possible to formally define what constitutes a 

smooth function, and to define measures of smoothness, but for our 

purposes an intuitive notion will be sufficient. Smoothers are used to 

summarize the association between the predictor variable X and the 

response Y. It was pointed out by Cleveland (1979) and is a commonly 

held belief, that when looking at a scatterplot the eye is distracted by 

the extreme points in the point cloud, i.e., the fuzzy background, and 

-tends to miss structure in the bulk of the data. Augmentation of the 

plot by a smooth is a possible remedy. More formally, smoothers can be 

regarded as curve estimators; one assumes that the response was generated 

by adding random noise to a smooth function: 

Yi = f(Xi) + Ei (2) 

and considers the smooth s as an estimate for f. 

Recent1 y scatterplot smoothers have found a new use in multiple 

nonparametric regression (Friedman and Stuetzle, 1981). Let 

(Xl,Yl)... (x,,y,) denote the observations; Xi here is a vector in Rp, not 

just a single number. Assume as above that yi = f(xi) + sir i = l...n. 

projection pursuit regression constructs an estimate m for f of the form 

m(x) = F Si(ai.X)r 

i=l 
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where the ai and suitably chosen unit vectors in RP. For given 0;s Si 

(essentially) is found by smoothing the scatterplot of the residuals 

i-l 
‘j 

i-l = Yj-E Sk(ak.Xj) VerSUS ai.Xj. The smoother described in this 1 
k=l 

report is, up to minor modifications, the one used in the current 

projection pursuit regression procedure. 

2. Basic Concepts 

According to the definition above, any procedure that passes a smooth 

curve through a scatterplot, for example a procedure that fits a least 

squares straight line, would be called a smoother. This is not quite 

what we have in mind. Assume the data are generated according to (21. - 

We are interested in procedures that can approximate f arbitrarily 

closely, given a dense enough sample, uithout any conditions on f apart 

from f being smooth. Such procedures can be based on local averaging. 

Take s(xi1 to be the average of the responses for those observations with 

predictor values in a neighborhood N of Xi: 

S(Xil = ave(yjlxje Nl. (3) 

Here “ave” can stand for the arithmetic mean, the median, or more 

complicated ways of averaging to be discussed below. A critical 

parameter to be chosen is the SPAN, the size of the neighborhood over 

which averaging takes place. It controls the smoothness of s. The 

bigger the span, the smother s will be. To obtain consistency, i.e., to 

make sure that s gets arbitrarily close to f as the sampling rate 

increases, one must shrink the diameter of the neighborhood in such a way 

that the number of observations in the neighborhood still grows to 
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infinity. Shrinking the neighborhood makes the systematic or bias 

component in the estimation error diminish, while increasing the 

neighborhood sample size guarantees that the variance component of the 

error goes to zero as well. 

An alternative method for nonparametric curve estimation is based on 

series expansions: make an ansatz for s of the form 

So(k) = aigi (Xk) 

i=l 

where the gi(X) can, for example, be polynomials or trigonometric 

functions. The constants ai are then determined by fitting the series to 

the data, most commonly by least squares. The role of the span is played 

here by M, the number of terms included in the model. Trigonometric 

functions have been used with success in cases where the signal is 

naturally periodic. If the abscissas Xi are equi-spaced, the fit is 

particularly inexpensive to compute using the Fast Fourier Transform. 

Both conditions are usually not fulfilled in the case of scatterplot 

smoothing, making the method less attractive. The use of polynomials has 

the drawback that they are not well suited to represent a wide variety of 

commonly encountered functions, for example, functions with asymptotes. 

There are, of course* connections between smoothing by series 

expansion and smoothing by local averaging. If the series is fitted by 

least squares, the fitted values s(xi) are weighted averages of the 

responses yi. Depending on the abscissas and the functions gi(x)r the 

weights determining s(Xi) might or might not be concentrated on responses 

with corresponding predictor values close to Xi. If they are, the series 
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expansion method behaves like a local averaging method. An example of 

this is least squares fit of cubic splines which will be further 

discussed in Section 9. 

3. 11 Simple Nonresistant Smoother 

The simplest example for a local averaging type smoother is the moving 

average, where “aye” in equation (31 denotes the arithmetic mean. The 

size of the neighborhood is usually specified by the spanr the number k 

of observations to be included in the averaging. We will assume k to be 

odd and the abscissas xi to be in increasing order. The neighborhood can 

be chosen either symmetrically, containing k/2 observations to the left 

Of Xi and the same number to the right, or it can be chosen to contain - 

the k nearest neighbors of xir including xi. (We assume that k/2 is 

computed by integer division.) There are no general results on which of 

these two possibilities is better statistically. The nearest neighbors 

approach generalizes to higher dimensions, but the choice of a symmetric 

neighborhood is computationally simpler in that exactly one point enters 

and one point leaves the neighborhood as one moves from observation i to 

observation i+l. We will, in the following, use symmetric neighborhoods. 

The boundaries, where it is not possible to keep N symmetric, have to be 

treated specially; a commonly used adjustment is to shrink the 

neighborhood so that for i=l and i=n, one averages only over k/2+1 

observations. With these conventions, the moving average smoother is 

defined by 

S(Xi) = mean(yjlmax(i-k/2,1) 5 j < min(i+k/2,n). 

Obviously, the mean does not have to be recomputed every time. It can be 
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updated, reducing the computation from nk to n. Such updating can be 

done for all the smoothers we will consider, and is highly desirable 

because in typical applications k is 5% to 30% of n, and thus the savings 

are substantial. The simple moving average smoother has some serious 

shortcomings. One disturbing property is that it does not reproduce 

straight lines if the abscissa values are not equi-spaced. Another 

disturbing feature is the bad behaviour at the boundaries. If, for 

example, the slope of the underlying function f is positive at the right 

boundary, the estimate for observations close to the boundary will be 

biased downwards; if the slope is negative, the estimate is biased 

upwards. Both problems can be alleviated by fitting a least squares 

straight line L to the observations in the neighborhood instead of - 

fitting a constant and taking the value of the line at Xi as the smoothed 

value. This obviously solves both problems mentioned above. For the 

computation, again updating formulas can be used. The slope 8 and 

intercept a of the least squares straight line through a set of points 

(X,,Yl). . * (xn,yml are given by 

a= iir - RI, 

Cbll 
R =- 

VII 

with 

ii,= CXiAll9 

Pm = C Yi/mr 

cm = 1 (x i-P,) (Y i-F.1 s 

VII = C (Xi-R,12. 
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When we want to add an observation (xw+l,y,,,+l1, we can make use of the 

following easily derived formulas: 

E ml+1 = (mg, + x~+~) 1 (m+l)n 

vr+1 = (mji, + yr+l) / (m+l), 

m+l 
C m*1 = cm + - (xnlt1 - ~al*1~(YI*+1 - vmtl)l 

m 

m+l 
VW1 = vm + - (x In+1 - 5 mt1 12. 

m 

Analogous formulas can obviously be used for removal of an observation 

from the set. 

4. Span Choice of 
- 

The most important choice in the use of a local averaging smoother is 

the choice of the span value. If the smoother is regarded as a curve 

estimator, then the span controls the trade off between bias and variance 

of the estimate. We illustrate this for the case of a simple moving 

average smoother. In this case, the smoothed value at point xi is given 

by 

1 i+k/2 
S(Xil = - c Yj- 

k i-k/2 

If we assume that the errors Ei are i.i.d. with expected value zero and 

variance u2, then the expected squared error at point xi is 

1 i+k/2 
ESE (xilk) = (f(Xi) - - 1 f(Xj) 1’ + ’ U2. 

k i-k/2 k 
(41 

Increasing the span will (if d2f/dx2#0) increase the first term, the bias 

component of the estimation error and decrease the second term, the 
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variance component; decreasing the span uill have the opposite effect. 

The span should be chosen such that both compnents of the error are 

reasonably balanced. Stated more geometrically, a larger span makes the 

smooth appear less wiggly by more strongly damping high frequency 

components of the series (xiryi). 

We have, so far, said nothing useful on how to choose the span in 

practice. The advice given above on balancing bias and variance is not 

very helpful because both f and the variance of the random error are 

unknown. 

One can estimate the optimal span value in a particular situation as 

that value that minimizes an estimate for the integrated squared error - 

12(kl = 
I 

ESE(xlk) dF(x). 

Using the average squared residual of the data from the smooth 

i2(k) =! i [ Yi-s(xilkl12 
n i=l 

for this purpose is not appropriate since this is always minimized by the 

span value k=l. A better estimate is provided by a method referred to as 

“cross-validation” CM. Stone, 1974) or “predictive sample reuse” 

(Geisser, 1975). Each observation is in turn deleted and the value of 

the smooth s(i,(xilk) at Xi is calculated from the other n-l 

observations. The cross-validated estimate of the integrated square 

error is 

1 n 
i2 cv(k) = - 1 CYi - S(i,(Xilk)12. 

n i=l 
(5) 
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Clearly, E[P2 =“I equals the expected squared error obtained by applying 

the procedure to a sample of n-l observations from the same distribution. 

The cross-validated estimate for the optimal span value is taken to be 

the value kov that minimizes (51, 

k cv = min’l ircV (k). 
O<k<N 

Model selection through cross-validation has been remarkably successful 

in a wide variety of situations (see M. Stone, 1974, Geisser, 1975, 

Craven and Wahba, 1957, C. Stone, ‘1981). 

For the moving average smoothers discussed in the previous section, 

the deleted smooth estimates s( i)(Xilk)- are especially easy to compute; 

each observation is simply deleted from the neighborhood used to compute 

its local straight line fit. Again, the use of updating formulas makes 

this computation very rapid. As one moves from observation i to i+l, 

exactly two observations enter the neighborhood (i and i+k/2+1) and 

exactly two leave it (i+l and i-k/2). The (deleted) residual squared 

r2( i) = CYi - s( i) (xilk)12 (6) 

is computed for each observation and then averaged over all observations, 

it=,, (k) ’ i =- r2( i). (71 
n i=l 

For small to moderate changes in k, i2 .v(k) changes very little so that 

it is adequate to evaluate it for several (4 to 71 discrete values of k 

in the range CO < k/n < 11. The value of k corresponding to the smallest 

of these values is then used. This can be accomplished by maintaining 

several running average smoothers - one for each span value - in the pass 

over the data, thus keeping the computational cost linear in n. 
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So far, we have been assuming that the span is constant over the whole 

range of predictor values. This is not optimal if either the variance of 

the random component or the second derivative of the underlying function 

f change over the range of predictor values. A local increase in error 

variance would call for an increase in span, whereas an increase in 

second derivative of f would require a decrease. It is, therefore, 

desirable to allow the span value to adapt to these changing conditions. 

This requires that the optimal span value be choosen locally rather than 

choosing a single global value. Again, the form of moving average 

smoothers make this especially easy; the (deleted) residual squared (6) 

-for each of the several k values- is averaged locally in a neighborhood 

of each observation - 

1 i +L/2 
i2CV (k;xi) = - 1 r2fR) (xRlk1 (8) 

1 L R=i -L/2 

rather than globally over all observations (7). Note that (8) also has 

the form of a simple moving average smoother and can therefore be 

computed rapidly through the use of updating formulas. The value that 

minimizes ($1 

I;,v(Xil = min-l i2 ov(k;xi) 
O<kSN 

(91 

is the span value used for the ith observation. 

Most often the shape of i20v (k;xiI near its minimum value is shallow 

and asymmetric, increasing more slowly in the direction of smaller k 

values. Variability in the estimate !2cv, therefore, causes i?qv to be 

highly variable and biased toward smaller values. Although this has 

little effect on the quality of the resulting smooth in terms of expected 
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squared error (ESE), it does effect its aesthetic quality since, for 

comparable ESE, the less smooth solution tends to be selected. This can 

be remedied by forcing the procedure to take the smoothest solution in 

these circumstances. Specifically, the largest span value I;*=” for which 

it cv(k*cv;xi) < (l+u) min &,(k;x j) (10) 
O<k<N 

is used for the ith observation. Here a loosely controls an upper limit 

on the fraction of ESE that is to be sacrificed for the goal of 

smoothness. Values in the range 0.05 i a 5 0.2 are reasonable. 

Since the optimal span value is estimated separately for each 

observation, its size can vary substantially over the range of predictor 

val ues. Holrever, since for close abscissa values the neighborhoods - 

overlap considerably, this variation is const.rained to be smooth. The 

degree of smoothness is controlled by the parameter L (8) uhich can be 

regarded as a span for smoothing the (deleted) residuals squared from the 

original smooths. As with the original smoother, its optimal value can 

be estimated by cross-validation. To the extent that the variation of 

the second derivative of f or the variation in the random component is 

comparable to the variation of f itself, this second level of cross- 

validation may be beneficial. Again, updating formulas make this 

relatively inexpensive. However, in most circumstances choosing a 

nominal value for L (0.2n to 0.3n) is adequate. 

It is important to note that using cross-validated residuals as a 

basis for choosing span value is highly sensitive to lack of independence 

among the Ei (2) as ordered on x. If there is a large positive 

(negative) correlation among observations with similar x values, 
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substantial under (over) estimates wi 11 result. In situations where a 

high degree of auto-correlation is suspected, these span selection 

procedures should be used with caution. 

Figure 1 illustrates the application of this smoothing algorithm to an 

artificial data set. (A FORTRAN subroutine implementing this algorithm 

is listed in Appendix 1.1 The data for this example consists of IV200 

pairs (XisYi) with the xi drawn randomly (i id) from a uniform 

distribution in the interval CO,ll. The yi are obtained from 

Yi = sinC21T(l-Xi)21 + Xjei 

with the Ei iid standard normal. The parameter ALPHA Ca in tlO>l was set 

to 0.1 and RESPAN CL/n in (811 was set to 0.25 (see Appendix 11. This 

example simulates a situation in which both the curvature of f decreases 

.and the variance of the random component increases with increasing x. 

Figure la is a scatterplot of the simulated data. Figure lb also shows 

this scatterplot, but with the resulting smooth superimposed. The height 

of the curve near the bottom indicates the span value chosen at each x. 

The span is seen to increase with x to account for the increasing noise, 

as well as to take advantage of the decreasing curvature of f. (For X > 

0.7, the span has reached the largest value provided in the program, 

k/N = 0.7.) Figure lc is the same as Figure lb except that the curve 

Y=f(x)=sinC2u(l-x>zl is superimposed for reference. The resulting smooth 

is seen to estimate the underlying f reasonably well. Note that for a 

linear function y=ax+b (zero curvature), the smoother will tend to use a 

constant (maximum) span value regardless of (the variation of) the 

amplitude of the noise. 
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5. Reducinq Computation b Binning 

In the previous sections, we have described a fairly intricate 

scatterplot smoother. As an essential building block of projection 

pursuit regression (Friedman and Stuetzle, 19811, it has performed well. 

In this context, the smoother is applied to the full data set many times 

in a single run. 
\ 

In order for such a procedure to be computationally 

feasible for large data sets, it is necessary that the smoother be as 

fast as possible. One possibility to increase speed is by binning. 

Denote the observations for one particular scatterplot by 

(x,,y,)...(x,,y,). We assume here that the observations already have 

been sorted so that the Xi are in increasing order. Choose a bin size, 

say m,- and define new data points (uI,v~)...(u~,~,v~,~) by 

Ui = mean o(( i-l)l+l...Xim)i 

Vi = mean (y( i-q)m+l...yim). 

Then apply the smoother described above to the (U,rV,)... Cun/mrvn/n). 

The smooth for predictor values Xi not among u1 . ..un/r can be obtained by 

linear interpolation or, at the boundaries, by extrapolation. 

The computing time for the smoother grows linearly in the number of 

observations, and so binning reduces the run time of the smoother roughly 

by a factor of m. 

Figure 2 shows the results of applying the smoother to a sample of 

n=500 observations generated from the same model as the data shown in 

Figure 1, with the results of applying the binning procedure with m=5 

superimposed. The qua1 i ty of the smooth is seen to suffer very little 

while the computation has been substantially reduced. 
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6. Resistance 

As for all data analytic procedures, it is highly desirable for a 

scatterplot smoother to be resistant against occasional outliers in the 

data. (All our analysis is conditional on the observed predictor values; 

outlier thus means outlier in response.) The smoother described in 

Sections 4 and 5 clearly is not resistant. One way to overcome this 

limitation is to first screen the data with a rejection rule identifying 

out1 iers, and then apply the smoother to the cleaned data set. 

We suggest a rejection rule based. on running medians. A running 

median smoother with span k is defined by - 

S(Xi) = med (yi-k/2-. .yi+k/2) . 

The ends of the sequence must be treated specially, most simply by 

replicating the outermost values defined above. The rejection rule makes 

five passes over the data: 

1) Compute a running median smooth s. 

2) Replace S(Xi) by s*(xi) obtained by linearly interpolating 

between (xi-l, s(xi-11) and (xi+lr S(Xi+lll. The purpose of 

this step is to ensure a more realistic estimate of spread in 

steps (3) and (41 for monotone (sub)sequences, which are 

exactly reproduced by a running median. 

3) Smooth the absolute residuals lril = 1 yi - S*(Xi)) by a 

running median and obtain a sequence vl--.vn of local spread 

estimates V*i. 

4) Smooth the sequence of local spread estimates by a moving 
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average with span f*n and obtain smoothed spreads v+i. This 

makes the spread estimates more stable. The same effect could 

be achieved by increasing the span of the running medians in 

Step (3); however, this would be more expensive 

computationally. In the code given in Appendix 2, the 

constant f is set to 0.3. 

51 Flag all observations for which 1 ril 2 c*v*i. In the code, c 

is set to 4.5. 

Some details related to the treatment of ties have been omitted. A 

FORTRAN subroutine implementing this algorithm is listed in Appendix 2. 

The span for the running medians in Steps (1) and (31 is chosen to be 

increasing with the sample size n (see Table 2). A motivation for our 

particular choices is given in Chapter 7. We use the same span in both 

steps, although there is no inherent need to do so. 

Figure 3a shows the result of applying the rejection rule to an 

artificial data set. The true underlying function is a sine wave. The 

predictors are uniformly distributed in L0,2nl; the random errors are 

Gaussian with standard deviation 0.3. Outliers occur with probability 

0.2; they were generated by adding a Gaussian with standard deviation 2.4 

to the original observation. Observations flagged as outliers by the 

rejection rule are marked by squares. Figure 3b shows the results of 

applying the rejection rule to a real data set. 

7. Resistance of Runninq Medians 

The choice of span k for the running medians in Steps (1) and (3) 

a 
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gives rise to rather interesting questions. Somewhat vaguely stated, the 

rejection rule will be able to detect extreme outliers as long as these 

running medians do not break down. We will now define precisely how we 

measure the degree of resistance of a smoother, and give results on the 

dependence of the resistance of a running median smoother on the span. 

Assume we want to smooth a sequence of length n. Responses can be 

either “good” or “bad”, that is, good observations or outliers. We 

define random variables bi...bn by bi = 0 if yi is good, bi = 1 if Y< is 

an out1 ier. Assume that Prob(bi = 11 = p and that the bi are 

independent. (As noted by Mallows (19801, the latter assumption might 

not always be realistic; out1 iers in time series sometimes come in 

bursts.) A smoothed value si is called bad if it can be made arbitrarily 

-large by suitable choice of the reponse values for the bad observations. 

A smoother is said to suffer a breakdown if one or more of the smoothed 

values Si are bad. The probability that this happens under the above 

model for the bi is called the breakdown probability of the smoother. It 

will generally depend on p and n. A smoother with breakdown probability 

(l-p)n is called nonresistant. (For a different definition of breakdown 

probability, see Mallows (19801.1 

We will now devise an approximate formula for the span necessary to 

guarantee an upper bound on the breakdown probability as a function of n 

and p = Prob(bi=l). For that purpose, we define new random variables 

sq . . . Sn-k+l by 

i+k-1 
Si = C bj- 

i 
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A running median smoother suffers a breakdown if among any consecutive k 

observations more than k/2 are bad; i.e., if max si > k/2. This 

probability does not seem to be simple to evaluate, but it is easy to 

obtain an upper bound in terms of the binomial probability Prob(B(k,p) > 

k/2, using the Bonferroni inequality: 

ProbCmax si > k/2) < (n-k+11 Prob(BCk,p) > k/21. 

This inequal i ty provides an estimate for the span needed to guarantee a 

certain upper bound on the breakdown probability for given n and p. 

Table 1 gives estimates of the necessary span k for breakdown probability 

bounded by 0.05, and several values of n and p (n=25,50,100,200,400,800; 

p=0.05,0.1,0.2). For a comparison, we also list the percentage of 

breakdowns actually observed in thousand randomly generated Bernoull i 

sequences for the estimated value of k, and the smal lest value of k 

resulting in 50 or fewer breakdowns. The results show that the 

Bonferroni estimate is close, especially for ~~0.05 and ~~0.1 where 

Prob(Btk,p) > k/2) is small; this is in agreement with experience gained 

in using the Bonferroni inequality in multiple comparisons. The span of 

the running medians in Steps (11 and (3) of the rejection rule described 

in Chapter G was chosen to guarantee a breakdown probability of less than 

0.05 for probability ~~0.1 of obtaining an outlier. 

Another interesting question is how fast the span k(n) must grow as a 

function of n with everything else fixed. This question has been 

answered by P. Erdijs and A. Renyi (1970): 

Theorem: If k(n) = cln n then 

Si 
ProbC lim max - = a) = 1, 

n-*cDl Ci In-k+1 k 
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where a is related to c via the equation 

-1 a P 
- = Rn(p(l-p1) + (l-p-a) (Rn - - Rn -1, 

C l-a 1-p 

for a > c. 

This theorem is a special case of Erdijs and Renyi’s theorem 2. It 

can be applied to oursituation as follows: Choose a = l/2 - E. 

Then there exists an no such that for all n > no we have max Si < 

k/2 for almost all sampling sequences. In addition, Erd’ds and Renyi 

show that 

- If k grows slower than In n bk(n)/ln n+O,), then for all but 

finitely many values of n, max Si = k for almost al 1 sampling 

sequences. (“k cannot grow slower than In n”.) - 

- If k grows faster than In n CkCn)/ln n*), then lim max si=kp for 

almost all sampling sequences; i.e., the strong law of large 

numbers applies. (“k does not have to grow faster than In n”.) 

6. &i Updatinq Alqorithm for Runninq Medians 

There is a straightforward way to compute running medians: Obtain the 

median of each consecutive k-tupel by sorting it. That can be 

substantially improved upon by making use of the fact that the set of 

responses defining si+l is almost the same as the set of responses 

defining si; only yin = yi+k/t+l has to be added, and Yout = Yi-k/2 has 

to be deleted. The following rules are easy to verify: 

- If yin = Sir then si+q = si. 

- If yin > si and you+ > si or if yin < si and yput < sir then si+l = 

Si. 
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So in the case of random data, we have to do nothing but make these tests 

half the time. 

- If Yin > Si and you+ < si, then let k+ denote the number of 

observations in the new span that are bigger than si. If K+ < k/2, 

then si+l = sir else si+l is the smallest observation strictly bigger 

than si. The analog of that is true if Yin < Si and yout > Si. 

- If yin > si and Yout = Sir then define k+ as above. If k+ q k/2, 

then si+l is the smallest observation in the span strictly bigger 

than si; else Si+l is the smallest observation in the span that is 

bigger than or equal to Si- The analog of that is true if yin < Si 

and yout = si. 

In appendix 2, we give a FORTRAN subroutine that implements the algorithm - 

outlined above. 

For random data, the algorithm will take OCnk) operations. It is 

possible to reduce that to OCn log k) by organizing the observations in 

the span into a binary tree which is kept balanced as observations are 

moved in and out (AVL-tree; see Knuth (19731, pp 451). Unfortunately, 

for the range of k that we have in mind (about 201, log k is not enough 

smaller than k to compensate for the increased overhead. 

9. Discussion 

Cleveland (1979) has suggested a scatterplot smoother also based on 

local linear fits. It differs from the one described in this report 

mainly in three respects: 

- It does not use variable span. 

- In the fit of the local straight line determing the smooth s(XiI for 
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predictor value xir the observations are weighted according to their 

distance from xi; observations towards the extremes of the span 

receive lower weights than observations with predictor values close 

t0 Xi. Asymptotic calculations suggest that assigning unequal 

weights should reduce the error of the curve estimate, but there is 

no evidence that it makes a substantial difference for sample sizes 

occurring in practice. It does, however, produce a smoother looking 

estimate. 

- The procedure derives its resistance properties not from data 

screening with a rejection rule. Instead, each of the local 

straight lines is fitted, not by .least squares, but by a resistant 

fitting procedure. - 

Updating formulas cannot be used in this scheme, making it 

comparatively expensive in terms of computing. To reduce computation, 

Cleveland suggests evaluating the smooth only for every m-th predictor 

value. The parameter m here plays a similar role as our bin size; it 

would be chosen as a fraction of k. We developed our smoothing procedure 

because variable span is often important, and because the use of updating 

formulas dramatically reduces computation. 

Another class of procedures suggested for smoothing are procedures 

based on splines. A spline function s of order R with knots at zl...zk 

is a function satisfying the following two conditions: 

- In each of the intervals (-Oorz~)r(z~rz21...(Lk-1,Zk)ror s is a 

polynomial of degree R - 1; 

- s has R - 2 continuous derivatives. 
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One way to use spline functions in scatterplot smoothing is to fit a 

spline function with knots 21 . ..Zk to the data (XlrY1)...(XnrYnIs either 

by least squares or by some resistant method. The degree of smoothness 

is determined by the number and position of the knots. A major 

disadvantage of this method is that k+l parameters must be chosen: the 

number and the positions of the knots. Usually some heuristic procedure 

is used to place the knots once k has been fixed (Jupp, 1978). This 

leaves the number of knots to be determined. This number plays the role 

of the span in determining the degree of smoothing. Unfortunately, the 

output of the smoother can depend on k in a very nonlinear way; it is 

easy to construct examples where the addition of one more knot 

substantially decreases the residual sum of squares, whereas further 

knots hardly make any difference. This makes k-more difficult to choose 

than the span in a local averaging smoother. Furthermore, least squares 

fit of splines is substantially slower so that choosing k through cross- 

validation is usually too expensive. 

Another way is to use smoothing splines in the sense of Reinsch 

(1967). A smoothing spline s of order 2R for smoothing parameter X is 

the function that minimizes 

s 
xn 1 (yi-fCXi)12 + X f(R)2(x)dx 
Xl 

among all functions f with R derivaties. The solution really turns out 

to be a spline function of order 2R with knots xl...Xni the name is thus 

iustified. The larger X is chosen, the smoother s becomes; thus; X here 

plays the role of the span. Computation of the spline for given X 

requires the solution of a banded n*n linear system. A drawback of the 
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method, as described here, is that it is impossible to obtain an 

intuitive feeling for the choice of X in a given example. So, one 

usually fixes not X, but the residual sum of squares around the smooth. 

The corresponding value of X then has to be found iteratively by 

repeatedly solving the minimization problem. This substantially 

increases the necessary amount of computation. Algorithms to determine 

the optimal h by cross-validation usually require computation of the 

singular value decomposition of an nxn matrix; they are expensive and 

infeasible for sample sizes larger than 200-300. 

To summarize, the local averaging smoother described in this report 

has two desirable properties that set it apart from other scatterplot 

smoothers: it is very fast to compute and the value of the parameter that 

-controls the amount of smoothing is optimized locally‘(through cross- 

validation), allowing it to change over the range of predictor values. 
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APPENDIX I 

The following is a complete listing of a FORTRAN subroutine ’ 

implementing the smoothing procedure described in this paper. 
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SUBROUTINE SuPsMU (N,X,Y,W,IPER,ALPHA,RESPAN,IBIN,SMO,SC) 
C ----------------__ ----;------,---------------- ------------B---d--- 
c 
c SUPER SMOOTHER (FRIEDMAN AND STUETZLE, 1982). 
C 
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE 
C DEPARTMENT OF STATISTICS AND 
c STANFORD LINEAR ACCELERATOR CENTER 
C STANFORD UNIVERSITY 
C STANFORD CA. 94305 
C 
C INPUT: 
C N : NUMBER OF OBSERVATIONS (X,Y - PAIRS). 
c X(N) : ORDERED ABSCISSA VALUES. 
C Y(N) : CORRESPONDING ORDINATE (RESPONSE) VALUES. 
C W(N) : (OPTIONAL) wmcxr FOR EACH (x,y) OBSERVATION. 
C w < 0.0 => ALL OBSERVATIONS HAVE EQUAL WEIGHT. 
C IPER : PERIODIC VARIABLE FLAG. 
C IPER=l => X Is ORDINARY ORDERED VARIABLE. 
C IpER= => x Is A PERIODIC (CIRCULARLY DEFINED) VARIABLE. 
C ALPHA : FRACTIONAL SMOOTHNESS PENALITY ( SEE (10) SECTION 4). 
C RESPAN : FRACTIONAL SPAN FOR RESIDUAL SMOOTHING 
C ( L/N, SEE (8) SECTION 4). 
C RESPAN .LT. 0 => FIXED SPAN SMOOTHER WITH FRACTIONAL 
C SPAN = ABS(RESPAN). 
C IBIN : BIfJNING FACTOR (M, SEE SECTION 7). 
C OUTEUT. . 
C SMO(N) : sxooTHm ORDINATE (RESPONSE) VALUES. 
C SCRATCH: 
c SC(3,N) : INTERNAL WORKING STORAGE. 
C 
C NOTE: 
C ALPHA=@.1 AND RESPAN=0.25 ARE REASONABLE VALUES. FOR RESPAN > 0 
C SMOOTHER OUTPUT IS COMPLETELY CROSS-VALIDATED; X(I), Y(I), AND 
C W(1) ARE NOT USED IN THE CALCULATION OF SMO(1). THEREFORE, 
C THE AVERAGE SQUARED RESIDUAL 
C N 
C ASR = SUM w(I)*(Y(I)-sMo(I))**2 
C I=1 
C CAN BE USED AS A GOODNESS-OF-FIT MEASURE FOR THE PURPOSE OF 
C SELECTING OPTIMAL VALUES FOR SMOOTHING PARAMETERS BY 
C REPEATED APPLICATION. 
C 
C FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL 
C CORRELATIONS BETWEEN OBSERATIONS CLOSE IN X --VALUE, THEN 
C A PRESPECIFIED FIXED SPAN SMOOTHER (RESPAN < 0) SHOULD BE 
C USED. REASONABLE SPAN VALUES ARE 0.3 -GE. ABS(RESPAN) .GE. 0.5. 
C 
C ------------------------------------------------------------------ 

DIMENSION X(N),Y(N),W(N),SMO(N),SC(3,N) 
DOUBLE PRECISION SX(5),SY(5),sXX(5),sXY(5),SUM(5),FBW(5) 
DIMENSION IBW(5),RESQUE(5,101),SMOQuE(5~lOl) 
INTEGER IN,OUT 
DATA IBWl,SPNMAX /3,0.35/ 
DATA BIG,EPS /l.OE20,1.OE-03/ 
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IF (W(l).LT.O.O) GO TO 20 
DO 10 I=l,N 
SC(3,I)=W(I) . 
CONTINUE 
GO TO 40 
DO 30 I=l,N 
SC(3,1)=1. 
CONTINUE 
IF (X(N).GT.X(~)) GO TO 70 
SX(l)=O.O 
FBW(l)=SX(l) 
DO 50 J=l,N 
sX(l)=sX(l>+sC(3,J)*Y(J) 
FBW(l)=FBW(l)+SC(3,J) 
CONTINUE 
A=SX(l)/FBW(l) 
DO.60 J=l,N 
SMO(J)=A 
CONTINUE 
RETU*RN 
1=x/4 
J=3*1 
SCALE=X(J)-X(1) 
IF (sCALE.GT.O.O) GO TO 90 
IF (J.w.N) J=J+~ 
IF (I.GT.~) 1=1-l 
SCALE=X(J)-X(1) 

-GO TO 80 
~sML=(~s~*s~ALE)**~ 
IF (IBIPT.LE. i) GO TO 110 
NA=O 
SX(l)=O.O 
SY(l)=SX(i) 
FBW(l)=SY(l) 
DO 100 J=l,N 
sX(l)=SX(l)+X(J)*SC(3,J) 
SY(l)=SY(l)+Y(J)*SC(3,J) 
FBW(i)=FBW(l)+SC(3,J) 
IF (MOD(J,IBIN).NE.~) GO TO 100 
NA=xA+l 
SC(i,NA)=SX(l)/FBW(l) 
SC(2,NA)=SY(l>/FBW(l) 
SC(3,NA)=FBW(l) 
SX(l)=O.O 
SY(l)=SX(l) 
FBW(l)=SY(l) 
CONTINUE 
IF (MOD(N,IBIN).EQ.O) GO TO 130 
NA=NA+l 
SC(l,NA)=SX(l)/FBW(l) 
SC(2,xA)=SY(l>/FBW(l) 
SC(3,NA)=FBW(l) 
GO TO 130 
NA=N 
DO 120 J=l,N 
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120 
130 

140 

150 

160 
170 

180 
190 

200 
210 

220 

SC(l,J)=X(J) 
SC(2,J)=Y(J) _ 
CONTINUE 
IBW(l)=IBWl 
IDELTA=(SPNMAX*NA-IBW(l))/4.0+0.5 
DO 140 1=2,5 
IBw(I)=MINO(NA/2,IBW(I-l)+IDELTA) 
CONTINUE 
DO 150 1=1,5 
SX(I)=O.O 
SY(I)=SX(I) 
SXX(I)=SY(I) 
SXY(I)=SXX(I) 
FBW(I)=SXY(I) 
SUM(I)=FBW(I) 
IF (MOD(IBW(I),2).EQ.O) IBW(I)=IBW(I)+l 
CONTINUE 
IF (RESPAN.GE.O.O) GO TO 160 
IBwS=l 
IBW(l)=O .5*ABS(RESPAN)*NA 
IF (MOD(IBW(1),2).EQ.O) IBW(l)=IBW(l)+l 
IBW(S)=IBW(l) 
GO TO 170 
IBWS=5 
IF (IPER.NE.2) GQ TO 220 
IT=NA-IBw(5)+1 
IH=IBW(S)-1 
DO 190 J=IT,NA 
DO 180 I-1,IBWS 
IF (J.LT.NA-IBW(I)+~) GO TO 183 
XT=SC(l,J) 
YT=SC(2,J) 
WT=SC(3,J) 
SX(I)=SX(I)+XT*WT 
SY(I)=SY(I)+YT*iJT 
SXX(I)=SXX(I)+XT*XT*WT 
SXY(I)=SXY(I)+XT*YT*~T 
FBW(I)=FBW(i)+WT 
CONTINUE 
CONTINUE 
DO 210 J=l,IH 
DO 200 I=l,IBWS 
IF (J.GT.IB~(I)-1) GO TO 200 
XT=SC(l,J) 
YT=SC(2,J) 
WT=SC(3,J) 
SX(I)=SX(I)+XT*WT 
SY(I)=SY(I)+YT*WT 
SXX(I)=SXX(I)+xT*XT*WT 
SXY(I)=SXY(I)+XT*YT*WT 
FBW(I)=FBW(I)+WT 
CONTINUE 
CONTINUE 
GO TO 250 
IT=2*IBW(5)-1 
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DO 240 J=l,IT 
DO 230 I=l,IBWS . 
IF (J.GT.2*IBW(I)-1) GO TO 230 . 
XT=SC(l,J) 
YT=SC(2,J) 
WT=SC(3,J) 
SX(I)=SX(I)+XT*WT 
SY(I)=SY(I)+YT*WT 
SXX(I)=SXX(I)+XT*XT*WT 
S~~(I)=SXY(I)+XT*YT*WT 
FBW(I)kFBW(I)+WT 

230 CONTINUE 
240 CONTINUE 
250 KBw=MIN0(101,2*INT(O.5*RESPAN*NA+O.5)+1) 

KBW02=KBW/2+1 
I" -* =o 
JTfIH 
JM=JT 
DO 370 J=l,NA 
RESMIN=BIG 
IF (J.LT.KBW02) GO TO 260 
JT=JT+l 
JMO=JM 
JM=MOD(JM,KBW)+l 

260 IH=MOD(IH,KBW)+l 
Do 310 I=l,IBWS 
IF (IBWS.NE.5) GO TO 270 
XT=SC(l,J) 
YT=SC(2,J) 
wT=SC(3,J) 
SX(I)=SX(I)-XT*WT 
SY(I)=SY(I)-YT*WT 
SXX(If=SXX(I)-XT*XT*WT 
SXY(I)=Sxy(I)-XT*YT*WT 
FBw(I)=FBW(I)-WT 

270 OuT=J-IBW(1) 
IN=J+IBW(I)-1 
IF ((IPER.NE.2).AND.(OUT.LT.l.OR.IN.GT.NA)) GO To 280 
fF (OUT.LT.~) o~T=NA+OUT 
IF (IN.GT.NA) IN=IN-NA 
XT=SC (1, OUT) 
YT=SC ( 2, OUT) 
WT=SC(3,0UT) 
SX(I)=SX(I)-XT*WT 
SY(I)=SY(I)-YT*WT 
SXX(I)=SXX(I>-XT*XT*WT 
SXY(I)=SXY(I)-XT*YT*WT 
FBW[I)=FBW(1)-WT 
XT=SC(l,IN) 
YT=SC(2,IN) 
WT=SC(3,IN) 
SX(I)=SX(I)+XT*WT 
SY(I)=SY(I)+YT*WT 
SXX(I)=SXX(I)+XT*XT*WT 
SXY(I)=SXY(I)+XT*YT*WT 
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FBW(I)=FBW(I)+WT 
D=SXX(I)-SX(I)**2/FBW(I) 
VAR=D/FBW(I) 
A=O.O 
IF (VAR.GT.VSML) A=(SXY(I)-SX(I)*SY(I)/FBW(I))/D 
SM=A*SC(l,J)+(SY(I)-A*SX(I))/FBW(I) 
IF (IBws.NE.~) GO TO 290 
SMO(J)=SM 
GO TO 320 
RES=SC(3,J)*(SC(2,J)-SM)**2 
IF (J.GT.KBW) s~M(I)=SUM(I)-RESQUE(I,IH) 
SUM(I)=SUM(I)+RES 
RESQUE(I,IH)=RES 
SMOQUE(I,IH)=SM 
IF (VAR.LT.VSML.AND.I.LT.5) SMOQUE(I,IH)=BIG 
IF (J.LT.KBW02) GO TO 300 
SUM{I)=SUM(I)-RESQUE(I,JM) 
IF (JT.GT.~) SUM(I)=S~M(I)+RESQUE(I,JMO) 
IF (SUM(I).GT.RESMIN.~R.SMOQUE(I,JM).GE.BIG) GO TO 300 
RESMIN=SuM(I) 
IS=1 
XT=SC(i,J) 
YT=SC(2,J) 
WT=SC(3,J) 
SX(I)=SX(I;+XT*WT 
SY(I)=SY(I)+YT*WT 
sXX(I)=Sxx(I)+XT*XT*WT 
SXY(I)=sXY(I)+XT*YT*WT 
FBW(I)=FBx(I)+WT 
CONTINUE 
IF (IBWS.EQ.l) GO TO 370 
IF (J.GE.KBW02) SMO(JT)=SMOQUE(IS,JM) 
IF (ALFHA.LE.O.O.OR.J.LT.KBWO2.OR.IS.GE.5) GO TO 370 
REsMIN=(l.O+ALPHA)*REsMIN 
I=5 
GO TO 340 
1=1+(-i) 
IF ((-1)*((1)-(IS)).GT.~) GO TO 350 
IF (SUM(I).GT.RESMIN) GO TO 330 
IF (I.GE.5) GO TO 360 
A=(RESMIN-SUM(I))/(SUM(I+l)-SUM(I)) 
SMO(JT)=(l.O-A)*SMOQUE(I,JM)+A*SMOQUE(I+l,JM) 
GO TO 370 
SMO(JT)=SMOQUE(I,JM) 
CONTINUE 
IF (IBWS.NE.5) GO TO 440 
JT=JT+l 
DO 430 J=JT,NA 
IH=MOD(IH,KBW)+l 
RESMIN=BIG 
JMO=JM 
JM=MOD(JM,KBW)+~ 
DO 380 1=1,5 
SUM(I)=SUM(I)-RESQUE(I,IH)+RESQUE(I,JMO)-RESQUE(I,JM) 
IF (suM(I).GT.RE~MIN.~R.SM~QUE(I,JM).GE.BIG) GO To 380 
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RESMIN=SUM(I) 
IS=1 
CONTINUE 
SMO(J)=SMOQUE(IS,JM) 
IF (ALPHA.LE.O.O.OR.IS.GE.5) GO TO 430 
RESMIN=(l.O+ALPHA)*RESMIN 
I=5 
GO TO 400 
1=1+(-l) 
IF ((-1)*((1)-(IS)>.GT.O) ~0 ~0 410 
IF (suM(I).GT.RESMIN) GO TO 390 
IF (I-GE.51 GO TO 420 
A=(RESMIN-SUM(I))/(sUM(I+l)-SUM(I)) 
SMO(J)=(l.O-A)*SMOQUE(I,JM)+A*S?.lOQUE(I+l,JM) 
GO TO 430 
SMO(J)=SMOQUE(I,JM) 
CONTINUE 
IT=NA-1 
S2=SMO(l) 
IF (IPER.NE.2) GO TO 450 
A=S2 
SMO(l;=O.25*(SMO(NA)+2.O*S2+S~.~O(2)) 
GO TO 460 
SMO(l)=O.25*(2.O*S2+3.O*SMO(2)-SMO(3)) 
DO 470 J=2,IT 
Sl=S2 
S2=SMO(J) 
SMO(J)=O.25*(Sl+2.O*S2+SMO(J+1)) 
CONTINUE 
IF (IPER.NE.2) GO TO 480 
S?dO(NA)=O.25*(A+2.O*SMO(NA)+S2) 
GO TO 490 
SMO(NA)=O.25*(2.O*SMO(NA)+3.O*S2-Sl) 
IF (IBIN.LE.l) GO TO 550 
DO 500 I=l,NA 
SC(2,I)=SMO(I) 
CONTINUE 
xUP=SC(l,l)-1. 
J=O 
DO 540 I=l,N 
X1=X(I) 
IF (XI.LE.XUP) GO TO 530 
J=J+l 
XLOW=SC(l,J) 
XUP=SC(l,J+l) 
YLOW=SC(2,J) 
Y!!P=SC(2,J+l) 
IF (XLOW.NE.XUP) GO TO 510 
SLOPE=O. 
GO TO 520 
SLOPE=(YUP-YLOW)/(XUP-XLOW) 
IF (J+~.EQ.NA) xuP=x(N) 
SMO(I)=YLOW+(XI-XLOW)*SLOPE 
CONTINUE 
J=l 
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560 JO=J 

570 
580 

590 

600 
610 

620 
630 

SY(l)=SMO(J) 
IF (W(l).LE.O.O) d0 TO 570 
SY(l)=W(J)*SMO(J) 
FBW(l)=W(J) 
IF (J.GE.N) GO ~0 610 
IF (X(J+~).GT.X(J)) GO TO 610 
J=J+l 
IF (w(J).GT.O.O) GO ~0 590 
SY(l)=SY(l)+SMO(J) 
GO TO 600 
SY(l)=SY(l)+W(J)*SMO(J) 
FBW(l)=FBW(l)+W(J) 
IF (J.LT.N) GO TO 580 
IF (J.LE.J~) Go TO 630 
IF (W(l).LE.O.O) FBW(l)=J-JO+1 
SY.(l)=SY(l)/FBW(l) 
DO 620 I=JO,J 
SMO(I)=SY(l) 
CONTINUE 
J=J+l 
iF (J.LE.N) GO TO 560 
RETURN 
END 
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APPENDIX II 

The following is a complete listing of a FORTRAN subroutine 

implementing the rejection rule described in this paper. 
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SUBROUTINE REJECT (PRED,REsP,N,WEIGHT,SCRAT) 
C ---------------------------------------------------- 
C 
C REJECTION RULE FOR SMOOTHING (FRIEDMkN AND STUETZLE, 1982) 
C 
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE 
C DEPARTMENT OF STATISTICS AND 
C STANFORD LINEAR ACCELERATOR CENTER 
C STANFORD UNIVERSITY 
C STANFORD, CA. 94305 
C 
C 
C INPUT: 
C PRED(N). :ABSCISSA VALUES IN INCREASING ORDER 
C RESP(N) CORRESPONDING ORDINATE (RESPONSE) VALUES 
C N :NUMBER OF OBSERVATIONS (X,Y-PAIRS) 
C 
C OUPUT: 
C WEIGHT(N) :RE;ECTION FLAGS. 
C WEIGHT(I)=0 IF OBSERVATION I IS CONSIDERED AN OUTLIER 
C WEIGHT(I)=1 OTHERWISE 
C 
C SCRATCH: 
C SCRAT(N,2):INTERNAL WORKING STORAGE - 
C 
C 
C NO-TE: 
C REJECT usEs SUBROUTINE RUNMED (SEE BELOW) 
C 
C ---------_---------__--------------------------------- 

10 

20 
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DIMENSION PRED(N),RESP(N),WEIGHT(N),SCRAT(N,2) 
DATA FACT/4.5/ 
DATA RELS?A/0.3/ 
IF (N.GT.~~) GO ~0 lo 
IBAND= 
GO TO 50 
IF W~T.100) ~0 ~0 20 
IBAND= 
GO TO 50 
IF (N.GT.400) GO TO 30 
IBAND=ll 
GO TO 50 
IF (N.GT.800) GO TO 40 
IBAND=l3 
GO TO 50 
IBAND= 
CALL RUNMED (RESP,WEIGHT,N,IBAD) 
IFIRST=IBAND/2+1 
ILAST=N-IBAND/ 
DO 60 I=l,IFIRST 
SCRAT(I,l)=WEIGHT(I) 
CONTINUE 
DO 70 I=ILAST,N 
SCRAT(I,l)=WEIGHT(I) 
CONTINUE 
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DO 90 I=IFIRST,ILAST 
IMl=I-1 
IPl=I+l 
IF (PRED(IM~).NE.PRED(IP~)) GO TO 80 
SCRAT(I,l)=O.5*(WEIGHT(IMl)+WEIGHT(IPl)) 
GO TO 90 

80 SC~T~I,l~=WEIGHT~IMl~+(WEIGHT(IPl~-WEIGHT(IMl))*(PRED(I)-PRED(IMl 
l))/(PRED(IPl)-PRED(IM1)) 

90 CONTINUE 
I=0 

loo IF (I.GE.N-1) GO TO 150 
I=I+l 
MO=1 

110 IF (PRED(I+~).GT.PRED(I)) GO TO 120 
I=i+l 
IF (1.LT.N) GO TO 110 

120 IF (I.EQ.MO) GO TO 100 
NTIE=I-MO+1 
R=O. 
DO 130 J=MO,I 
R=R+SCRAT(J,l) 

130 CONTINUE 
R=R/NTIE 
Do 140 J=MO,I 
SCRAT(J,l)=R 

140 CONTINUE 
GO TO 100 

150 DO 160 I=l,N 
WEIGHT(I!=ABS(RESP(I)-SCRAT(I,l)) 

160 CONTINUE 
CALL RuNMED (WEIGHT,SCRAT(~,~),N,IBAND) 
IS2=N*RELSPA,'2. 
SUM=O. 
DO 170 1=1,IS2 
SUM=SUM+SCRAT(I,l) 

170 CONTINUE 
ISEFF=IS2 
DO 200 I=l,N 
IF (I.GT.N-IS2) GO TO 180 
SUM=SUM+SCRAT(I+IS2,1) 
ISEFF=XSEFF+l 

180 IF (I.LE.IS2+1) GO TO 190 
SUM=SUM-SCRAT(I-IS2-1,l) 
ISEFF=ISEFF-1 

190 SCRAT(I,2)=SUM/ISEFF 
200 CONTINUE 

I=0 
210 IF (I.GE.N-1) GO TO 260 

I=I+l 
MO=1 

220 IF (PRED(I+~).GT.PRED(I>) Go To 230 
I=I+l 
IF (I.LT.N) GO To 220 

230 IF (I.EQ.MO) GO TO 210 
NTIE=I-MO+1 
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R=O. 
DO 240 J=MO,I 
R=R+SCRAT(J,2) 

240 CONTINUE 
R=R/NTIE 
DO 250 J=MO,I 
SCRAT(J,2)=R 

250 CONTINUE 
GO TO 210 

260 DO 280 I=l,N 
IF (WEIGHT(I).LE.FACT*SCRAT(I,2)) GO TO 270 
WEIGHT(I)=O. 
GO TO 280 

270 WEIGHT(I)=l. 
280 CONTINUE 

RETURN 
END 

C --------------------__________^____ --------------------__^_______ 
C 
C 

SUBROUTINE RUNMED (SEQ,SMO,N,IBAND) 
C ------ _-_-------------------------------------------------------- 
C 
c FAST RUNNING MEDIAN FINDER (FRIEDMAN AND STUETZLE, 1982). 
C - 
C CODED BY : J. H. FRIEDMAN AND W. STUETZLE 
C DEPARTMENT OF STATISTICS AND 
c STANFORD LINEAR ACCELERATOR CENTER 
C STANFORD UNIVERSITY 
C STANFORD, CA. 94305 
C 
C 
C INPUT: 
C SEQ!N) :RESPONSES IN ORDER OF INCREASING PREDICTOR VALUES 
C N :NUMBER OF OBSERVATIONS 
C IBAND 
C 

:SPAN OF RUNNING MEDIANS (HAS TO BE ODD AND <=21) 

C OUTPUT: 
C SMO(N) :SMOOTHED RESPONSES 
C 
C NOTE: 
C THE MAXIMAL SPAN CAN BE INCREASED BY INCREASING THE DIMENSION 
C OF THE ARRAYS SCRAT AND ITAG 
C 
C -----------w-------m------- ---------------------------------------- 

DIMENSION SEQ(N),SMO(N) 
DIMENSION SCRAT(21),ITAG(21) 
DATA RINF/l.E20/ 
DO 10 I=l,IBAND 
SCRAT(I)=SEQ(I) 
ITAG(I)=I 

10 CONTINUE 
RMIN=SCRAT(l) 
IMIN=l 
DO 20 1=2,IBAND 
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IF (SCRAT(I).GE.RMIN) GO TO 20 
RMIN=SCRAT(I) 
IMIN=I 
CONTINUE 
TEMP=SCRAT(l) 
SCRAT(l)=RMIN 
SCRAT(IMIN)=TEMP 
ITAG(l)=IMIN 
ITAG(IMIN)=l 
I=3 
GO TO 40 
I=I+l 
xr" ((I).GT.(IBAND)) GO TO 60 
IF (.sCRF~T(I).GE.S~RAT(I-1)) Go To 30 
TEMp=SCRAT(I) 
ITEMP=ITAG(I) 
J=I 
SCRAT(J)=SCRAT(J-1) 
ITAG(J)=ITAG(J-1) 
J=J-1 
IF (scRAT(J-~).GT.TEMP) GO TO 50 
SCRAT(J)=TEMP 
ITAG(J)=ITEMP 
GO TO 30 
IBAND2=IBAND/2+1 
Rh!ED=SCRAT(IBAND2) 
DO 70 I=l,IBAND2 
SMO(I)=RMED 
CONTI?XlE 
IFIRST= 
ILAST=IBAND+l 
ISMO=IBAXD2+1 
TMED=RMED 
YIN=SEQ(ILAST) 
YOUT=SEQ(IFIRST-1) 
IF (YIN.GE.RMED) GO TO 180 
IF (Y~UT.GE.RMED) GO TO 90 
RNEW=RMED 
GO TO 290 
IF (YOUT.LE.RMED) GO TO 120 
KiiiNUS=O 
RXEW=-RINF 
DO 110 I=IFIRST,ILAST 
SI=SEQ(I) 
IF (~I.LT.RMED) Go TO loo 
GO TO 110 
KMINUS=KMINUS+l 
IF (sI.LE.RNEW) GO ~0 110 
RNEW=SI 
CONTINUE 
IF (KMINUS.GE.IBAND2) GO TO 290 
RXEW=RYED 
GO TO 290 
KMINUS=O 
RTS=-RINF 
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RSE=-RINF 
DO 160 I=IFIRST,ILAST 
SI=SEQ(I) 
IF (SI.LE.RMED) GO TO 130 
GO TO 160 
IF (sI.GE.RMED) GO TO 150 
KMINUS=KMINUS+l 
IF (sI.LE,RTS) ~0 TO 140 
RTS=SI 
IF (SI.LE.RSE) GO TO 160 
RSE=SI 
GO TO 160 
RSE=SI 
CONTINUE 
IF (KkINUS.XE.IBAND2) GO TO 170 
RNEW=RTS 
GO TO 290 
RXEW=RSE 
GO TO 290 
IF (-~TIN.LE.RxED) GO ~0 280 
IF (YoUT.LE.R,"IED) GO TO 190 
RNEW=RMED 
GO TO 290 
IF (Y~UT.GE.PJIED) GO TO 220 
KPLUS=O 
YXEW=RIY" * &L 
DO 210 I=IFIRST,ILAST 
SI=SEQ(I) 
iF (sI.GT.RMED) ~0 TO 200 
GO TO 210 
KPLUS=KPLUS+l 
IF (SI.GE.~EW) GO TO 210 
RNEW=SI 
CONTINUE 
IF (KPLUS.GE.IBAND2) GO TO 290 
RNEW=RXED 
GO TO 290 
KPLUS=O 
RTB=RINF 
RBE=RINF 
DO 260 I=IFIRST,ILAST 
SI=SEQ(I) 
IF (SI.GE.RMED) GO TO 230 
GO TO 260 
IF (SI.LE.RMED) GO TO 250 
KPLUS=KPLUS+l 
IF (s~.GE.RTB) ~0 TO 240 
RTB=SI 
IF (SI.GE.RBE) ~0 TO 260 
RBE=SI 
GO TO 260 
RBE=SI 
CONTINUE 
IF (KPLUS.NE.IBAND2) GO TO 270 
RNEW=RTB 
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GO TO 290 
270 RNEW=RBE 

GO TO 290 
280 RNEW=RMED 
290 RMED=RNEW 

SMO(ISMO)=RMED 
IFIRST=IFIRST+l 
ISMO=ISMO+l 
ILAST=ILAST+l 
IF (ILAST.LE.N) GO ~0 80 
DO 300 I=ISMO,N 
SMO(I)=RMED 

300 CONTINUE 
RETURN 
END 
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Figure Captions 

Figure la: Two hundred observations (points) drawn from the model 
Y=sinC2n(l-X~zl + XE with E iid standard normal. 

Figure lb: The data of Figure la with the computed smooth 
superimposed. The height of the bottom curve is proportional to 
the span value employed at the corresponding abscissa value. 

Figure lc: Same as Figure lb with the addition of the curve 
Y=sinl12vr(1-X)21 

Figure 2: Five hundred observations from the same model as Figure 
1, with the computed smooths for both m=l and m=5. 

Figure 3a: Output of rejection rule applied to artificial data set. 
Rejected observations are marked by squares. 

Figure 3b: Output of rejection rule applied to real data set. 
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TABLE I 

n Pbad K Xbds K 

25 

50 

100 

200 

400 

800 

25 

50 

100 

200 

400 

800 

25 

50 

100 

200 

400 

800 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

n: length of sequence 

9 

9 

9 

9 

11, 

13 

13 

15 

15 

21 

23 

27 

31 

33 

1.0 

0.5 

1.0 

2.0 

1.0 

2.0 

0.5 

2.3 

1.4 

0.5 

1.0 

0.0 

1.9 

0.7 

1.4 

1.8 

1.9 

2.1 

Pbad: probability of an outlier 

i7: Bonferroni estimate of span 
breakdown probability s 0.05 

5 

5 

7 

7 

7 

9 

7 

9 

9 

11 

11 

13 

13 

15 

19 

21 

27 

31 

necessary to guarantee 

%bds : Percentage of breakdown actually observed in 1000 Monte 
Carlo trials for span 8. 

K: Span necessary to guarantee breakdown probability < 0.05 
(estimated from 1000 Monte Carlo trials). 
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TABLE II 

n K 

s 25 7 

1100 9 

i400 11 

<a00 13 

>a00 15 

n: length of sequence 

K: span of running medians in steps (1) and (3) of rejection - 

rule 


